| /* Copyright (c) 2002,2007-2013, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/vmalloc.h> |
| #include <linux/memory_alloc.h> |
| #include <asm/cacheflush.h> |
| #include <linux/slab.h> |
| #include <linux/kmemleak.h> |
| #include <linux/highmem.h> |
| |
| #include "kgsl.h" |
| #include "kgsl_sharedmem.h" |
| #include "kgsl_cffdump.h" |
| #include "kgsl_device.h" |
| |
| /* An attribute for showing per-process memory statistics */ |
| struct kgsl_mem_entry_attribute { |
| struct attribute attr; |
| int memtype; |
| ssize_t (*show)(struct kgsl_process_private *priv, |
| int type, char *buf); |
| }; |
| |
| #define to_mem_entry_attr(a) \ |
| container_of(a, struct kgsl_mem_entry_attribute, attr) |
| |
| #define __MEM_ENTRY_ATTR(_type, _name, _show) \ |
| { \ |
| .attr = { .name = __stringify(_name), .mode = 0444 }, \ |
| .memtype = _type, \ |
| .show = _show, \ |
| } |
| |
| /* |
| * A structure to hold the attributes for a particular memory type. |
| * For each memory type in each process we store the current and maximum |
| * memory usage and display the counts in sysfs. This structure and |
| * the following macro allow us to simplify the definition for those |
| * adding new memory types |
| */ |
| |
| struct mem_entry_stats { |
| int memtype; |
| struct kgsl_mem_entry_attribute attr; |
| struct kgsl_mem_entry_attribute max_attr; |
| }; |
| |
| |
| #define MEM_ENTRY_STAT(_type, _name) \ |
| { \ |
| .memtype = _type, \ |
| .attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \ |
| .max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \ |
| mem_entry_max_show), \ |
| } |
| |
| /** |
| * Given a kobj, find the process structure attached to it |
| */ |
| |
| static struct kgsl_process_private * |
| _get_priv_from_kobj(struct kobject *kobj) |
| { |
| struct kgsl_process_private *private; |
| unsigned long name; |
| |
| if (!kobj) |
| return NULL; |
| |
| if (sscanf(kobj->name, "%ld", &name) != 1) |
| return NULL; |
| |
| list_for_each_entry(private, &kgsl_driver.process_list, list) { |
| if (private->pid == name) |
| return private; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * Show the current amount of memory allocated for the given memtype |
| */ |
| |
| static ssize_t |
| mem_entry_show(struct kgsl_process_private *priv, int type, char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].cur); |
| } |
| |
| /** |
| * Show the maximum memory allocated for the given memtype through the life of |
| * the process |
| */ |
| |
| static ssize_t |
| mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].max); |
| } |
| |
| |
| static void mem_entry_sysfs_release(struct kobject *kobj) |
| { |
| } |
| |
| static ssize_t mem_entry_sysfs_show(struct kobject *kobj, |
| struct attribute *attr, char *buf) |
| { |
| struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr); |
| struct kgsl_process_private *priv; |
| ssize_t ret; |
| |
| mutex_lock(&kgsl_driver.process_mutex); |
| priv = _get_priv_from_kobj(kobj); |
| |
| if (priv && pattr->show) |
| ret = pattr->show(priv, pattr->memtype, buf); |
| else |
| ret = -EIO; |
| |
| mutex_unlock(&kgsl_driver.process_mutex); |
| return ret; |
| } |
| |
| static const struct sysfs_ops mem_entry_sysfs_ops = { |
| .show = mem_entry_sysfs_show, |
| }; |
| |
| static struct kobj_type ktype_mem_entry = { |
| .sysfs_ops = &mem_entry_sysfs_ops, |
| .default_attrs = NULL, |
| .release = mem_entry_sysfs_release |
| }; |
| |
| static struct mem_entry_stats mem_stats[] = { |
| MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel), |
| MEM_ENTRY_STAT(KGSL_MEM_ENTRY_PMEM, pmem), |
| #ifdef CONFIG_ASHMEM |
| MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ASHMEM, ashmem), |
| #endif |
| MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user), |
| #ifdef CONFIG_ION |
| MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion), |
| #endif |
| }; |
| |
| void |
| kgsl_process_uninit_sysfs(struct kgsl_process_private *private) |
| { |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(mem_stats); i++) { |
| sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr); |
| sysfs_remove_file(&private->kobj, |
| &mem_stats[i].max_attr.attr); |
| } |
| |
| kobject_put(&private->kobj); |
| } |
| |
| void |
| kgsl_process_init_sysfs(struct kgsl_process_private *private) |
| { |
| unsigned char name[16]; |
| int i, ret; |
| |
| snprintf(name, sizeof(name), "%d", private->pid); |
| |
| if (kobject_init_and_add(&private->kobj, &ktype_mem_entry, |
| kgsl_driver.prockobj, name)) |
| return; |
| |
| for (i = 0; i < ARRAY_SIZE(mem_stats); i++) { |
| /* We need to check the value of sysfs_create_file, but we |
| * don't really care if it passed or not */ |
| |
| ret = sysfs_create_file(&private->kobj, |
| &mem_stats[i].attr.attr); |
| ret = sysfs_create_file(&private->kobj, |
| &mem_stats[i].max_attr.attr); |
| } |
| } |
| |
| static int kgsl_drv_memstat_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| unsigned int val = 0; |
| |
| if (!strncmp(attr->attr.name, "vmalloc", 7)) |
| val = kgsl_driver.stats.vmalloc; |
| else if (!strncmp(attr->attr.name, "vmalloc_max", 11)) |
| val = kgsl_driver.stats.vmalloc_max; |
| else if (!strncmp(attr->attr.name, "page_alloc", 10)) |
| val = kgsl_driver.stats.page_alloc; |
| else if (!strncmp(attr->attr.name, "page_alloc_max", 14)) |
| val = kgsl_driver.stats.page_alloc_max; |
| else if (!strncmp(attr->attr.name, "coherent", 8)) |
| val = kgsl_driver.stats.coherent; |
| else if (!strncmp(attr->attr.name, "coherent_max", 12)) |
| val = kgsl_driver.stats.coherent_max; |
| else if (!strncmp(attr->attr.name, "mapped", 6)) |
| val = kgsl_driver.stats.mapped; |
| else if (!strncmp(attr->attr.name, "mapped_max", 10)) |
| val = kgsl_driver.stats.mapped_max; |
| |
| return snprintf(buf, PAGE_SIZE, "%u\n", val); |
| } |
| |
| static int kgsl_drv_histogram_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| int len = 0; |
| int i; |
| |
| for (i = 0; i < 16; i++) |
| len += snprintf(buf + len, PAGE_SIZE - len, "%d ", |
| kgsl_driver.stats.histogram[i]); |
| |
| len += snprintf(buf + len, PAGE_SIZE - len, "\n"); |
| return len; |
| } |
| |
| static int kgsl_drv_full_cache_threshold_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int ret; |
| unsigned int thresh; |
| ret = sscanf(buf, "%d", &thresh); |
| if (ret != 1) |
| return count; |
| |
| kgsl_driver.full_cache_threshold = thresh; |
| |
| return count; |
| } |
| |
| static int kgsl_drv_full_cache_threshold_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| return snprintf(buf, PAGE_SIZE, "%d\n", |
| kgsl_driver.full_cache_threshold); |
| } |
| |
| DEVICE_ATTR(vmalloc, 0444, kgsl_drv_memstat_show, NULL); |
| DEVICE_ATTR(vmalloc_max, 0444, kgsl_drv_memstat_show, NULL); |
| DEVICE_ATTR(page_alloc, 0444, kgsl_drv_memstat_show, NULL); |
| DEVICE_ATTR(page_alloc_max, 0444, kgsl_drv_memstat_show, NULL); |
| DEVICE_ATTR(coherent, 0444, kgsl_drv_memstat_show, NULL); |
| DEVICE_ATTR(coherent_max, 0444, kgsl_drv_memstat_show, NULL); |
| DEVICE_ATTR(mapped, 0444, kgsl_drv_memstat_show, NULL); |
| DEVICE_ATTR(mapped_max, 0444, kgsl_drv_memstat_show, NULL); |
| DEVICE_ATTR(histogram, 0444, kgsl_drv_histogram_show, NULL); |
| DEVICE_ATTR(full_cache_threshold, 0644, |
| kgsl_drv_full_cache_threshold_show, |
| kgsl_drv_full_cache_threshold_store); |
| |
| static const struct device_attribute *drv_attr_list[] = { |
| &dev_attr_vmalloc, |
| &dev_attr_vmalloc_max, |
| &dev_attr_page_alloc, |
| &dev_attr_page_alloc_max, |
| &dev_attr_coherent, |
| &dev_attr_coherent_max, |
| &dev_attr_mapped, |
| &dev_attr_mapped_max, |
| &dev_attr_histogram, |
| &dev_attr_full_cache_threshold, |
| NULL |
| }; |
| |
| void |
| kgsl_sharedmem_uninit_sysfs(void) |
| { |
| kgsl_remove_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list); |
| } |
| |
| int |
| kgsl_sharedmem_init_sysfs(void) |
| { |
| return kgsl_create_device_sysfs_files(&kgsl_driver.virtdev, |
| drv_attr_list); |
| } |
| |
| #ifdef CONFIG_OUTER_CACHE |
| static void _outer_cache_range_op(int op, unsigned long addr, size_t size) |
| { |
| switch (op) { |
| case KGSL_CACHE_OP_FLUSH: |
| outer_flush_range(addr, addr + size); |
| break; |
| case KGSL_CACHE_OP_CLEAN: |
| outer_clean_range(addr, addr + size); |
| break; |
| case KGSL_CACHE_OP_INV: |
| outer_inv_range(addr, addr + size); |
| break; |
| } |
| } |
| |
| static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op) |
| { |
| struct scatterlist *s; |
| int i; |
| |
| for_each_sg(sg, s, sglen, i) { |
| unsigned int paddr = kgsl_get_sg_pa(s); |
| _outer_cache_range_op(op, paddr, s->length); |
| } |
| } |
| |
| #else |
| static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op) |
| { |
| } |
| #endif |
| |
| static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc, |
| struct vm_area_struct *vma, |
| struct vm_fault *vmf) |
| { |
| int i, pgoff; |
| struct scatterlist *s = memdesc->sg; |
| unsigned int offset; |
| |
| offset = ((unsigned long) vmf->virtual_address - vma->vm_start); |
| |
| if (offset >= memdesc->size) |
| return VM_FAULT_SIGBUS; |
| |
| pgoff = offset >> PAGE_SHIFT; |
| |
| /* |
| * The sglist might be comprised of mixed blocks of memory depending |
| * on how many 64K pages were allocated. This means we have to do math |
| * to find the actual 4K page to map in user space |
| */ |
| |
| for (i = 0; i < memdesc->sglen; i++) { |
| int npages = s->length >> PAGE_SHIFT; |
| |
| if (pgoff < npages) { |
| struct page *page = sg_page(s); |
| |
| page = nth_page(page, pgoff); |
| |
| get_page(page); |
| vmf->page = page; |
| |
| return 0; |
| } |
| |
| pgoff -= npages; |
| s = sg_next(s); |
| } |
| |
| return VM_FAULT_SIGBUS; |
| } |
| |
| static int kgsl_page_alloc_vmflags(struct kgsl_memdesc *memdesc) |
| { |
| return VM_RESERVED | VM_DONTEXPAND; |
| } |
| |
| static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc) |
| { |
| int i = 0; |
| struct scatterlist *sg; |
| int sglen = memdesc->sglen; |
| |
| kgsl_driver.stats.page_alloc -= memdesc->size; |
| |
| if (memdesc->hostptr) { |
| vunmap(memdesc->hostptr); |
| kgsl_driver.stats.vmalloc -= memdesc->size; |
| } |
| if (memdesc->sg) |
| for_each_sg(memdesc->sg, sg, sglen, i) |
| __free_pages(sg_page(sg), get_order(sg->length)); |
| } |
| |
| static int kgsl_contiguous_vmflags(struct kgsl_memdesc *memdesc) |
| { |
| return VM_RESERVED | VM_IO | VM_PFNMAP | VM_DONTEXPAND; |
| } |
| |
| /* |
| * kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address |
| * space |
| * |
| * @memdesc - The memory descriptor which contains information about the memory |
| * |
| * Return: 0 on success else error code |
| */ |
| static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc) |
| { |
| if (!memdesc->hostptr) { |
| pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL); |
| struct page **pages = NULL; |
| struct scatterlist *sg; |
| int npages = PAGE_ALIGN(memdesc->size) >> PAGE_SHIFT; |
| int sglen = memdesc->sglen; |
| int i, count = 0; |
| |
| /* create a list of pages to call vmap */ |
| pages = vmalloc(npages * sizeof(struct page *)); |
| if (!pages) { |
| KGSL_CORE_ERR("vmalloc(%d) failed\n", |
| npages * sizeof(struct page *)); |
| return -ENOMEM; |
| } |
| |
| for_each_sg(memdesc->sg, sg, sglen, i) { |
| struct page *page = sg_page(sg); |
| int j; |
| |
| for (j = 0; j < sg->length >> PAGE_SHIFT; j++) |
| pages[count++] = page++; |
| } |
| |
| |
| memdesc->hostptr = vmap(pages, count, |
| VM_IOREMAP, page_prot); |
| KGSL_STATS_ADD(memdesc->size, kgsl_driver.stats.vmalloc, |
| kgsl_driver.stats.vmalloc_max); |
| vfree(pages); |
| } |
| if (!memdesc->hostptr) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc, |
| struct vm_area_struct *vma, |
| struct vm_fault *vmf) |
| { |
| unsigned long offset, pfn; |
| int ret; |
| |
| offset = ((unsigned long) vmf->virtual_address - vma->vm_start) >> |
| PAGE_SHIFT; |
| |
| pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset; |
| ret = vm_insert_pfn(vma, (unsigned long) vmf->virtual_address, pfn); |
| |
| if (ret == -ENOMEM || ret == -EAGAIN) |
| return VM_FAULT_OOM; |
| else if (ret == -EFAULT) |
| return VM_FAULT_SIGBUS; |
| |
| return VM_FAULT_NOPAGE; |
| } |
| |
| static void kgsl_ebimem_free(struct kgsl_memdesc *memdesc) |
| |
| { |
| kgsl_driver.stats.coherent -= memdesc->size; |
| if (memdesc->hostptr) |
| iounmap(memdesc->hostptr); |
| |
| free_contiguous_memory_by_paddr(memdesc->physaddr); |
| } |
| |
| static int kgsl_ebimem_map_kernel(struct kgsl_memdesc *memdesc) |
| { |
| if (!memdesc->hostptr) { |
| memdesc->hostptr = ioremap(memdesc->physaddr, memdesc->size); |
| if (!memdesc->hostptr) { |
| KGSL_CORE_ERR("ioremap failed, addr:0x%p, size:0x%x\n", |
| memdesc->hostptr, memdesc->size); |
| return -ENOMEM; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void kgsl_coherent_free(struct kgsl_memdesc *memdesc) |
| { |
| kgsl_driver.stats.coherent -= memdesc->size; |
| dma_free_coherent(NULL, memdesc->size, |
| memdesc->hostptr, memdesc->physaddr); |
| } |
| |
| /* Global - also used by kgsl_drm.c */ |
| struct kgsl_memdesc_ops kgsl_page_alloc_ops = { |
| .free = kgsl_page_alloc_free, |
| .vmflags = kgsl_page_alloc_vmflags, |
| .vmfault = kgsl_page_alloc_vmfault, |
| .map_kernel_mem = kgsl_page_alloc_map_kernel, |
| }; |
| EXPORT_SYMBOL(kgsl_page_alloc_ops); |
| |
| static struct kgsl_memdesc_ops kgsl_ebimem_ops = { |
| .free = kgsl_ebimem_free, |
| .vmflags = kgsl_contiguous_vmflags, |
| .vmfault = kgsl_contiguous_vmfault, |
| .map_kernel_mem = kgsl_ebimem_map_kernel, |
| }; |
| |
| static struct kgsl_memdesc_ops kgsl_coherent_ops = { |
| .free = kgsl_coherent_free, |
| }; |
| |
| void kgsl_cache_range_op(struct kgsl_memdesc *memdesc, int op) |
| { |
| /* |
| * If the buffer is mapped in the kernel operate on that address |
| * otherwise use the user address |
| */ |
| |
| void *addr = (memdesc->hostptr) ? |
| memdesc->hostptr : (void *) memdesc->useraddr; |
| |
| int size = memdesc->size; |
| |
| if (addr != NULL) { |
| switch (op) { |
| case KGSL_CACHE_OP_FLUSH: |
| dmac_flush_range(addr, addr + size); |
| break; |
| case KGSL_CACHE_OP_CLEAN: |
| dmac_clean_range(addr, addr + size); |
| break; |
| case KGSL_CACHE_OP_INV: |
| dmac_inv_range(addr, addr + size); |
| break; |
| } |
| } |
| outer_cache_range_op_sg(memdesc->sg, memdesc->sglen, op); |
| } |
| EXPORT_SYMBOL(kgsl_cache_range_op); |
| |
| static int |
| _kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc, |
| struct kgsl_pagetable *pagetable, |
| size_t size) |
| { |
| int pcount = 0, order, ret = 0; |
| int j, len, page_size, sglen_alloc, sglen = 0; |
| struct page **pages = NULL; |
| pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL); |
| void *ptr; |
| unsigned int align; |
| int step = ((VMALLOC_END - VMALLOC_START)/8) >> PAGE_SHIFT; |
| |
| align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT; |
| |
| page_size = (align >= ilog2(SZ_64K) && size >= SZ_64K) |
| ? SZ_64K : PAGE_SIZE; |
| /* update align flags for what we actually use */ |
| if (page_size != PAGE_SIZE) |
| kgsl_memdesc_set_align(memdesc, ilog2(page_size)); |
| |
| /* |
| * There needs to be enough room in the sg structure to be able to |
| * service the allocation entirely with PAGE_SIZE sized chunks |
| */ |
| |
| sglen_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| |
| memdesc->size = size; |
| memdesc->pagetable = pagetable; |
| memdesc->ops = &kgsl_page_alloc_ops; |
| |
| memdesc->sglen_alloc = sglen_alloc; |
| memdesc->sg = kgsl_sg_alloc(memdesc->sglen_alloc); |
| |
| if (memdesc->sg == NULL) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| /* |
| * Allocate space to store the list of pages to send to vmap. |
| * This is an array of pointers so we can track 1024 pages per page of |
| * allocation which means we can handle up to a 8MB buffer request with |
| * two pages; well within the acceptable limits for using kmalloc. |
| */ |
| |
| pages = kmalloc(memdesc->sglen_alloc * sizeof(struct page *), |
| GFP_KERNEL); |
| |
| if (pages == NULL) { |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| kmemleak_not_leak(memdesc->sg); |
| |
| sg_init_table(memdesc->sg, memdesc->sglen_alloc); |
| |
| len = size; |
| |
| while (len > 0) { |
| struct page *page; |
| unsigned int gfp_mask = __GFP_HIGHMEM; |
| int j; |
| |
| /* don't waste space at the end of the allocation*/ |
| if (len < page_size) |
| page_size = PAGE_SIZE; |
| |
| /* |
| * Don't do some of the more aggressive memory recovery |
| * techniques for large order allocations |
| */ |
| if (page_size != PAGE_SIZE) |
| gfp_mask |= __GFP_COMP | __GFP_NORETRY | |
| __GFP_NO_KSWAPD | __GFP_NOWARN; |
| else |
| gfp_mask |= GFP_KERNEL; |
| |
| page = alloc_pages(gfp_mask, get_order(page_size)); |
| |
| if (page == NULL) { |
| if (page_size != PAGE_SIZE) { |
| page_size = PAGE_SIZE; |
| continue; |
| } |
| |
| KGSL_CORE_ERR( |
| "Out of memory: only allocated %dKB of %dKB requested\n", |
| (size - len) >> 10, size >> 10); |
| |
| ret = -ENOMEM; |
| goto done; |
| } |
| |
| for (j = 0; j < page_size >> PAGE_SHIFT; j++) |
| pages[pcount++] = nth_page(page, j); |
| |
| sg_set_page(&memdesc->sg[sglen++], page, page_size, 0); |
| len -= page_size; |
| } |
| |
| memdesc->sglen = sglen; |
| |
| /* |
| * All memory that goes to the user has to be zeroed out before it gets |
| * exposed to userspace. This means that the memory has to be mapped in |
| * the kernel, zeroed (memset) and then unmapped. This also means that |
| * the dcache has to be flushed to ensure coherency between the kernel |
| * and user pages. We used to pass __GFP_ZERO to alloc_page which mapped |
| * zeroed and unmaped each individual page, and then we had to turn |
| * around and call flush_dcache_page() on that page to clear the caches. |
| * This was killing us for performance. Instead, we found it is much |
| * faster to allocate the pages without GFP_ZERO, map a chunk of the |
| * range ('step' pages), memset it, flush it and then unmap |
| * - this results in a factor of 4 improvement for speed for large |
| * buffers. There is a small decrease in speed for small buffers, |
| * but only on the order of a few microseconds at best. The 'step' |
| * size is based on a guess at the amount of free vmalloc space, but |
| * will scale down if there's not enough free space. |
| */ |
| for (j = 0; j < pcount; j += step) { |
| step = min(step, pcount - j); |
| |
| ptr = vmap(&pages[j], step, VM_IOREMAP, page_prot); |
| |
| if (ptr != NULL) { |
| memset(ptr, 0, step * PAGE_SIZE); |
| dmac_flush_range(ptr, ptr + step * PAGE_SIZE); |
| vunmap(ptr); |
| } else { |
| int k; |
| /* Very, very, very slow path */ |
| |
| for (k = j; k < j + step; k++) { |
| ptr = kmap_atomic(pages[k]); |
| memset(ptr, 0, PAGE_SIZE); |
| dmac_flush_range(ptr, ptr + PAGE_SIZE); |
| kunmap_atomic(ptr); |
| } |
| /* scale down the step size to avoid this path */ |
| if (step > 1) |
| step >>= 1; |
| } |
| } |
| |
| outer_cache_range_op_sg(memdesc->sg, memdesc->sglen, |
| KGSL_CACHE_OP_FLUSH); |
| |
| KGSL_STATS_ADD(size, kgsl_driver.stats.page_alloc, |
| kgsl_driver.stats.page_alloc_max); |
| |
| order = get_order(size); |
| |
| if (order < 16) |
| kgsl_driver.stats.histogram[order]++; |
| |
| done: |
| kfree(pages); |
| |
| if (ret) |
| kgsl_sharedmem_free(memdesc); |
| |
| return ret; |
| } |
| |
| int |
| kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc, |
| struct kgsl_pagetable *pagetable, size_t size) |
| { |
| int ret = 0; |
| BUG_ON(size == 0); |
| |
| size = ALIGN(size, PAGE_SIZE * 2); |
| |
| ret = _kgsl_sharedmem_page_alloc(memdesc, pagetable, size); |
| if (!ret) |
| ret = kgsl_page_alloc_map_kernel(memdesc); |
| if (ret) |
| kgsl_sharedmem_free(memdesc); |
| return ret; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_page_alloc); |
| |
| int |
| kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc, |
| struct kgsl_pagetable *pagetable, |
| size_t size) |
| { |
| return _kgsl_sharedmem_page_alloc(memdesc, pagetable, PAGE_ALIGN(size)); |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_page_alloc_user); |
| |
| int |
| kgsl_sharedmem_alloc_coherent(struct kgsl_memdesc *memdesc, size_t size) |
| { |
| int result = 0; |
| |
| size = ALIGN(size, PAGE_SIZE); |
| |
| memdesc->size = size; |
| memdesc->ops = &kgsl_coherent_ops; |
| |
| memdesc->hostptr = dma_alloc_coherent(NULL, size, &memdesc->physaddr, |
| GFP_KERNEL); |
| if (memdesc->hostptr == NULL) { |
| KGSL_CORE_ERR("dma_alloc_coherent(%d) failed\n", size); |
| result = -ENOMEM; |
| goto err; |
| } |
| |
| result = memdesc_sg_phys(memdesc, memdesc->physaddr, size); |
| if (result) |
| goto err; |
| |
| /* Record statistics */ |
| |
| KGSL_STATS_ADD(size, kgsl_driver.stats.coherent, |
| kgsl_driver.stats.coherent_max); |
| |
| err: |
| if (result) |
| kgsl_sharedmem_free(memdesc); |
| |
| return result; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_alloc_coherent); |
| |
| void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc) |
| { |
| if (memdesc == NULL || memdesc->size == 0) |
| return; |
| |
| if (memdesc->gpuaddr) { |
| kgsl_mmu_unmap(memdesc->pagetable, memdesc); |
| kgsl_mmu_put_gpuaddr(memdesc->pagetable, memdesc); |
| } |
| |
| if (memdesc->ops && memdesc->ops->free) |
| memdesc->ops->free(memdesc); |
| |
| kgsl_sg_free(memdesc->sg, memdesc->sglen_alloc); |
| |
| memset(memdesc, 0, sizeof(*memdesc)); |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_free); |
| |
| static int |
| _kgsl_sharedmem_ebimem(struct kgsl_memdesc *memdesc, |
| struct kgsl_pagetable *pagetable, size_t size) |
| { |
| int result = 0; |
| |
| memdesc->size = size; |
| memdesc->pagetable = pagetable; |
| memdesc->ops = &kgsl_ebimem_ops; |
| memdesc->physaddr = allocate_contiguous_ebi_nomap(size, SZ_8K); |
| |
| if (memdesc->physaddr == 0) { |
| KGSL_CORE_ERR("allocate_contiguous_ebi_nomap(%d) failed\n", |
| size); |
| return -ENOMEM; |
| } |
| |
| result = memdesc_sg_phys(memdesc, memdesc->physaddr, size); |
| |
| if (result) |
| goto err; |
| |
| KGSL_STATS_ADD(size, kgsl_driver.stats.coherent, |
| kgsl_driver.stats.coherent_max); |
| |
| err: |
| if (result) |
| kgsl_sharedmem_free(memdesc); |
| |
| return result; |
| } |
| |
| int |
| kgsl_sharedmem_ebimem_user(struct kgsl_memdesc *memdesc, |
| struct kgsl_pagetable *pagetable, |
| size_t size) |
| { |
| size = ALIGN(size, PAGE_SIZE); |
| return _kgsl_sharedmem_ebimem(memdesc, pagetable, size); |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_ebimem_user); |
| |
| int |
| kgsl_sharedmem_ebimem(struct kgsl_memdesc *memdesc, |
| struct kgsl_pagetable *pagetable, size_t size) |
| { |
| int result; |
| size = ALIGN(size, 8192); |
| result = _kgsl_sharedmem_ebimem(memdesc, pagetable, size); |
| |
| if (result) |
| return result; |
| |
| memdesc->hostptr = ioremap(memdesc->physaddr, size); |
| |
| if (memdesc->hostptr == NULL) { |
| KGSL_CORE_ERR("ioremap failed\n"); |
| kgsl_sharedmem_free(memdesc); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_ebimem); |
| |
| int |
| kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc, |
| uint32_t *dst, |
| unsigned int offsetbytes) |
| { |
| uint32_t *src; |
| BUG_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL); |
| WARN_ON(offsetbytes % sizeof(uint32_t) != 0); |
| if (offsetbytes % sizeof(uint32_t) != 0) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size); |
| if (offsetbytes + sizeof(uint32_t) > memdesc->size) |
| return -ERANGE; |
| src = (uint32_t *)(memdesc->hostptr + offsetbytes); |
| *dst = *src; |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_readl); |
| |
| int |
| kgsl_sharedmem_writel(struct kgsl_device *device, |
| const struct kgsl_memdesc *memdesc, |
| unsigned int offsetbytes, |
| uint32_t src) |
| { |
| uint32_t *dst; |
| BUG_ON(memdesc == NULL || memdesc->hostptr == NULL); |
| WARN_ON(offsetbytes % sizeof(uint32_t) != 0); |
| if (offsetbytes % sizeof(uint32_t) != 0) |
| return -EINVAL; |
| |
| WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size); |
| if (offsetbytes + sizeof(uint32_t) > memdesc->size) |
| return -ERANGE; |
| kgsl_cffdump_setmem(device, |
| memdesc->gpuaddr + offsetbytes, |
| src, sizeof(uint32_t)); |
| dst = (uint32_t *)(memdesc->hostptr + offsetbytes); |
| *dst = src; |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_writel); |
| |
| int |
| kgsl_sharedmem_set(struct kgsl_device *device, |
| const struct kgsl_memdesc *memdesc, unsigned int offsetbytes, |
| unsigned int value, unsigned int sizebytes) |
| { |
| BUG_ON(memdesc == NULL || memdesc->hostptr == NULL); |
| BUG_ON(offsetbytes + sizebytes > memdesc->size); |
| |
| kgsl_cffdump_setmem(device, |
| memdesc->gpuaddr + offsetbytes, value, |
| sizebytes); |
| memset(memdesc->hostptr + offsetbytes, value, sizebytes); |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_set); |
| |
| /* |
| * kgsl_sharedmem_map_vma - Map a user vma to physical memory |
| * |
| * @vma - The user vma to map |
| * @memdesc - The memory descriptor which contains information about the |
| * physical memory |
| * |
| * Return: 0 on success else error code |
| */ |
| int |
| kgsl_sharedmem_map_vma(struct vm_area_struct *vma, |
| const struct kgsl_memdesc *memdesc) |
| { |
| unsigned long addr = vma->vm_start; |
| unsigned long size = vma->vm_end - vma->vm_start; |
| int ret, i = 0; |
| |
| if (!memdesc->sg || (size != memdesc->size) || |
| (memdesc->sglen != (size / PAGE_SIZE))) |
| return -EINVAL; |
| |
| for (; addr < vma->vm_end; addr += PAGE_SIZE, i++) { |
| ret = vm_insert_page(vma, addr, sg_page(&memdesc->sg[i])); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| EXPORT_SYMBOL(kgsl_sharedmem_map_vma); |
| |
| static const char * const memtype_str[] = { |
| [KGSL_MEMTYPE_OBJECTANY] = "any(0)", |
| [KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer", |
| [KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer", |
| [KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer", |
| [KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer", |
| [KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer", |
| [KGSL_MEMTYPE_TEXTURE] = "texture", |
| [KGSL_MEMTYPE_SURFACE] = "surface", |
| [KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface", |
| [KGSL_MEMTYPE_GL] = "gl", |
| [KGSL_MEMTYPE_CL] = "cl", |
| [KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map", |
| [KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap", |
| [KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map", |
| [KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap", |
| [KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack", |
| [KGSL_MEMTYPE_COMMAND] = "command", |
| [KGSL_MEMTYPE_2D] = "2d", |
| [KGSL_MEMTYPE_EGL_IMAGE] = "egl_image", |
| [KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow", |
| [KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample", |
| /* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */ |
| }; |
| |
| void kgsl_get_memory_usage(char *name, size_t name_size, unsigned int memflags) |
| { |
| unsigned char type; |
| |
| type = (memflags & KGSL_MEMTYPE_MASK) >> KGSL_MEMTYPE_SHIFT; |
| if (type == KGSL_MEMTYPE_KERNEL) |
| strlcpy(name, "kernel", name_size); |
| else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL) |
| strlcpy(name, memtype_str[type], name_size); |
| else |
| snprintf(name, name_size, "unknown(%3d)", type); |
| } |
| EXPORT_SYMBOL(kgsl_get_memory_usage); |