blob: 2939df6e7d26d12248e58707cb62e4459ca3e8aa [file] [log] [blame]
/* Copyright (c) 2002,2007-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/export.h>
#include <linux/vmalloc.h>
#include <linux/memory_alloc.h>
#include <asm/cacheflush.h>
#include <linux/slab.h>
#include <linux/kmemleak.h>
#include <linux/highmem.h>
#include "kgsl.h"
#include "kgsl_sharedmem.h"
#include "kgsl_cffdump.h"
#include "kgsl_device.h"
/* An attribute for showing per-process memory statistics */
struct kgsl_mem_entry_attribute {
struct attribute attr;
int memtype;
ssize_t (*show)(struct kgsl_process_private *priv,
int type, char *buf);
};
#define to_mem_entry_attr(a) \
container_of(a, struct kgsl_mem_entry_attribute, attr)
#define __MEM_ENTRY_ATTR(_type, _name, _show) \
{ \
.attr = { .name = __stringify(_name), .mode = 0444 }, \
.memtype = _type, \
.show = _show, \
}
/*
* A structure to hold the attributes for a particular memory type.
* For each memory type in each process we store the current and maximum
* memory usage and display the counts in sysfs. This structure and
* the following macro allow us to simplify the definition for those
* adding new memory types
*/
struct mem_entry_stats {
int memtype;
struct kgsl_mem_entry_attribute attr;
struct kgsl_mem_entry_attribute max_attr;
};
#define MEM_ENTRY_STAT(_type, _name) \
{ \
.memtype = _type, \
.attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \
.max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \
mem_entry_max_show), \
}
/**
* Given a kobj, find the process structure attached to it
*/
static struct kgsl_process_private *
_get_priv_from_kobj(struct kobject *kobj)
{
struct kgsl_process_private *private;
unsigned long name;
if (!kobj)
return NULL;
if (sscanf(kobj->name, "%ld", &name) != 1)
return NULL;
list_for_each_entry(private, &kgsl_driver.process_list, list) {
if (private->pid == name)
return private;
}
return NULL;
}
/**
* Show the current amount of memory allocated for the given memtype
*/
static ssize_t
mem_entry_show(struct kgsl_process_private *priv, int type, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].cur);
}
/**
* Show the maximum memory allocated for the given memtype through the life of
* the process
*/
static ssize_t
mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].max);
}
static void mem_entry_sysfs_release(struct kobject *kobj)
{
}
static ssize_t mem_entry_sysfs_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr);
struct kgsl_process_private *priv;
ssize_t ret;
mutex_lock(&kgsl_driver.process_mutex);
priv = _get_priv_from_kobj(kobj);
if (priv && pattr->show)
ret = pattr->show(priv, pattr->memtype, buf);
else
ret = -EIO;
mutex_unlock(&kgsl_driver.process_mutex);
return ret;
}
static const struct sysfs_ops mem_entry_sysfs_ops = {
.show = mem_entry_sysfs_show,
};
static struct kobj_type ktype_mem_entry = {
.sysfs_ops = &mem_entry_sysfs_ops,
.default_attrs = NULL,
.release = mem_entry_sysfs_release
};
static struct mem_entry_stats mem_stats[] = {
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel),
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_PMEM, pmem),
#ifdef CONFIG_ASHMEM
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ASHMEM, ashmem),
#endif
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user),
#ifdef CONFIG_ION
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion),
#endif
};
void
kgsl_process_uninit_sysfs(struct kgsl_process_private *private)
{
int i;
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr);
sysfs_remove_file(&private->kobj,
&mem_stats[i].max_attr.attr);
}
kobject_put(&private->kobj);
}
void
kgsl_process_init_sysfs(struct kgsl_process_private *private)
{
unsigned char name[16];
int i, ret;
snprintf(name, sizeof(name), "%d", private->pid);
if (kobject_init_and_add(&private->kobj, &ktype_mem_entry,
kgsl_driver.prockobj, name))
return;
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
/* We need to check the value of sysfs_create_file, but we
* don't really care if it passed or not */
ret = sysfs_create_file(&private->kobj,
&mem_stats[i].attr.attr);
ret = sysfs_create_file(&private->kobj,
&mem_stats[i].max_attr.attr);
}
}
static int kgsl_drv_memstat_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned int val = 0;
if (!strncmp(attr->attr.name, "vmalloc", 7))
val = kgsl_driver.stats.vmalloc;
else if (!strncmp(attr->attr.name, "vmalloc_max", 11))
val = kgsl_driver.stats.vmalloc_max;
else if (!strncmp(attr->attr.name, "page_alloc", 10))
val = kgsl_driver.stats.page_alloc;
else if (!strncmp(attr->attr.name, "page_alloc_max", 14))
val = kgsl_driver.stats.page_alloc_max;
else if (!strncmp(attr->attr.name, "coherent", 8))
val = kgsl_driver.stats.coherent;
else if (!strncmp(attr->attr.name, "coherent_max", 12))
val = kgsl_driver.stats.coherent_max;
else if (!strncmp(attr->attr.name, "mapped", 6))
val = kgsl_driver.stats.mapped;
else if (!strncmp(attr->attr.name, "mapped_max", 10))
val = kgsl_driver.stats.mapped_max;
return snprintf(buf, PAGE_SIZE, "%u\n", val);
}
static int kgsl_drv_histogram_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int len = 0;
int i;
for (i = 0; i < 16; i++)
len += snprintf(buf + len, PAGE_SIZE - len, "%d ",
kgsl_driver.stats.histogram[i]);
len += snprintf(buf + len, PAGE_SIZE - len, "\n");
return len;
}
static int kgsl_drv_full_cache_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int ret;
unsigned int thresh;
ret = sscanf(buf, "%d", &thresh);
if (ret != 1)
return count;
kgsl_driver.full_cache_threshold = thresh;
return count;
}
static int kgsl_drv_full_cache_threshold_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n",
kgsl_driver.full_cache_threshold);
}
DEVICE_ATTR(vmalloc, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(vmalloc_max, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(page_alloc, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(page_alloc_max, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(coherent, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(coherent_max, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(mapped, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(mapped_max, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(histogram, 0444, kgsl_drv_histogram_show, NULL);
DEVICE_ATTR(full_cache_threshold, 0644,
kgsl_drv_full_cache_threshold_show,
kgsl_drv_full_cache_threshold_store);
static const struct device_attribute *drv_attr_list[] = {
&dev_attr_vmalloc,
&dev_attr_vmalloc_max,
&dev_attr_page_alloc,
&dev_attr_page_alloc_max,
&dev_attr_coherent,
&dev_attr_coherent_max,
&dev_attr_mapped,
&dev_attr_mapped_max,
&dev_attr_histogram,
&dev_attr_full_cache_threshold,
NULL
};
void
kgsl_sharedmem_uninit_sysfs(void)
{
kgsl_remove_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list);
}
int
kgsl_sharedmem_init_sysfs(void)
{
return kgsl_create_device_sysfs_files(&kgsl_driver.virtdev,
drv_attr_list);
}
#ifdef CONFIG_OUTER_CACHE
static void _outer_cache_range_op(int op, unsigned long addr, size_t size)
{
switch (op) {
case KGSL_CACHE_OP_FLUSH:
outer_flush_range(addr, addr + size);
break;
case KGSL_CACHE_OP_CLEAN:
outer_clean_range(addr, addr + size);
break;
case KGSL_CACHE_OP_INV:
outer_inv_range(addr, addr + size);
break;
}
}
static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, sglen, i) {
unsigned int paddr = kgsl_get_sg_pa(s);
_outer_cache_range_op(op, paddr, s->length);
}
}
#else
static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op)
{
}
#endif
static int kgsl_page_alloc_vmfault(struct kgsl_memdesc *memdesc,
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
int i, pgoff;
struct scatterlist *s = memdesc->sg;
unsigned int offset;
offset = ((unsigned long) vmf->virtual_address - vma->vm_start);
if (offset >= memdesc->size)
return VM_FAULT_SIGBUS;
pgoff = offset >> PAGE_SHIFT;
/*
* The sglist might be comprised of mixed blocks of memory depending
* on how many 64K pages were allocated. This means we have to do math
* to find the actual 4K page to map in user space
*/
for (i = 0; i < memdesc->sglen; i++) {
int npages = s->length >> PAGE_SHIFT;
if (pgoff < npages) {
struct page *page = sg_page(s);
page = nth_page(page, pgoff);
get_page(page);
vmf->page = page;
return 0;
}
pgoff -= npages;
s = sg_next(s);
}
return VM_FAULT_SIGBUS;
}
static int kgsl_page_alloc_vmflags(struct kgsl_memdesc *memdesc)
{
return VM_RESERVED | VM_DONTEXPAND;
}
static void kgsl_page_alloc_free(struct kgsl_memdesc *memdesc)
{
int i = 0;
struct scatterlist *sg;
int sglen = memdesc->sglen;
kgsl_driver.stats.page_alloc -= memdesc->size;
if (memdesc->hostptr) {
vunmap(memdesc->hostptr);
kgsl_driver.stats.vmalloc -= memdesc->size;
}
if (memdesc->sg)
for_each_sg(memdesc->sg, sg, sglen, i)
__free_pages(sg_page(sg), get_order(sg->length));
}
static int kgsl_contiguous_vmflags(struct kgsl_memdesc *memdesc)
{
return VM_RESERVED | VM_IO | VM_PFNMAP | VM_DONTEXPAND;
}
/*
* kgsl_page_alloc_map_kernel - Map the memory in memdesc to kernel address
* space
*
* @memdesc - The memory descriptor which contains information about the memory
*
* Return: 0 on success else error code
*/
static int kgsl_page_alloc_map_kernel(struct kgsl_memdesc *memdesc)
{
if (!memdesc->hostptr) {
pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL);
struct page **pages = NULL;
struct scatterlist *sg;
int npages = PAGE_ALIGN(memdesc->size) >> PAGE_SHIFT;
int sglen = memdesc->sglen;
int i, count = 0;
/* create a list of pages to call vmap */
pages = vmalloc(npages * sizeof(struct page *));
if (!pages) {
KGSL_CORE_ERR("vmalloc(%d) failed\n",
npages * sizeof(struct page *));
return -ENOMEM;
}
for_each_sg(memdesc->sg, sg, sglen, i) {
struct page *page = sg_page(sg);
int j;
for (j = 0; j < sg->length >> PAGE_SHIFT; j++)
pages[count++] = page++;
}
memdesc->hostptr = vmap(pages, count,
VM_IOREMAP, page_prot);
KGSL_STATS_ADD(memdesc->size, kgsl_driver.stats.vmalloc,
kgsl_driver.stats.vmalloc_max);
vfree(pages);
}
if (!memdesc->hostptr)
return -ENOMEM;
return 0;
}
static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc,
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
unsigned long offset, pfn;
int ret;
offset = ((unsigned long) vmf->virtual_address - vma->vm_start) >>
PAGE_SHIFT;
pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset;
ret = vm_insert_pfn(vma, (unsigned long) vmf->virtual_address, pfn);
if (ret == -ENOMEM || ret == -EAGAIN)
return VM_FAULT_OOM;
else if (ret == -EFAULT)
return VM_FAULT_SIGBUS;
return VM_FAULT_NOPAGE;
}
static void kgsl_ebimem_free(struct kgsl_memdesc *memdesc)
{
kgsl_driver.stats.coherent -= memdesc->size;
if (memdesc->hostptr)
iounmap(memdesc->hostptr);
free_contiguous_memory_by_paddr(memdesc->physaddr);
}
static int kgsl_ebimem_map_kernel(struct kgsl_memdesc *memdesc)
{
if (!memdesc->hostptr) {
memdesc->hostptr = ioremap(memdesc->physaddr, memdesc->size);
if (!memdesc->hostptr) {
KGSL_CORE_ERR("ioremap failed, addr:0x%p, size:0x%x\n",
memdesc->hostptr, memdesc->size);
return -ENOMEM;
}
}
return 0;
}
static void kgsl_coherent_free(struct kgsl_memdesc *memdesc)
{
kgsl_driver.stats.coherent -= memdesc->size;
dma_free_coherent(NULL, memdesc->size,
memdesc->hostptr, memdesc->physaddr);
}
/* Global - also used by kgsl_drm.c */
struct kgsl_memdesc_ops kgsl_page_alloc_ops = {
.free = kgsl_page_alloc_free,
.vmflags = kgsl_page_alloc_vmflags,
.vmfault = kgsl_page_alloc_vmfault,
.map_kernel_mem = kgsl_page_alloc_map_kernel,
};
EXPORT_SYMBOL(kgsl_page_alloc_ops);
static struct kgsl_memdesc_ops kgsl_ebimem_ops = {
.free = kgsl_ebimem_free,
.vmflags = kgsl_contiguous_vmflags,
.vmfault = kgsl_contiguous_vmfault,
.map_kernel_mem = kgsl_ebimem_map_kernel,
};
static struct kgsl_memdesc_ops kgsl_coherent_ops = {
.free = kgsl_coherent_free,
};
void kgsl_cache_range_op(struct kgsl_memdesc *memdesc, int op)
{
/*
* If the buffer is mapped in the kernel operate on that address
* otherwise use the user address
*/
void *addr = (memdesc->hostptr) ?
memdesc->hostptr : (void *) memdesc->useraddr;
int size = memdesc->size;
if (addr != NULL) {
switch (op) {
case KGSL_CACHE_OP_FLUSH:
dmac_flush_range(addr, addr + size);
break;
case KGSL_CACHE_OP_CLEAN:
dmac_clean_range(addr, addr + size);
break;
case KGSL_CACHE_OP_INV:
dmac_inv_range(addr, addr + size);
break;
}
}
outer_cache_range_op_sg(memdesc->sg, memdesc->sglen, op);
}
EXPORT_SYMBOL(kgsl_cache_range_op);
static int
_kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable,
size_t size)
{
int pcount = 0, order, ret = 0;
int j, len, page_size, sglen_alloc, sglen = 0;
struct page **pages = NULL;
pgprot_t page_prot = pgprot_writecombine(PAGE_KERNEL);
void *ptr;
unsigned int align;
int step = ((VMALLOC_END - VMALLOC_START)/8) >> PAGE_SHIFT;
align = (memdesc->flags & KGSL_MEMALIGN_MASK) >> KGSL_MEMALIGN_SHIFT;
page_size = (align >= ilog2(SZ_64K) && size >= SZ_64K)
? SZ_64K : PAGE_SIZE;
/* update align flags for what we actually use */
if (page_size != PAGE_SIZE)
kgsl_memdesc_set_align(memdesc, ilog2(page_size));
/*
* There needs to be enough room in the sg structure to be able to
* service the allocation entirely with PAGE_SIZE sized chunks
*/
sglen_alloc = PAGE_ALIGN(size) >> PAGE_SHIFT;
memdesc->size = size;
memdesc->pagetable = pagetable;
memdesc->ops = &kgsl_page_alloc_ops;
memdesc->sglen_alloc = sglen_alloc;
memdesc->sg = kgsl_sg_alloc(memdesc->sglen_alloc);
if (memdesc->sg == NULL) {
ret = -ENOMEM;
goto done;
}
/*
* Allocate space to store the list of pages to send to vmap.
* This is an array of pointers so we can track 1024 pages per page of
* allocation which means we can handle up to a 8MB buffer request with
* two pages; well within the acceptable limits for using kmalloc.
*/
pages = kmalloc(memdesc->sglen_alloc * sizeof(struct page *),
GFP_KERNEL);
if (pages == NULL) {
ret = -ENOMEM;
goto done;
}
kmemleak_not_leak(memdesc->sg);
sg_init_table(memdesc->sg, memdesc->sglen_alloc);
len = size;
while (len > 0) {
struct page *page;
unsigned int gfp_mask = __GFP_HIGHMEM;
int j;
/* don't waste space at the end of the allocation*/
if (len < page_size)
page_size = PAGE_SIZE;
/*
* Don't do some of the more aggressive memory recovery
* techniques for large order allocations
*/
if (page_size != PAGE_SIZE)
gfp_mask |= __GFP_COMP | __GFP_NORETRY |
__GFP_NO_KSWAPD | __GFP_NOWARN;
else
gfp_mask |= GFP_KERNEL;
page = alloc_pages(gfp_mask, get_order(page_size));
if (page == NULL) {
if (page_size != PAGE_SIZE) {
page_size = PAGE_SIZE;
continue;
}
KGSL_CORE_ERR(
"Out of memory: only allocated %dKB of %dKB requested\n",
(size - len) >> 10, size >> 10);
ret = -ENOMEM;
goto done;
}
for (j = 0; j < page_size >> PAGE_SHIFT; j++)
pages[pcount++] = nth_page(page, j);
sg_set_page(&memdesc->sg[sglen++], page, page_size, 0);
len -= page_size;
}
memdesc->sglen = sglen;
/*
* All memory that goes to the user has to be zeroed out before it gets
* exposed to userspace. This means that the memory has to be mapped in
* the kernel, zeroed (memset) and then unmapped. This also means that
* the dcache has to be flushed to ensure coherency between the kernel
* and user pages. We used to pass __GFP_ZERO to alloc_page which mapped
* zeroed and unmaped each individual page, and then we had to turn
* around and call flush_dcache_page() on that page to clear the caches.
* This was killing us for performance. Instead, we found it is much
* faster to allocate the pages without GFP_ZERO, map a chunk of the
* range ('step' pages), memset it, flush it and then unmap
* - this results in a factor of 4 improvement for speed for large
* buffers. There is a small decrease in speed for small buffers,
* but only on the order of a few microseconds at best. The 'step'
* size is based on a guess at the amount of free vmalloc space, but
* will scale down if there's not enough free space.
*/
for (j = 0; j < pcount; j += step) {
step = min(step, pcount - j);
ptr = vmap(&pages[j], step, VM_IOREMAP, page_prot);
if (ptr != NULL) {
memset(ptr, 0, step * PAGE_SIZE);
dmac_flush_range(ptr, ptr + step * PAGE_SIZE);
vunmap(ptr);
} else {
int k;
/* Very, very, very slow path */
for (k = j; k < j + step; k++) {
ptr = kmap_atomic(pages[k]);
memset(ptr, 0, PAGE_SIZE);
dmac_flush_range(ptr, ptr + PAGE_SIZE);
kunmap_atomic(ptr);
}
/* scale down the step size to avoid this path */
if (step > 1)
step >>= 1;
}
}
outer_cache_range_op_sg(memdesc->sg, memdesc->sglen,
KGSL_CACHE_OP_FLUSH);
KGSL_STATS_ADD(size, kgsl_driver.stats.page_alloc,
kgsl_driver.stats.page_alloc_max);
order = get_order(size);
if (order < 16)
kgsl_driver.stats.histogram[order]++;
done:
kfree(pages);
if (ret)
kgsl_sharedmem_free(memdesc);
return ret;
}
int
kgsl_sharedmem_page_alloc(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable, size_t size)
{
int ret = 0;
BUG_ON(size == 0);
size = ALIGN(size, PAGE_SIZE * 2);
ret = _kgsl_sharedmem_page_alloc(memdesc, pagetable, size);
if (!ret)
ret = kgsl_page_alloc_map_kernel(memdesc);
if (ret)
kgsl_sharedmem_free(memdesc);
return ret;
}
EXPORT_SYMBOL(kgsl_sharedmem_page_alloc);
int
kgsl_sharedmem_page_alloc_user(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable,
size_t size)
{
return _kgsl_sharedmem_page_alloc(memdesc, pagetable, PAGE_ALIGN(size));
}
EXPORT_SYMBOL(kgsl_sharedmem_page_alloc_user);
int
kgsl_sharedmem_alloc_coherent(struct kgsl_memdesc *memdesc, size_t size)
{
int result = 0;
size = ALIGN(size, PAGE_SIZE);
memdesc->size = size;
memdesc->ops = &kgsl_coherent_ops;
memdesc->hostptr = dma_alloc_coherent(NULL, size, &memdesc->physaddr,
GFP_KERNEL);
if (memdesc->hostptr == NULL) {
KGSL_CORE_ERR("dma_alloc_coherent(%d) failed\n", size);
result = -ENOMEM;
goto err;
}
result = memdesc_sg_phys(memdesc, memdesc->physaddr, size);
if (result)
goto err;
/* Record statistics */
KGSL_STATS_ADD(size, kgsl_driver.stats.coherent,
kgsl_driver.stats.coherent_max);
err:
if (result)
kgsl_sharedmem_free(memdesc);
return result;
}
EXPORT_SYMBOL(kgsl_sharedmem_alloc_coherent);
void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc)
{
if (memdesc == NULL || memdesc->size == 0)
return;
if (memdesc->gpuaddr) {
kgsl_mmu_unmap(memdesc->pagetable, memdesc);
kgsl_mmu_put_gpuaddr(memdesc->pagetable, memdesc);
}
if (memdesc->ops && memdesc->ops->free)
memdesc->ops->free(memdesc);
kgsl_sg_free(memdesc->sg, memdesc->sglen_alloc);
memset(memdesc, 0, sizeof(*memdesc));
}
EXPORT_SYMBOL(kgsl_sharedmem_free);
static int
_kgsl_sharedmem_ebimem(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable, size_t size)
{
int result = 0;
memdesc->size = size;
memdesc->pagetable = pagetable;
memdesc->ops = &kgsl_ebimem_ops;
memdesc->physaddr = allocate_contiguous_ebi_nomap(size, SZ_8K);
if (memdesc->physaddr == 0) {
KGSL_CORE_ERR("allocate_contiguous_ebi_nomap(%d) failed\n",
size);
return -ENOMEM;
}
result = memdesc_sg_phys(memdesc, memdesc->physaddr, size);
if (result)
goto err;
KGSL_STATS_ADD(size, kgsl_driver.stats.coherent,
kgsl_driver.stats.coherent_max);
err:
if (result)
kgsl_sharedmem_free(memdesc);
return result;
}
int
kgsl_sharedmem_ebimem_user(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable,
size_t size)
{
size = ALIGN(size, PAGE_SIZE);
return _kgsl_sharedmem_ebimem(memdesc, pagetable, size);
}
EXPORT_SYMBOL(kgsl_sharedmem_ebimem_user);
int
kgsl_sharedmem_ebimem(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable, size_t size)
{
int result;
size = ALIGN(size, 8192);
result = _kgsl_sharedmem_ebimem(memdesc, pagetable, size);
if (result)
return result;
memdesc->hostptr = ioremap(memdesc->physaddr, size);
if (memdesc->hostptr == NULL) {
KGSL_CORE_ERR("ioremap failed\n");
kgsl_sharedmem_free(memdesc);
return -ENOMEM;
}
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_ebimem);
int
kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc,
uint32_t *dst,
unsigned int offsetbytes)
{
uint32_t *src;
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL);
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size);
if (offsetbytes + sizeof(uint32_t) > memdesc->size)
return -ERANGE;
src = (uint32_t *)(memdesc->hostptr + offsetbytes);
*dst = *src;
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_readl);
int
kgsl_sharedmem_writel(struct kgsl_device *device,
const struct kgsl_memdesc *memdesc,
unsigned int offsetbytes,
uint32_t src)
{
uint32_t *dst;
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL);
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size);
if (offsetbytes + sizeof(uint32_t) > memdesc->size)
return -ERANGE;
kgsl_cffdump_setmem(device,
memdesc->gpuaddr + offsetbytes,
src, sizeof(uint32_t));
dst = (uint32_t *)(memdesc->hostptr + offsetbytes);
*dst = src;
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_writel);
int
kgsl_sharedmem_set(struct kgsl_device *device,
const struct kgsl_memdesc *memdesc, unsigned int offsetbytes,
unsigned int value, unsigned int sizebytes)
{
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL);
BUG_ON(offsetbytes + sizebytes > memdesc->size);
kgsl_cffdump_setmem(device,
memdesc->gpuaddr + offsetbytes, value,
sizebytes);
memset(memdesc->hostptr + offsetbytes, value, sizebytes);
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_set);
/*
* kgsl_sharedmem_map_vma - Map a user vma to physical memory
*
* @vma - The user vma to map
* @memdesc - The memory descriptor which contains information about the
* physical memory
*
* Return: 0 on success else error code
*/
int
kgsl_sharedmem_map_vma(struct vm_area_struct *vma,
const struct kgsl_memdesc *memdesc)
{
unsigned long addr = vma->vm_start;
unsigned long size = vma->vm_end - vma->vm_start;
int ret, i = 0;
if (!memdesc->sg || (size != memdesc->size) ||
(memdesc->sglen != (size / PAGE_SIZE)))
return -EINVAL;
for (; addr < vma->vm_end; addr += PAGE_SIZE, i++) {
ret = vm_insert_page(vma, addr, sg_page(&memdesc->sg[i]));
if (ret)
return ret;
}
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_map_vma);
static const char * const memtype_str[] = {
[KGSL_MEMTYPE_OBJECTANY] = "any(0)",
[KGSL_MEMTYPE_FRAMEBUFFER] = "framebuffer",
[KGSL_MEMTYPE_RENDERBUFFER] = "renderbuffer",
[KGSL_MEMTYPE_ARRAYBUFFER] = "arraybuffer",
[KGSL_MEMTYPE_ELEMENTARRAYBUFFER] = "elementarraybuffer",
[KGSL_MEMTYPE_VERTEXARRAYBUFFER] = "vertexarraybuffer",
[KGSL_MEMTYPE_TEXTURE] = "texture",
[KGSL_MEMTYPE_SURFACE] = "surface",
[KGSL_MEMTYPE_EGL_SURFACE] = "egl_surface",
[KGSL_MEMTYPE_GL] = "gl",
[KGSL_MEMTYPE_CL] = "cl",
[KGSL_MEMTYPE_CL_BUFFER_MAP] = "cl_buffer_map",
[KGSL_MEMTYPE_CL_BUFFER_NOMAP] = "cl_buffer_nomap",
[KGSL_MEMTYPE_CL_IMAGE_MAP] = "cl_image_map",
[KGSL_MEMTYPE_CL_IMAGE_NOMAP] = "cl_image_nomap",
[KGSL_MEMTYPE_CL_KERNEL_STACK] = "cl_kernel_stack",
[KGSL_MEMTYPE_COMMAND] = "command",
[KGSL_MEMTYPE_2D] = "2d",
[KGSL_MEMTYPE_EGL_IMAGE] = "egl_image",
[KGSL_MEMTYPE_EGL_SHADOW] = "egl_shadow",
[KGSL_MEMTYPE_MULTISAMPLE] = "egl_multisample",
/* KGSL_MEMTYPE_KERNEL handled below, to avoid huge array */
};
void kgsl_get_memory_usage(char *name, size_t name_size, unsigned int memflags)
{
unsigned char type;
type = (memflags & KGSL_MEMTYPE_MASK) >> KGSL_MEMTYPE_SHIFT;
if (type == KGSL_MEMTYPE_KERNEL)
strlcpy(name, "kernel", name_size);
else if (type < ARRAY_SIZE(memtype_str) && memtype_str[type] != NULL)
strlcpy(name, memtype_str[type], name_size);
else
snprintf(name, name_size, "unknown(%3d)", type);
}
EXPORT_SYMBOL(kgsl_get_memory_usage);