| /* |
| Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> |
| Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com> |
| |
| Based on the original rt2800pci.c and rt2800usb.c. |
| Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com> |
| Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> |
| Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> |
| Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> |
| Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> |
| Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> |
| Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2800lib |
| Abstract: rt2800 generic device routines. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| |
| #include "rt2x00.h" |
| #if defined(CONFIG_RT2800USB) || defined(CONFIG_RT2800USB_MODULE) |
| #include "rt2x00usb.h" |
| #endif |
| #include "rt2800lib.h" |
| #include "rt2800.h" |
| #include "rt2800usb.h" |
| |
| MODULE_AUTHOR("Bartlomiej Zolnierkiewicz"); |
| MODULE_DESCRIPTION("rt2800 library"); |
| MODULE_LICENSE("GPL"); |
| |
| /* |
| * Register access. |
| * All access to the CSR registers will go through the methods |
| * rt2800_register_read and rt2800_register_write. |
| * BBP and RF register require indirect register access, |
| * and use the CSR registers BBPCSR and RFCSR to achieve this. |
| * These indirect registers work with busy bits, |
| * and we will try maximal REGISTER_BUSY_COUNT times to access |
| * the register while taking a REGISTER_BUSY_DELAY us delay |
| * between each attampt. When the busy bit is still set at that time, |
| * the access attempt is considered to have failed, |
| * and we will print an error. |
| * The _lock versions must be used if you already hold the csr_mutex |
| */ |
| #define WAIT_FOR_BBP(__dev, __reg) \ |
| rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg)) |
| #define WAIT_FOR_RFCSR(__dev, __reg) \ |
| rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg)) |
| #define WAIT_FOR_RF(__dev, __reg) \ |
| rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg)) |
| #define WAIT_FOR_MCU(__dev, __reg) \ |
| rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \ |
| H2M_MAILBOX_CSR_OWNER, (__reg)) |
| |
| static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, BBP_CSR_CFG_VALUE, value); |
| rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); |
| rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); |
| rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 0); |
| if (rt2x00_intf_is_pci(rt2x00dev)) |
| rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u8 *value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the read request into the register. |
| * After the data has been written, we wait until hardware |
| * returns the correct value, if at any time the register |
| * doesn't become available in time, reg will be 0xffffffff |
| * which means we return 0xff to the caller. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); |
| rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); |
| rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 1); |
| if (rt2x00_intf_is_pci(rt2x00dev)) |
| rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); |
| |
| WAIT_FOR_BBP(rt2x00dev, ®); |
| } |
| |
| *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RFCSR becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, RF_CSR_CFG_DATA, value); |
| rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); |
| rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1); |
| rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u8 *value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RFCSR becomes available, afterwards we |
| * can safely write the read request into the register. |
| * After the data has been written, we wait until hardware |
| * returns the correct value, if at any time the register |
| * doesn't become available in time, reg will be 0xffffffff |
| * which means we return 0xff to the caller. |
| */ |
| if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); |
| rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0); |
| rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); |
| |
| WAIT_FOR_RFCSR(rt2x00dev, ®); |
| } |
| |
| *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u32 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RF becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_RF(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, RF_CSR_CFG0_REG_VALUE_BW, value); |
| rt2x00_set_field32(®, RF_CSR_CFG0_STANDBYMODE, 0); |
| rt2x00_set_field32(®, RF_CSR_CFG0_SEL, 0); |
| rt2x00_set_field32(®, RF_CSR_CFG0_BUSY, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg); |
| rt2x00_rf_write(rt2x00dev, word, value); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev, |
| const u8 command, const u8 token, |
| const u8 arg0, const u8 arg1) |
| { |
| u32 reg; |
| |
| /* |
| * RT2880 and RT3052 don't support MCU requests. |
| */ |
| if (rt2x00_rt(&rt2x00dev->chip, RT2880) || |
| rt2x00_rt(&rt2x00dev->chip, RT3052)) |
| return; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the MCU becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_MCU(rt2x00dev, ®)) { |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); |
| rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg); |
| |
| reg = 0; |
| rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); |
| rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_mcu_request); |
| |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| const struct rt2x00debug rt2800_rt2x00debug = { |
| .owner = THIS_MODULE, |
| .csr = { |
| .read = rt2800_register_read, |
| .write = rt2800_register_write, |
| .flags = RT2X00DEBUGFS_OFFSET, |
| .word_base = CSR_REG_BASE, |
| .word_size = sizeof(u32), |
| .word_count = CSR_REG_SIZE / sizeof(u32), |
| }, |
| .eeprom = { |
| .read = rt2x00_eeprom_read, |
| .write = rt2x00_eeprom_write, |
| .word_base = EEPROM_BASE, |
| .word_size = sizeof(u16), |
| .word_count = EEPROM_SIZE / sizeof(u16), |
| }, |
| .bbp = { |
| .read = rt2800_bbp_read, |
| .write = rt2800_bbp_write, |
| .word_base = BBP_BASE, |
| .word_size = sizeof(u8), |
| .word_count = BBP_SIZE / sizeof(u8), |
| }, |
| .rf = { |
| .read = rt2x00_rf_read, |
| .write = rt2800_rf_write, |
| .word_base = RF_BASE, |
| .word_size = sizeof(u32), |
| .word_count = RF_SIZE / sizeof(u32), |
| }, |
| }; |
| EXPORT_SYMBOL_GPL(rt2800_rt2x00debug); |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| |
| int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); |
| return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_rfkill_poll); |
| |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| static void rt2800_brightness_set(struct led_classdev *led_cdev, |
| enum led_brightness brightness) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| unsigned int enabled = brightness != LED_OFF; |
| unsigned int bg_mode = |
| (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); |
| unsigned int polarity = |
| rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, |
| EEPROM_FREQ_LED_POLARITY); |
| unsigned int ledmode = |
| rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, |
| EEPROM_FREQ_LED_MODE); |
| |
| if (led->type == LED_TYPE_RADIO) { |
| rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, |
| enabled ? 0x20 : 0); |
| } else if (led->type == LED_TYPE_ASSOC) { |
| rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, |
| enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20); |
| } else if (led->type == LED_TYPE_QUALITY) { |
| /* |
| * The brightness is divided into 6 levels (0 - 5), |
| * The specs tell us the following levels: |
| * 0, 1 ,3, 7, 15, 31 |
| * to determine the level in a simple way we can simply |
| * work with bitshifting: |
| * (1 << level) - 1 |
| */ |
| rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, |
| (1 << brightness / (LED_FULL / 6)) - 1, |
| polarity); |
| } |
| } |
| |
| static int rt2800_blink_set(struct led_classdev *led_cdev, |
| unsigned long *delay_on, unsigned long *delay_off) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| u32 reg; |
| |
| rt2800_register_read(led->rt2x00dev, LED_CFG, ®); |
| rt2x00_set_field32(®, LED_CFG_ON_PERIOD, *delay_on); |
| rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, *delay_off); |
| rt2x00_set_field32(®, LED_CFG_SLOW_BLINK_PERIOD, 3); |
| rt2x00_set_field32(®, LED_CFG_R_LED_MODE, 3); |
| rt2x00_set_field32(®, LED_CFG_G_LED_MODE, 12); |
| rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, 3); |
| rt2x00_set_field32(®, LED_CFG_LED_POLAR, 1); |
| rt2800_register_write(led->rt2x00dev, LED_CFG, reg); |
| |
| return 0; |
| } |
| |
| void rt2800_init_led(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_led *led, enum led_type type) |
| { |
| led->rt2x00dev = rt2x00dev; |
| led->type = type; |
| led->led_dev.brightness_set = rt2800_brightness_set; |
| led->led_dev.blink_set = rt2800_blink_set; |
| led->flags = LED_INITIALIZED; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_init_led); |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Configuration handlers. |
| */ |
| static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct mac_wcid_entry wcid_entry; |
| struct mac_iveiv_entry iveiv_entry; |
| u32 offset; |
| u32 reg; |
| |
| offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx); |
| |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB, |
| !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER, |
| (crypto->cmd == SET_KEY) * crypto->cipher); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX, |
| (crypto->cmd == SET_KEY) * crypto->bssidx); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| |
| offset = MAC_IVEIV_ENTRY(key->hw_key_idx); |
| |
| memset(&iveiv_entry, 0, sizeof(iveiv_entry)); |
| if ((crypto->cipher == CIPHER_TKIP) || |
| (crypto->cipher == CIPHER_TKIP_NO_MIC) || |
| (crypto->cipher == CIPHER_AES)) |
| iveiv_entry.iv[3] |= 0x20; |
| iveiv_entry.iv[3] |= key->keyidx << 6; |
| rt2800_register_multiwrite(rt2x00dev, offset, |
| &iveiv_entry, sizeof(iveiv_entry)); |
| |
| offset = MAC_WCID_ENTRY(key->hw_key_idx); |
| |
| memset(&wcid_entry, 0, sizeof(wcid_entry)); |
| if (crypto->cmd == SET_KEY) |
| memcpy(&wcid_entry, crypto->address, ETH_ALEN); |
| rt2800_register_multiwrite(rt2x00dev, offset, |
| &wcid_entry, sizeof(wcid_entry)); |
| } |
| |
| int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct hw_key_entry key_entry; |
| struct rt2x00_field32 field; |
| u32 offset; |
| u32 reg; |
| |
| if (crypto->cmd == SET_KEY) { |
| key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx; |
| |
| memcpy(key_entry.key, crypto->key, |
| sizeof(key_entry.key)); |
| memcpy(key_entry.tx_mic, crypto->tx_mic, |
| sizeof(key_entry.tx_mic)); |
| memcpy(key_entry.rx_mic, crypto->rx_mic, |
| sizeof(key_entry.rx_mic)); |
| |
| offset = SHARED_KEY_ENTRY(key->hw_key_idx); |
| rt2800_register_multiwrite(rt2x00dev, offset, |
| &key_entry, sizeof(key_entry)); |
| } |
| |
| /* |
| * The cipher types are stored over multiple registers |
| * starting with SHARED_KEY_MODE_BASE each word will have |
| * 32 bits and contains the cipher types for 2 bssidx each. |
| * Using the correct defines correctly will cause overhead, |
| * so just calculate the correct offset. |
| */ |
| field.bit_offset = 4 * (key->hw_key_idx % 8); |
| field.bit_mask = 0x7 << field.bit_offset; |
| |
| offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8); |
| |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, field, |
| (crypto->cmd == SET_KEY) * crypto->cipher); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| |
| /* |
| * Update WCID information |
| */ |
| rt2800_config_wcid_attr(rt2x00dev, crypto, key); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_shared_key); |
| |
| int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct hw_key_entry key_entry; |
| u32 offset; |
| |
| if (crypto->cmd == SET_KEY) { |
| /* |
| * 1 pairwise key is possible per AID, this means that the AID |
| * equals our hw_key_idx. Make sure the WCID starts _after_ the |
| * last possible shared key entry. |
| */ |
| if (crypto->aid > (256 - 32)) |
| return -ENOSPC; |
| |
| key->hw_key_idx = 32 + crypto->aid; |
| |
| memcpy(key_entry.key, crypto->key, |
| sizeof(key_entry.key)); |
| memcpy(key_entry.tx_mic, crypto->tx_mic, |
| sizeof(key_entry.tx_mic)); |
| memcpy(key_entry.rx_mic, crypto->rx_mic, |
| sizeof(key_entry.rx_mic)); |
| |
| offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx); |
| rt2800_register_multiwrite(rt2x00dev, offset, |
| &key_entry, sizeof(key_entry)); |
| } |
| |
| /* |
| * Update WCID information |
| */ |
| rt2800_config_wcid_attr(rt2x00dev, crypto, key); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key); |
| |
| void rt2800_config_filter(struct rt2x00_dev *rt2x00dev, |
| const unsigned int filter_flags) |
| { |
| u32 reg; |
| |
| /* |
| * Start configuration steps. |
| * Note that the version error will always be dropped |
| * and broadcast frames will always be accepted since |
| * there is no filter for it at this time. |
| */ |
| rt2800_register_read(rt2x00dev, RX_FILTER_CFG, ®); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CRC_ERROR, |
| !(filter_flags & FIF_FCSFAIL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PHY_ERROR, |
| !(filter_flags & FIF_PLCPFAIL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_TO_ME, |
| !(filter_flags & FIF_PROMISC_IN_BSS)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_VER_ERROR, 1); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_MULTICAST, |
| !(filter_flags & FIF_ALLMULTI)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BROADCAST, 0); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_DUPLICATE, 1); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END_ACK, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_ACK, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CTS, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_RTS, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL, |
| !(filter_flags & FIF_PSPOLL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 1); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 0); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL, |
| !(filter_flags & FIF_CONTROL)); |
| rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_filter); |
| |
| void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, |
| struct rt2x00intf_conf *conf, const unsigned int flags) |
| { |
| unsigned int beacon_base; |
| u32 reg; |
| |
| if (flags & CONFIG_UPDATE_TYPE) { |
| /* |
| * Clear current synchronisation setup. |
| * For the Beacon base registers we only need to clear |
| * the first byte since that byte contains the VALID and OWNER |
| * bits which (when set to 0) will invalidate the entire beacon. |
| */ |
| beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx); |
| rt2800_register_write(rt2x00dev, beacon_base, 0); |
| |
| /* |
| * Enable synchronisation. |
| */ |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, conf->sync); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, |
| (conf->sync == TSF_SYNC_BEACON)); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| } |
| |
| if (flags & CONFIG_UPDATE_MAC) { |
| reg = le32_to_cpu(conf->mac[1]); |
| rt2x00_set_field32(®, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff); |
| conf->mac[1] = cpu_to_le32(reg); |
| |
| rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0, |
| conf->mac, sizeof(conf->mac)); |
| } |
| |
| if (flags & CONFIG_UPDATE_BSSID) { |
| reg = le32_to_cpu(conf->bssid[1]); |
| rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_ID_MASK, 0); |
| rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_BCN_NUM, 0); |
| conf->bssid[1] = cpu_to_le32(reg); |
| |
| rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0, |
| conf->bssid, sizeof(conf->bssid)); |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_intf); |
| |
| void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®); |
| rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 0x20); |
| rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, |
| !!erp->short_preamble); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, |
| !!erp->short_preamble); |
| rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, |
| erp->cts_protection ? 2 : 0); |
| rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, |
| erp->basic_rates); |
| rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); |
| |
| rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®); |
| rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time); |
| rt2x00_set_field32(®, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2); |
| rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_CCKM_SIFS_TIME, erp->sifs); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_SIFS_TIME, erp->sifs); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, erp->eifs); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1); |
| rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, |
| erp->beacon_int * 16); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_erp); |
| |
| void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) |
| { |
| u8 r1; |
| u8 r3; |
| |
| rt2800_bbp_read(rt2x00dev, 1, &r1); |
| rt2800_bbp_read(rt2x00dev, 3, &r3); |
| |
| /* |
| * Configure the TX antenna. |
| */ |
| switch ((int)ant->tx) { |
| case 1: |
| rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0); |
| if (rt2x00_intf_is_pci(rt2x00dev)) |
| rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0); |
| break; |
| case 2: |
| rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2); |
| break; |
| case 3: |
| /* Do nothing */ |
| break; |
| } |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch ((int)ant->rx) { |
| case 1: |
| rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0); |
| break; |
| case 2: |
| rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1); |
| break; |
| case 3: |
| rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2); |
| break; |
| } |
| |
| rt2800_bbp_write(rt2x00dev, 3, r3); |
| rt2800_bbp_write(rt2x00dev, 1, r1); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_ant); |
| |
| static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u16 eeprom; |
| short lna_gain; |
| |
| if (libconf->rf.channel <= 14) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); |
| lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG); |
| } else if (libconf->rf.channel <= 64) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); |
| lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0); |
| } else if (libconf->rf.channel <= 128) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom); |
| lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1); |
| } else { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom); |
| lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2); |
| } |
| |
| rt2x00dev->lna_gain = lna_gain; |
| } |
| |
| static void rt2800_config_channel_rt2x(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_conf *conf, |
| struct rf_channel *rf, |
| struct channel_info *info) |
| { |
| rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); |
| |
| if (rt2x00dev->default_ant.tx == 1) |
| rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1); |
| |
| if (rt2x00dev->default_ant.rx == 1) { |
| rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1); |
| rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); |
| } else if (rt2x00dev->default_ant.rx == 2) |
| rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); |
| |
| if (rf->channel > 14) { |
| /* |
| * When TX power is below 0, we should increase it by 7 to |
| * make it a positive value (Minumum value is -7). |
| * However this means that values between 0 and 7 have |
| * double meaning, and we should set a 7DBm boost flag. |
| */ |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST, |
| (info->tx_power1 >= 0)); |
| |
| if (info->tx_power1 < 0) |
| info->tx_power1 += 7; |
| |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, |
| TXPOWER_A_TO_DEV(info->tx_power1)); |
| |
| rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST, |
| (info->tx_power2 >= 0)); |
| |
| if (info->tx_power2 < 0) |
| info->tx_power2 += 7; |
| |
| rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, |
| TXPOWER_A_TO_DEV(info->tx_power2)); |
| } else { |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, |
| TXPOWER_G_TO_DEV(info->tx_power1)); |
| rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, |
| TXPOWER_G_TO_DEV(info->tx_power2)); |
| } |
| |
| rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf)); |
| |
| rt2800_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2800_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); |
| rt2800_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| udelay(200); |
| |
| rt2800_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2800_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); |
| rt2800_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| udelay(200); |
| |
| rt2800_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2800_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); |
| rt2800_rf_write(rt2x00dev, 4, rf->rf4); |
| } |
| |
| static void rt2800_config_channel_rt3x(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_conf *conf, |
| struct rf_channel *rf, |
| struct channel_info *info) |
| { |
| u8 rfcsr; |
| |
| rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1); |
| rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3); |
| |
| rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR6_R, rf->rf2); |
| rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, |
| TXPOWER_G_TO_DEV(info->tx_power1)); |
| rt2800_rfcsr_write(rt2x00dev, 12, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset); |
| rt2800_rfcsr_write(rt2x00dev, 23, rfcsr); |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, |
| rt2x00dev->calibration[conf_is_ht40(conf)]); |
| |
| rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1); |
| rt2800_rfcsr_write(rt2x00dev, 23, rfcsr); |
| } |
| |
| static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_conf *conf, |
| struct rf_channel *rf, |
| struct channel_info *info) |
| { |
| u32 reg; |
| unsigned int tx_pin; |
| u8 bbp; |
| |
| if ((rt2x00_rt(&rt2x00dev->chip, RT3070) || |
| rt2x00_rt(&rt2x00dev->chip, RT3090)) && |
| (rt2x00_rf(&rt2x00dev->chip, RF2020) || |
| rt2x00_rf(&rt2x00dev->chip, RF3020) || |
| rt2x00_rf(&rt2x00dev->chip, RF3021) || |
| rt2x00_rf(&rt2x00dev->chip, RF3022))) |
| rt2800_config_channel_rt3x(rt2x00dev, conf, rf, info); |
| else |
| rt2800_config_channel_rt2x(rt2x00dev, conf, rf, info); |
| |
| /* |
| * Change BBP settings |
| */ |
| rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain); |
| rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain); |
| rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain); |
| rt2800_bbp_write(rt2x00dev, 86, 0); |
| |
| if (rf->channel <= 14) { |
| if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) { |
| rt2800_bbp_write(rt2x00dev, 82, 0x62); |
| rt2800_bbp_write(rt2x00dev, 75, 0x46); |
| } else { |
| rt2800_bbp_write(rt2x00dev, 82, 0x84); |
| rt2800_bbp_write(rt2x00dev, 75, 0x50); |
| } |
| } else { |
| rt2800_bbp_write(rt2x00dev, 82, 0xf2); |
| |
| if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) |
| rt2800_bbp_write(rt2x00dev, 75, 0x46); |
| else |
| rt2800_bbp_write(rt2x00dev, 75, 0x50); |
| } |
| |
| rt2800_register_read(rt2x00dev, TX_BAND_CFG, ®); |
| rt2x00_set_field32(®, TX_BAND_CFG_HT40_PLUS, conf_is_ht40_plus(conf)); |
| rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14); |
| rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14); |
| rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg); |
| |
| tx_pin = 0; |
| |
| /* Turn on unused PA or LNA when not using 1T or 1R */ |
| if (rt2x00dev->default_ant.tx != 1) { |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1); |
| } |
| |
| /* Turn on unused PA or LNA when not using 1T or 1R */ |
| if (rt2x00dev->default_ant.rx != 1) { |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1); |
| } |
| |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14); |
| |
| rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin); |
| |
| rt2800_bbp_read(rt2x00dev, 4, &bbp); |
| rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf)); |
| rt2800_bbp_write(rt2x00dev, 4, bbp); |
| |
| rt2800_bbp_read(rt2x00dev, 3, &bbp); |
| rt2x00_set_field8(&bbp, BBP3_HT40_PLUS, conf_is_ht40_plus(conf)); |
| rt2800_bbp_write(rt2x00dev, 3, bbp); |
| |
| if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) { |
| if (conf_is_ht40(conf)) { |
| rt2800_bbp_write(rt2x00dev, 69, 0x1a); |
| rt2800_bbp_write(rt2x00dev, 70, 0x0a); |
| rt2800_bbp_write(rt2x00dev, 73, 0x16); |
| } else { |
| rt2800_bbp_write(rt2x00dev, 69, 0x16); |
| rt2800_bbp_write(rt2x00dev, 70, 0x08); |
| rt2800_bbp_write(rt2x00dev, 73, 0x11); |
| } |
| } |
| |
| msleep(1); |
| } |
| |
| static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev, |
| const int txpower) |
| { |
| u32 reg; |
| u32 value = TXPOWER_G_TO_DEV(txpower); |
| u8 r1; |
| |
| rt2800_bbp_read(rt2x00dev, 1, &r1); |
| rt2x00_set_field8(®, BBP1_TX_POWER, 0); |
| rt2800_bbp_write(rt2x00dev, 1, r1); |
| |
| rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, ®); |
| rt2x00_set_field32(®, TX_PWR_CFG_0_1MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_0_2MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_0_55MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_0_11MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_0_6MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_0_9MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_0_12MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_0_18MBS, value); |
| rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, reg); |
| |
| rt2800_register_read(rt2x00dev, TX_PWR_CFG_1, ®); |
| rt2x00_set_field32(®, TX_PWR_CFG_1_24MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_1_36MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_1_48MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_1_54MBS, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_1_MCS0, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_1_MCS1, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_1_MCS2, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_1_MCS3, value); |
| rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, reg); |
| |
| rt2800_register_read(rt2x00dev, TX_PWR_CFG_2, ®); |
| rt2x00_set_field32(®, TX_PWR_CFG_2_MCS4, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_2_MCS5, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_2_MCS6, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_2_MCS7, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_2_MCS8, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_2_MCS9, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_2_MCS10, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_2_MCS11, value); |
| rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, reg); |
| |
| rt2800_register_read(rt2x00dev, TX_PWR_CFG_3, ®); |
| rt2x00_set_field32(®, TX_PWR_CFG_3_MCS12, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_3_MCS13, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_3_MCS14, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_3_MCS15, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN1, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN2, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN3, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN4, value); |
| rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, reg); |
| |
| rt2800_register_read(rt2x00dev, TX_PWR_CFG_4, ®); |
| rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN5, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN6, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN7, value); |
| rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN8, value); |
| rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, reg); |
| } |
| |
| static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®); |
| rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, |
| libconf->conf->short_frame_max_tx_count); |
| rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, |
| libconf->conf->long_frame_max_tx_count); |
| rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_THRE, 2000); |
| rt2x00_set_field32(®, TX_RTY_CFG_NON_AGG_RTY_MODE, 0); |
| rt2x00_set_field32(®, TX_RTY_CFG_AGG_RTY_MODE, 0); |
| rt2x00_set_field32(®, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1); |
| rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg); |
| } |
| |
| static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| enum dev_state state = |
| (libconf->conf->flags & IEEE80211_CONF_PS) ? |
| STATE_SLEEP : STATE_AWAKE; |
| u32 reg; |
| |
| if (state == STATE_SLEEP) { |
| rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0); |
| |
| rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, |
| libconf->conf->listen_interval - 1); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1); |
| rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| } else { |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| |
| rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 0); |
| rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); |
| } |
| } |
| |
| void rt2800_config(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf, |
| const unsigned int flags) |
| { |
| /* Always recalculate LNA gain before changing configuration */ |
| rt2800_config_lna_gain(rt2x00dev, libconf); |
| |
| if (flags & IEEE80211_CONF_CHANGE_CHANNEL) |
| rt2800_config_channel(rt2x00dev, libconf->conf, |
| &libconf->rf, &libconf->channel); |
| if (flags & IEEE80211_CONF_CHANGE_POWER) |
| rt2800_config_txpower(rt2x00dev, libconf->conf->power_level); |
| if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) |
| rt2800_config_retry_limit(rt2x00dev, libconf); |
| if (flags & IEEE80211_CONF_CHANGE_PS) |
| rt2800_config_ps(rt2x00dev, libconf); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config); |
| |
| /* |
| * Link tuning |
| */ |
| void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) |
| { |
| u32 reg; |
| |
| /* |
| * Update FCS error count from register. |
| */ |
| rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); |
| qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_link_stats); |
| |
| static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev) |
| { |
| if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { |
| if (rt2x00_intf_is_usb(rt2x00dev) && |
| rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION) |
| return 0x1c + (2 * rt2x00dev->lna_gain); |
| else |
| return 0x2e + rt2x00dev->lna_gain; |
| } |
| |
| if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) |
| return 0x32 + (rt2x00dev->lna_gain * 5) / 3; |
| else |
| return 0x3a + (rt2x00dev->lna_gain * 5) / 3; |
| } |
| |
| static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual, u8 vgc_level) |
| { |
| if (qual->vgc_level != vgc_level) { |
| rt2800_bbp_write(rt2x00dev, 66, vgc_level); |
| qual->vgc_level = vgc_level; |
| qual->vgc_level_reg = vgc_level; |
| } |
| } |
| |
| void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) |
| { |
| rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev)); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_reset_tuner); |
| |
| void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, |
| const u32 count) |
| { |
| if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) |
| return; |
| |
| /* |
| * When RSSI is better then -80 increase VGC level with 0x10 |
| */ |
| rt2800_set_vgc(rt2x00dev, qual, |
| rt2800_get_default_vgc(rt2x00dev) + |
| ((qual->rssi > -80) * 0x10)); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_link_tuner); |
| |
| /* |
| * Initialization functions. |
| */ |
| int rt2800_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| unsigned int i; |
| |
| if (rt2x00_intf_is_usb(rt2x00dev)) { |
| /* |
| * Wait until BBP and RF are ready. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, MAC_CSR0, ®); |
| if (reg && reg != ~0) |
| break; |
| msleep(1); |
| } |
| |
| if (i == REGISTER_BUSY_COUNT) { |
| ERROR(rt2x00dev, "Unstable hardware.\n"); |
| return -EBUSY; |
| } |
| |
| rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®); |
| rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, |
| reg & ~0x00002000); |
| } else if (rt2x00_intf_is_pci(rt2x00dev)) |
| rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); |
| |
| rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| |
| if (rt2x00_intf_is_usb(rt2x00dev)) { |
| rt2800_register_write(rt2x00dev, USB_DMA_CFG, 0x00000000); |
| #if defined(CONFIG_RT2800USB) || defined(CONFIG_RT2800USB_MODULE) |
| rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, |
| USB_MODE_RESET, REGISTER_TIMEOUT); |
| #endif |
| } |
| |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); |
| |
| rt2800_register_read(rt2x00dev, BCN_OFFSET0, ®); |
| rt2x00_set_field32(®, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */ |
| rt2x00_set_field32(®, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */ |
| rt2x00_set_field32(®, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */ |
| rt2x00_set_field32(®, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */ |
| rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg); |
| |
| rt2800_register_read(rt2x00dev, BCN_OFFSET1, ®); |
| rt2x00_set_field32(®, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */ |
| rt2x00_set_field32(®, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */ |
| rt2x00_set_field32(®, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */ |
| rt2x00_set_field32(®, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */ |
| rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg); |
| |
| rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f); |
| rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); |
| |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); |
| |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| if (rt2x00_intf_is_usb(rt2x00dev) && |
| rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION) { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); |
| } else { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); |
| } |
| |
| rt2800_register_read(rt2x00dev, TX_LINK_CFG, ®); |
| rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32); |
| rt2x00_set_field32(®, TX_LINK_CFG_MFB_ENABLE, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_TX_MRQ_EN, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_TX_RDG_EN, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_TX_CF_ACK_EN, 1); |
| rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFS, 0); |
| rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®); |
| rt2x00_set_field32(®, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9); |
| rt2x00_set_field32(®, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10); |
| rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MAX_LEN_CFG, ®); |
| rt2x00_set_field32(®, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE); |
| if (rt2x00_rev(&rt2x00dev->chip) >= RT2880E_VERSION && |
| rt2x00_rev(&rt2x00dev->chip) < RT3070_VERSION) |
| rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 2); |
| else |
| rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 1); |
| rt2x00_set_field32(®, MAX_LEN_CFG_MIN_PSDU, 0); |
| rt2x00_set_field32(®, MAX_LEN_CFG_MIN_MPDU, 0); |
| rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f); |
| |
| rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_AUTORESPONDER, 1); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MMODE, 0); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MREF, 0); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_DUAL_CTS_EN, 0); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0); |
| rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); |
| rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 8); |
| rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 1); |
| rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 8); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 1); |
| rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, 0x4004); |
| rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_NAV, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0); |
| rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, 0x4084); |
| rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_NAV, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1); |
| rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, 0x4004); |
| rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_NAV, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0); |
| rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, 0x4084); |
| rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_NAV, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1); |
| rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); |
| |
| if (rt2x00_intf_is_usb(rt2x00dev)) { |
| rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006); |
| |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_BIG_ENDIAN, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_HDR_SEG_LEN, 0); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| } |
| |
| rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f); |
| rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002); |
| |
| rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); |
| rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32); |
| rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, |
| IEEE80211_MAX_RTS_THRESHOLD); |
| rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0); |
| rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca); |
| rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); |
| |
| /* |
| * ASIC will keep garbage value after boot, clear encryption keys. |
| */ |
| for (i = 0; i < 4; i++) |
| rt2800_register_write(rt2x00dev, |
| SHARED_KEY_MODE_ENTRY(i), 0); |
| |
| for (i = 0; i < 256; i++) { |
| u32 wcid[2] = { 0xffffffff, 0x00ffffff }; |
| rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i), |
| wcid, sizeof(wcid)); |
| |
| rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1); |
| rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0); |
| } |
| |
| /* |
| * Clear all beacons |
| * For the Beacon base registers we only need to clear |
| * the first byte since that byte contains the VALID and OWNER |
| * bits which (when set to 0) will invalidate the entire beacon. |
| */ |
| rt2800_register_write(rt2x00dev, HW_BEACON_BASE0, 0); |
| rt2800_register_write(rt2x00dev, HW_BEACON_BASE1, 0); |
| rt2800_register_write(rt2x00dev, HW_BEACON_BASE2, 0); |
| rt2800_register_write(rt2x00dev, HW_BEACON_BASE3, 0); |
| rt2800_register_write(rt2x00dev, HW_BEACON_BASE4, 0); |
| rt2800_register_write(rt2x00dev, HW_BEACON_BASE5, 0); |
| rt2800_register_write(rt2x00dev, HW_BEACON_BASE6, 0); |
| rt2800_register_write(rt2x00dev, HW_BEACON_BASE7, 0); |
| |
| if (rt2x00_intf_is_usb(rt2x00dev)) { |
| rt2800_register_read(rt2x00dev, USB_CYC_CFG, ®); |
| rt2x00_set_field32(®, USB_CYC_CFG_CLOCK_CYCLE, 30); |
| rt2800_register_write(rt2x00dev, USB_CYC_CFG, reg); |
| } |
| |
| rt2800_register_read(rt2x00dev, HT_FBK_CFG0, ®); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS0FBK, 0); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS1FBK, 0); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS2FBK, 1); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS3FBK, 2); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS4FBK, 3); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS5FBK, 4); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS6FBK, 5); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS7FBK, 6); |
| rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg); |
| |
| rt2800_register_read(rt2x00dev, HT_FBK_CFG1, ®); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS8FBK, 8); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS9FBK, 8); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS10FBK, 9); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS11FBK, 10); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS12FBK, 11); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS13FBK, 12); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS14FBK, 13); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS15FBK, 14); |
| rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg); |
| |
| rt2800_register_read(rt2x00dev, LG_FBK_CFG0, ®); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 9); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14); |
| rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg); |
| |
| rt2800_register_read(rt2x00dev, LG_FBK_CFG1, ®); |
| rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS0FBK, 0); |
| rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS1FBK, 0); |
| rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS2FBK, 1); |
| rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS3FBK, 2); |
| rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg); |
| |
| /* |
| * We must clear the error counters. |
| * These registers are cleared on read, |
| * so we may pass a useless variable to store the value. |
| */ |
| rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); |
| rt2800_register_read(rt2x00dev, RX_STA_CNT1, ®); |
| rt2800_register_read(rt2x00dev, RX_STA_CNT2, ®); |
| rt2800_register_read(rt2x00dev, TX_STA_CNT0, ®); |
| rt2800_register_read(rt2x00dev, TX_STA_CNT1, ®); |
| rt2800_register_read(rt2x00dev, TX_STA_CNT2, ®); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_init_registers); |
| |
| static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u32 reg; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, ®); |
| if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY)) |
| return 0; |
| |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n"); |
| return -EACCES; |
| } |
| |
| static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u8 value; |
| |
| /* |
| * BBP was enabled after firmware was loaded, |
| * but we need to reactivate it now. |
| */ |
| rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); |
| rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); |
| msleep(1); |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_bbp_read(rt2x00dev, 0, &value); |
| if ((value != 0xff) && (value != 0x00)) |
| return 0; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); |
| return -EACCES; |
| } |
| |
| int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u16 eeprom; |
| u8 reg_id; |
| u8 value; |
| |
| if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) || |
| rt2800_wait_bbp_ready(rt2x00dev))) |
| return -EACCES; |
| |
| rt2800_bbp_write(rt2x00dev, 65, 0x2c); |
| rt2800_bbp_write(rt2x00dev, 66, 0x38); |
| rt2800_bbp_write(rt2x00dev, 69, 0x12); |
| rt2800_bbp_write(rt2x00dev, 70, 0x0a); |
| rt2800_bbp_write(rt2x00dev, 73, 0x10); |
| rt2800_bbp_write(rt2x00dev, 81, 0x37); |
| rt2800_bbp_write(rt2x00dev, 82, 0x62); |
| rt2800_bbp_write(rt2x00dev, 83, 0x6a); |
| rt2800_bbp_write(rt2x00dev, 84, 0x99); |
| rt2800_bbp_write(rt2x00dev, 86, 0x00); |
| rt2800_bbp_write(rt2x00dev, 91, 0x04); |
| rt2800_bbp_write(rt2x00dev, 92, 0x00); |
| rt2800_bbp_write(rt2x00dev, 103, 0x00); |
| rt2800_bbp_write(rt2x00dev, 105, 0x05); |
| |
| if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) { |
| rt2800_bbp_write(rt2x00dev, 69, 0x16); |
| rt2800_bbp_write(rt2x00dev, 73, 0x12); |
| } |
| |
| if (rt2x00_rev(&rt2x00dev->chip) > RT2860D_VERSION) |
| rt2800_bbp_write(rt2x00dev, 84, 0x19); |
| |
| if (rt2x00_intf_is_usb(rt2x00dev) && |
| rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION) { |
| rt2800_bbp_write(rt2x00dev, 70, 0x0a); |
| rt2800_bbp_write(rt2x00dev, 84, 0x99); |
| rt2800_bbp_write(rt2x00dev, 105, 0x05); |
| } |
| |
| if (rt2x00_rt(&rt2x00dev->chip, RT3052)) { |
| rt2800_bbp_write(rt2x00dev, 31, 0x08); |
| rt2800_bbp_write(rt2x00dev, 78, 0x0e); |
| rt2800_bbp_write(rt2x00dev, 80, 0x08); |
| } |
| |
| for (i = 0; i < EEPROM_BBP_SIZE; i++) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); |
| |
| if (eeprom != 0xffff && eeprom != 0x0000) { |
| reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); |
| rt2800_bbp_write(rt2x00dev, reg_id, value); |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_init_bbp); |
| |
| static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev, |
| bool bw40, u8 rfcsr24, u8 filter_target) |
| { |
| unsigned int i; |
| u8 bbp; |
| u8 rfcsr; |
| u8 passband; |
| u8 stopband; |
| u8 overtuned = 0; |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); |
| |
| rt2800_bbp_read(rt2x00dev, 4, &bbp); |
| rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40); |
| rt2800_bbp_write(rt2x00dev, 4, bbp); |
| |
| rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1); |
| rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); |
| |
| /* |
| * Set power & frequency of passband test tone |
| */ |
| rt2800_bbp_write(rt2x00dev, 24, 0); |
| |
| for (i = 0; i < 100; i++) { |
| rt2800_bbp_write(rt2x00dev, 25, 0x90); |
| msleep(1); |
| |
| rt2800_bbp_read(rt2x00dev, 55, &passband); |
| if (passband) |
| break; |
| } |
| |
| /* |
| * Set power & frequency of stopband test tone |
| */ |
| rt2800_bbp_write(rt2x00dev, 24, 0x06); |
| |
| for (i = 0; i < 100; i++) { |
| rt2800_bbp_write(rt2x00dev, 25, 0x90); |
| msleep(1); |
| |
| rt2800_bbp_read(rt2x00dev, 55, &stopband); |
| |
| if ((passband - stopband) <= filter_target) { |
| rfcsr24++; |
| overtuned += ((passband - stopband) == filter_target); |
| } else |
| break; |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); |
| } |
| |
| rfcsr24 -= !!overtuned; |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); |
| return rfcsr24; |
| } |
| |
| int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev) |
| { |
| u8 rfcsr; |
| u8 bbp; |
| |
| if (rt2x00_intf_is_usb(rt2x00dev) && |
| rt2x00_rev(&rt2x00dev->chip) != RT3070_VERSION) |
| return 0; |
| |
| if (rt2x00_intf_is_pci(rt2x00dev)) { |
| if (!rt2x00_rf(&rt2x00dev->chip, RF3020) && |
| !rt2x00_rf(&rt2x00dev->chip, RF3021) && |
| !rt2x00_rf(&rt2x00dev->chip, RF3022)) |
| return 0; |
| } |
| |
| /* |
| * Init RF calibration. |
| */ |
| rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1); |
| rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); |
| msleep(1); |
| rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0); |
| rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); |
| |
| if (rt2x00_intf_is_usb(rt2x00dev)) { |
| rt2800_rfcsr_write(rt2x00dev, 4, 0x40); |
| rt2800_rfcsr_write(rt2x00dev, 5, 0x03); |
| rt2800_rfcsr_write(rt2x00dev, 6, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 7, 0x70); |
| rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0x71); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0x21); |
| rt2800_rfcsr_write(rt2x00dev, 12, 0x7b); |
| rt2800_rfcsr_write(rt2x00dev, 14, 0x90); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x58); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); |
| rt2800_rfcsr_write(rt2x00dev, 17, 0x92); |
| rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xba); |
| rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); |
| rt2800_rfcsr_write(rt2x00dev, 24, 0x16); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x01); |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x03); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x1f); |
| } else if (rt2x00_intf_is_pci(rt2x00dev)) { |
| rt2800_rfcsr_write(rt2x00dev, 0, 0x50); |
| rt2800_rfcsr_write(rt2x00dev, 1, 0x01); |
| rt2800_rfcsr_write(rt2x00dev, 2, 0xf7); |
| rt2800_rfcsr_write(rt2x00dev, 3, 0x75); |
| rt2800_rfcsr_write(rt2x00dev, 4, 0x40); |
| rt2800_rfcsr_write(rt2x00dev, 5, 0x03); |
| rt2800_rfcsr_write(rt2x00dev, 6, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 7, 0x50); |
| rt2800_rfcsr_write(rt2x00dev, 8, 0x39); |
| rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0x60); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0x21); |
| rt2800_rfcsr_write(rt2x00dev, 12, 0x75); |
| rt2800_rfcsr_write(rt2x00dev, 13, 0x75); |
| rt2800_rfcsr_write(rt2x00dev, 14, 0x90); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x58); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); |
| rt2800_rfcsr_write(rt2x00dev, 17, 0x92); |
| rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xba); |
| rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); |
| rt2800_rfcsr_write(rt2x00dev, 22, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 23, 0x31); |
| rt2800_rfcsr_write(rt2x00dev, 24, 0x08); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x01); |
| rt2800_rfcsr_write(rt2x00dev, 26, 0x25); |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x23); |
| rt2800_rfcsr_write(rt2x00dev, 28, 0x13); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x83); |
| } |
| |
| /* |
| * Set RX Filter calibration for 20MHz and 40MHz |
| */ |
| rt2x00dev->calibration[0] = |
| rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16); |
| rt2x00dev->calibration[1] = |
| rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19); |
| |
| /* |
| * Set back to initial state |
| */ |
| rt2800_bbp_write(rt2x00dev, 24, 0); |
| |
| rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0); |
| rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); |
| |
| /* |
| * set BBP back to BW20 |
| */ |
| rt2800_bbp_read(rt2x00dev, 4, &bbp); |
| rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0); |
| rt2800_bbp_write(rt2x00dev, 4, bbp); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_init_rfcsr); |
| |
| int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, EFUSE_CTRL, ®); |
| |
| return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_efuse_detect); |
| |
| static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, ®); |
| rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i); |
| rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0); |
| rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1); |
| rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg); |
| |
| /* Wait until the EEPROM has been loaded */ |
| rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, ®); |
| |
| /* Apparently the data is read from end to start */ |
| rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3, |
| (u32 *)&rt2x00dev->eeprom[i]); |
| rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2, |
| (u32 *)&rt2x00dev->eeprom[i + 2]); |
| rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1, |
| (u32 *)&rt2x00dev->eeprom[i + 4]); |
| rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0, |
| (u32 *)&rt2x00dev->eeprom[i + 6]); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8) |
| rt2800_efuse_read(rt2x00dev, i); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse); |
| |
| int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u16 word; |
| u8 *mac; |
| u8 default_lna_gain; |
| |
| /* |
| * Start validation of the data that has been read. |
| */ |
| mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); |
| if (!is_valid_ether_addr(mac)) { |
| random_ether_addr(mac); |
| EEPROM(rt2x00dev, "MAC: %pM\n", mac); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1); |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); |
| EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); |
| } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) { |
| /* |
| * There is a max of 2 RX streams for RT28x0 series |
| */ |
| if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2) |
| rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); |
| EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); |
| if ((word & 0x00ff) == 0x00ff) { |
| rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); |
| rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE, |
| LED_MODE_TXRX_ACTIVITY); |
| rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8); |
| EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); |
| } |
| |
| /* |
| * During the LNA validation we are going to use |
| * lna0 as correct value. Note that EEPROM_LNA |
| * is never validated. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word); |
| default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0); |
| if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 || |
| rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff) |
| rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1, |
| default_lna_gain); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0); |
| if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 || |
| rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff) |
| rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2, |
| default_lna_gain); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_validate_eeprom); |
| |
| int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 value; |
| u16 eeprom; |
| |
| /* |
| * Read EEPROM word for configuration. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); |
| |
| /* |
| * Identify RF chipset. |
| */ |
| value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); |
| rt2800_register_read(rt2x00dev, MAC_CSR0, ®); |
| |
| rt2x00_set_chip_rf(rt2x00dev, value, reg); |
| |
| if (rt2x00_intf_is_usb(rt2x00dev)) { |
| struct rt2x00_chip *chip = &rt2x00dev->chip; |
| |
| /* |
| * The check for rt2860 is not a typo, some rt2870 hardware |
| * identifies itself as rt2860 in the CSR register. |
| */ |
| if (rt2x00_check_rev(chip, 0xfff00000, 0x28600000) || |
| rt2x00_check_rev(chip, 0xfff00000, 0x28700000) || |
| rt2x00_check_rev(chip, 0xfff00000, 0x28800000)) { |
| rt2x00_set_chip_rt(rt2x00dev, RT2870); |
| } else if (rt2x00_check_rev(chip, 0xffff0000, 0x30700000)) { |
| rt2x00_set_chip_rt(rt2x00dev, RT3070); |
| } else { |
| ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); |
| return -ENODEV; |
| } |
| } |
| rt2x00_print_chip(rt2x00dev); |
| |
| if (!rt2x00_rf(&rt2x00dev->chip, RF2820) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2850) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2720) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2750) && |
| !rt2x00_rf(&rt2x00dev->chip, RF3020) && |
| !rt2x00_rf(&rt2x00dev->chip, RF2020) && |
| !rt2x00_rf(&rt2x00dev->chip, RF3021) && |
| !rt2x00_rf(&rt2x00dev->chip, RF3022)) { |
| ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); |
| return -ENODEV; |
| } |
| |
| /* |
| * Identify default antenna configuration. |
| */ |
| rt2x00dev->default_ant.tx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH); |
| rt2x00dev->default_ant.rx = |
| rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH); |
| |
| /* |
| * Read frequency offset and RF programming sequence. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); |
| rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); |
| |
| /* |
| * Read external LNA informations. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); |
| |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) |
| __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) |
| __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); |
| |
| /* |
| * Detect if this device has an hardware controlled radio. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO)) |
| __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); |
| |
| /* |
| * Store led settings, for correct led behaviour. |
| */ |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); |
| rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); |
| rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg); |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_init_eeprom); |
| |
| /* |
| * RF value list for rt28x0 |
| * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750) |
| */ |
| static const struct rf_channel rf_vals[] = { |
| { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b }, |
| { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f }, |
| { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b }, |
| { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f }, |
| { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b }, |
| { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f }, |
| { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b }, |
| { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f }, |
| { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b }, |
| { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f }, |
| { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b }, |
| { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f }, |
| { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b }, |
| { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 }, |
| { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 }, |
| { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 }, |
| { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 }, |
| { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b }, |
| { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b }, |
| { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 }, |
| { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 }, |
| { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b }, |
| { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 }, |
| { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 }, |
| { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 }, |
| { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 }, |
| { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 }, |
| { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 }, |
| { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 }, |
| { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b }, |
| { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 }, |
| { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 }, |
| { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 }, |
| { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 }, |
| { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b }, |
| { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 }, |
| { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b }, |
| { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 }, |
| { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b }, |
| { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 }, |
| |
| /* 802.11 UNII */ |
| { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 }, |
| { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 }, |
| { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f }, |
| { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f }, |
| { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 }, |
| { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 }, |
| { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 }, |
| { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f }, |
| { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 }, |
| { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 }, |
| { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f }, |
| |
| /* 802.11 Japan */ |
| { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b }, |
| { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 }, |
| { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b }, |
| { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 }, |
| { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 }, |
| { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b }, |
| { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 }, |
| }; |
| |
| /* |
| * RF value list for rt3070 |
| * Supports: 2.4 GHz |
| */ |
| static const struct rf_channel rf_vals_302x[] = { |
| {1, 241, 2, 2 }, |
| {2, 241, 2, 7 }, |
| {3, 242, 2, 2 }, |
| {4, 242, 2, 7 }, |
| {5, 243, 2, 2 }, |
| {6, 243, 2, 7 }, |
| {7, 244, 2, 2 }, |
| {8, 244, 2, 7 }, |
| {9, 245, 2, 2 }, |
| {10, 245, 2, 7 }, |
| {11, 246, 2, 2 }, |
| {12, 246, 2, 7 }, |
| {13, 247, 2, 2 }, |
| {14, 248, 2, 4 }, |
| }; |
| |
| int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev) |
| { |
| struct rt2x00_chip *chip = &rt2x00dev->chip; |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| struct channel_info *info; |
| char *tx_power1; |
| char *tx_power2; |
| unsigned int i; |
| u16 eeprom; |
| |
| /* |
| * Disable powersaving as default on PCI devices. |
| */ |
| if (rt2x00_intf_is_pci(rt2x00dev)) |
| rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; |
| |
| /* |
| * Initialize all hw fields. |
| */ |
| rt2x00dev->hw->flags = |
| IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | |
| IEEE80211_HW_SIGNAL_DBM | |
| IEEE80211_HW_SUPPORTS_PS | |
| IEEE80211_HW_PS_NULLFUNC_STACK; |
| |
| SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); |
| SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, |
| rt2x00_eeprom_addr(rt2x00dev, |
| EEPROM_MAC_ADDR_0)); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); |
| |
| /* |
| * Initialize hw_mode information. |
| */ |
| spec->supported_bands = SUPPORT_BAND_2GHZ; |
| spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; |
| |
| if (rt2x00_rf(chip, RF2820) || |
| rt2x00_rf(chip, RF2720) || |
| (rt2x00_intf_is_pci(rt2x00dev) && rt2x00_rf(chip, RF3052))) { |
| spec->num_channels = 14; |
| spec->channels = rf_vals; |
| } else if (rt2x00_rf(chip, RF2850) || rt2x00_rf(chip, RF2750)) { |
| spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| spec->num_channels = ARRAY_SIZE(rf_vals); |
| spec->channels = rf_vals; |
| } else if (rt2x00_rf(chip, RF3020) || |
| rt2x00_rf(chip, RF2020) || |
| rt2x00_rf(chip, RF3021) || |
| rt2x00_rf(chip, RF3022)) { |
| spec->num_channels = ARRAY_SIZE(rf_vals_302x); |
| spec->channels = rf_vals_302x; |
| } |
| |
| /* |
| * Initialize HT information. |
| */ |
| if (!rt2x00_rf(chip, RF2020)) |
| spec->ht.ht_supported = true; |
| else |
| spec->ht.ht_supported = false; |
| |
| spec->ht.cap = |
| IEEE80211_HT_CAP_SUP_WIDTH_20_40 | |
| IEEE80211_HT_CAP_GRN_FLD | |
| IEEE80211_HT_CAP_SGI_20 | |
| IEEE80211_HT_CAP_SGI_40 | |
| IEEE80211_HT_CAP_TX_STBC | |
| IEEE80211_HT_CAP_RX_STBC; |
| spec->ht.ampdu_factor = 3; |
| spec->ht.ampdu_density = 4; |
| spec->ht.mcs.tx_params = |
| IEEE80211_HT_MCS_TX_DEFINED | |
| IEEE80211_HT_MCS_TX_RX_DIFF | |
| ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) << |
| IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); |
| |
| switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) { |
| case 3: |
| spec->ht.mcs.rx_mask[2] = 0xff; |
| case 2: |
| spec->ht.mcs.rx_mask[1] = 0xff; |
| case 1: |
| spec->ht.mcs.rx_mask[0] = 0xff; |
| spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */ |
| break; |
| } |
| |
| /* |
| * Create channel information array |
| */ |
| info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| spec->channels_info = info; |
| |
| tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1); |
| tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2); |
| |
| for (i = 0; i < 14; i++) { |
| info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]); |
| info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]); |
| } |
| |
| if (spec->num_channels > 14) { |
| tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1); |
| tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2); |
| |
| for (i = 14; i < spec->num_channels; i++) { |
| info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]); |
| info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]); |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode); |
| |
| /* |
| * IEEE80211 stack callback functions. |
| */ |
| static void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, |
| u32 *iv32, u16 *iv16) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| struct mac_iveiv_entry iveiv_entry; |
| u32 offset; |
| |
| offset = MAC_IVEIV_ENTRY(hw_key_idx); |
| rt2800_register_multiread(rt2x00dev, offset, |
| &iveiv_entry, sizeof(iveiv_entry)); |
| |
| memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16)); |
| memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32)); |
| } |
| |
| static int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u32 reg; |
| bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD); |
| |
| rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); |
| rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, value); |
| rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); |
| rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); |
| |
| return 0; |
| } |
| |
| static int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx, |
| const struct ieee80211_tx_queue_params *params) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| struct data_queue *queue; |
| struct rt2x00_field32 field; |
| int retval; |
| u32 reg; |
| u32 offset; |
| |
| /* |
| * First pass the configuration through rt2x00lib, that will |
| * update the queue settings and validate the input. After that |
| * we are free to update the registers based on the value |
| * in the queue parameter. |
| */ |
| retval = rt2x00mac_conf_tx(hw, queue_idx, params); |
| if (retval) |
| return retval; |
| |
| /* |
| * We only need to perform additional register initialization |
| * for WMM queues/ |
| */ |
| if (queue_idx >= 4) |
| return 0; |
| |
| queue = rt2x00queue_get_queue(rt2x00dev, queue_idx); |
| |
| /* Update WMM TXOP register */ |
| offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2))); |
| field.bit_offset = (queue_idx & 1) * 16; |
| field.bit_mask = 0xffff << field.bit_offset; |
| |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, field, queue->txop); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| |
| /* Update WMM registers */ |
| field.bit_offset = queue_idx * 4; |
| field.bit_mask = 0xf << field.bit_offset; |
| |
| rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, ®); |
| rt2x00_set_field32(®, field, queue->aifs); |
| rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, ®); |
| rt2x00_set_field32(®, field, queue->cw_min); |
| rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, ®); |
| rt2x00_set_field32(®, field, queue->cw_max); |
| rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg); |
| |
| /* Update EDCA registers */ |
| offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx); |
| |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, EDCA_AC0_CFG_TX_OP, queue->txop); |
| rt2x00_set_field32(®, EDCA_AC0_CFG_AIFSN, queue->aifs); |
| rt2x00_set_field32(®, EDCA_AC0_CFG_CWMIN, queue->cw_min); |
| rt2x00_set_field32(®, EDCA_AC0_CFG_CWMAX, queue->cw_max); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| |
| return 0; |
| } |
| |
| static u64 rt2800_get_tsf(struct ieee80211_hw *hw) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u64 tsf; |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, ®); |
| tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32; |
| rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, ®); |
| tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD); |
| |
| return tsf; |
| } |
| |
| const struct ieee80211_ops rt2800_mac80211_ops = { |
| .tx = rt2x00mac_tx, |
| .start = rt2x00mac_start, |
| .stop = rt2x00mac_stop, |
| .add_interface = rt2x00mac_add_interface, |
| .remove_interface = rt2x00mac_remove_interface, |
| .config = rt2x00mac_config, |
| .configure_filter = rt2x00mac_configure_filter, |
| .set_tim = rt2x00mac_set_tim, |
| .set_key = rt2x00mac_set_key, |
| .get_stats = rt2x00mac_get_stats, |
| .get_tkip_seq = rt2800_get_tkip_seq, |
| .set_rts_threshold = rt2800_set_rts_threshold, |
| .bss_info_changed = rt2x00mac_bss_info_changed, |
| .conf_tx = rt2800_conf_tx, |
| .get_tx_stats = rt2x00mac_get_tx_stats, |
| .get_tsf = rt2800_get_tsf, |
| .rfkill_poll = rt2x00mac_rfkill_poll, |
| }; |
| EXPORT_SYMBOL_GPL(rt2800_mac80211_ops); |