| /** |
| * @file cpu_buffer.c |
| * |
| * @remark Copyright 2002 OProfile authors |
| * @remark Read the file COPYING |
| * |
| * @author John Levon <levon@movementarian.org> |
| * |
| * Each CPU has a local buffer that stores PC value/event |
| * pairs. We also log context switches when we notice them. |
| * Eventually each CPU's buffer is processed into the global |
| * event buffer by sync_buffer(). |
| * |
| * We use a local buffer for two reasons: an NMI or similar |
| * interrupt cannot synchronise, and high sampling rates |
| * would lead to catastrophic global synchronisation if |
| * a global buffer was used. |
| */ |
| |
| #include <linux/sched.h> |
| #include <linux/oprofile.h> |
| #include <linux/vmalloc.h> |
| #include <linux/errno.h> |
| |
| #include "event_buffer.h" |
| #include "cpu_buffer.h" |
| #include "buffer_sync.h" |
| #include "oprof.h" |
| |
| struct oprofile_cpu_buffer cpu_buffer[NR_CPUS] __cacheline_aligned; |
| |
| static void wq_sync_buffer(void *); |
| |
| #define DEFAULT_TIMER_EXPIRE (HZ / 10) |
| static int work_enabled; |
| |
| void free_cpu_buffers(void) |
| { |
| int i; |
| |
| for_each_online_cpu(i) |
| vfree(cpu_buffer[i].buffer); |
| } |
| |
| int alloc_cpu_buffers(void) |
| { |
| int i; |
| |
| unsigned long buffer_size = fs_cpu_buffer_size; |
| |
| for_each_online_cpu(i) { |
| struct oprofile_cpu_buffer * b = &cpu_buffer[i]; |
| |
| b->buffer = vmalloc_node(sizeof(struct op_sample) * buffer_size, |
| cpu_to_node(i)); |
| if (!b->buffer) |
| goto fail; |
| |
| b->last_task = NULL; |
| b->last_is_kernel = -1; |
| b->tracing = 0; |
| b->buffer_size = buffer_size; |
| b->tail_pos = 0; |
| b->head_pos = 0; |
| b->sample_received = 0; |
| b->sample_lost_overflow = 0; |
| b->cpu = i; |
| INIT_WORK(&b->work, wq_sync_buffer, b); |
| } |
| return 0; |
| |
| fail: |
| free_cpu_buffers(); |
| return -ENOMEM; |
| } |
| |
| void start_cpu_work(void) |
| { |
| int i; |
| |
| work_enabled = 1; |
| |
| for_each_online_cpu(i) { |
| struct oprofile_cpu_buffer * b = &cpu_buffer[i]; |
| |
| /* |
| * Spread the work by 1 jiffy per cpu so they dont all |
| * fire at once. |
| */ |
| schedule_delayed_work_on(i, &b->work, DEFAULT_TIMER_EXPIRE + i); |
| } |
| } |
| |
| void end_cpu_work(void) |
| { |
| int i; |
| |
| work_enabled = 0; |
| |
| for_each_online_cpu(i) { |
| struct oprofile_cpu_buffer * b = &cpu_buffer[i]; |
| |
| cancel_delayed_work(&b->work); |
| } |
| |
| flush_scheduled_work(); |
| } |
| |
| /* Resets the cpu buffer to a sane state. */ |
| void cpu_buffer_reset(struct oprofile_cpu_buffer * cpu_buf) |
| { |
| /* reset these to invalid values; the next sample |
| * collected will populate the buffer with proper |
| * values to initialize the buffer |
| */ |
| cpu_buf->last_is_kernel = -1; |
| cpu_buf->last_task = NULL; |
| } |
| |
| /* compute number of available slots in cpu_buffer queue */ |
| static unsigned long nr_available_slots(struct oprofile_cpu_buffer const * b) |
| { |
| unsigned long head = b->head_pos; |
| unsigned long tail = b->tail_pos; |
| |
| if (tail > head) |
| return (tail - head) - 1; |
| |
| return tail + (b->buffer_size - head) - 1; |
| } |
| |
| static void increment_head(struct oprofile_cpu_buffer * b) |
| { |
| unsigned long new_head = b->head_pos + 1; |
| |
| /* Ensure anything written to the slot before we |
| * increment is visible */ |
| wmb(); |
| |
| if (new_head < b->buffer_size) |
| b->head_pos = new_head; |
| else |
| b->head_pos = 0; |
| } |
| |
| static inline void |
| add_sample(struct oprofile_cpu_buffer * cpu_buf, |
| unsigned long pc, unsigned long event) |
| { |
| struct op_sample * entry = &cpu_buf->buffer[cpu_buf->head_pos]; |
| entry->eip = pc; |
| entry->event = event; |
| increment_head(cpu_buf); |
| } |
| |
| static inline void |
| add_code(struct oprofile_cpu_buffer * buffer, unsigned long value) |
| { |
| add_sample(buffer, ESCAPE_CODE, value); |
| } |
| |
| /* This must be safe from any context. It's safe writing here |
| * because of the head/tail separation of the writer and reader |
| * of the CPU buffer. |
| * |
| * is_kernel is needed because on some architectures you cannot |
| * tell if you are in kernel or user space simply by looking at |
| * pc. We tag this in the buffer by generating kernel enter/exit |
| * events whenever is_kernel changes |
| */ |
| static int log_sample(struct oprofile_cpu_buffer * cpu_buf, unsigned long pc, |
| int is_kernel, unsigned long event) |
| { |
| struct task_struct * task; |
| |
| cpu_buf->sample_received++; |
| |
| if (nr_available_slots(cpu_buf) < 3) { |
| cpu_buf->sample_lost_overflow++; |
| return 0; |
| } |
| |
| is_kernel = !!is_kernel; |
| |
| task = current; |
| |
| /* notice a switch from user->kernel or vice versa */ |
| if (cpu_buf->last_is_kernel != is_kernel) { |
| cpu_buf->last_is_kernel = is_kernel; |
| add_code(cpu_buf, is_kernel); |
| } |
| |
| /* notice a task switch */ |
| if (cpu_buf->last_task != task) { |
| cpu_buf->last_task = task; |
| add_code(cpu_buf, (unsigned long)task); |
| } |
| |
| add_sample(cpu_buf, pc, event); |
| return 1; |
| } |
| |
| static int oprofile_begin_trace(struct oprofile_cpu_buffer * cpu_buf) |
| { |
| if (nr_available_slots(cpu_buf) < 4) { |
| cpu_buf->sample_lost_overflow++; |
| return 0; |
| } |
| |
| add_code(cpu_buf, CPU_TRACE_BEGIN); |
| cpu_buf->tracing = 1; |
| return 1; |
| } |
| |
| static void oprofile_end_trace(struct oprofile_cpu_buffer * cpu_buf) |
| { |
| cpu_buf->tracing = 0; |
| } |
| |
| void oprofile_add_sample(struct pt_regs * const regs, unsigned long event) |
| { |
| struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()]; |
| unsigned long pc = profile_pc(regs); |
| int is_kernel = !user_mode(regs); |
| |
| if (!backtrace_depth) { |
| log_sample(cpu_buf, pc, is_kernel, event); |
| return; |
| } |
| |
| if (!oprofile_begin_trace(cpu_buf)) |
| return; |
| |
| /* if log_sample() fail we can't backtrace since we lost the source |
| * of this event */ |
| if (log_sample(cpu_buf, pc, is_kernel, event)) |
| oprofile_ops.backtrace(regs, backtrace_depth); |
| oprofile_end_trace(cpu_buf); |
| } |
| |
| void oprofile_add_pc(unsigned long pc, int is_kernel, unsigned long event) |
| { |
| struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()]; |
| log_sample(cpu_buf, pc, is_kernel, event); |
| } |
| |
| void oprofile_add_trace(unsigned long pc) |
| { |
| struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[smp_processor_id()]; |
| |
| if (!cpu_buf->tracing) |
| return; |
| |
| if (nr_available_slots(cpu_buf) < 1) { |
| cpu_buf->tracing = 0; |
| cpu_buf->sample_lost_overflow++; |
| return; |
| } |
| |
| /* broken frame can give an eip with the same value as an escape code, |
| * abort the trace if we get it */ |
| if (pc == ESCAPE_CODE) { |
| cpu_buf->tracing = 0; |
| cpu_buf->backtrace_aborted++; |
| return; |
| } |
| |
| add_sample(cpu_buf, pc, 0); |
| } |
| |
| /* |
| * This serves to avoid cpu buffer overflow, and makes sure |
| * the task mortuary progresses |
| * |
| * By using schedule_delayed_work_on and then schedule_delayed_work |
| * we guarantee this will stay on the correct cpu |
| */ |
| static void wq_sync_buffer(void * data) |
| { |
| struct oprofile_cpu_buffer * b = data; |
| if (b->cpu != smp_processor_id()) { |
| printk("WQ on CPU%d, prefer CPU%d\n", |
| smp_processor_id(), b->cpu); |
| } |
| sync_buffer(b->cpu); |
| |
| /* don't re-add the work if we're shutting down */ |
| if (work_enabled) |
| schedule_delayed_work(&b->work, DEFAULT_TIMER_EXPIRE); |
| } |