| /* |
| * core routines for the asynchronous memory transfer/transform api |
| * |
| * Copyright © 2006, Intel Corporation. |
| * |
| * Dan Williams <dan.j.williams@intel.com> |
| * |
| * with architecture considerations by: |
| * Neil Brown <neilb@suse.de> |
| * Jeff Garzik <jeff@garzik.org> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/async_tx.h> |
| |
| #ifdef CONFIG_DMA_ENGINE |
| static enum dma_state_client |
| dma_channel_add_remove(struct dma_client *client, |
| struct dma_chan *chan, enum dma_state state); |
| |
| static struct dma_client async_tx_dma = { |
| .event_callback = dma_channel_add_remove, |
| /* .cap_mask == 0 defaults to all channels */ |
| }; |
| |
| /** |
| * dma_cap_mask_all - enable iteration over all operation types |
| */ |
| static dma_cap_mask_t dma_cap_mask_all; |
| |
| /** |
| * chan_ref_percpu - tracks channel allocations per core/opertion |
| */ |
| struct chan_ref_percpu { |
| struct dma_chan_ref *ref; |
| }; |
| |
| static int channel_table_initialized; |
| static struct chan_ref_percpu *channel_table[DMA_TX_TYPE_END]; |
| |
| /** |
| * async_tx_lock - protect modification of async_tx_master_list and serialize |
| * rebalance operations |
| */ |
| static spinlock_t async_tx_lock; |
| |
| static LIST_HEAD(async_tx_master_list); |
| |
| /* async_tx_issue_pending_all - start all transactions on all channels */ |
| void async_tx_issue_pending_all(void) |
| { |
| struct dma_chan_ref *ref; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(ref, &async_tx_master_list, node) |
| ref->chan->device->device_issue_pending(ref->chan); |
| rcu_read_unlock(); |
| } |
| EXPORT_SYMBOL_GPL(async_tx_issue_pending_all); |
| |
| /* dma_wait_for_async_tx - spin wait for a transcation to complete |
| * @tx: transaction to wait on |
| */ |
| enum dma_status |
| dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) |
| { |
| enum dma_status status; |
| struct dma_async_tx_descriptor *iter; |
| struct dma_async_tx_descriptor *parent; |
| |
| if (!tx) |
| return DMA_SUCCESS; |
| |
| /* poll through the dependency chain, return when tx is complete */ |
| do { |
| iter = tx; |
| |
| /* find the root of the unsubmitted dependency chain */ |
| while (iter->cookie == -EBUSY) { |
| parent = iter->parent; |
| if (parent && parent->cookie == -EBUSY) |
| iter = iter->parent; |
| else |
| break; |
| } |
| |
| status = dma_sync_wait(iter->chan, iter->cookie); |
| } while (status == DMA_IN_PROGRESS || (iter != tx)); |
| |
| return status; |
| } |
| EXPORT_SYMBOL_GPL(dma_wait_for_async_tx); |
| |
| /* async_tx_run_dependencies - helper routine for dma drivers to process |
| * (start) dependent operations on their target channel |
| * @tx: transaction with dependencies |
| */ |
| void |
| async_tx_run_dependencies(struct dma_async_tx_descriptor *tx) |
| { |
| struct dma_async_tx_descriptor *dep_tx, *_dep_tx; |
| struct dma_device *dev; |
| struct dma_chan *chan; |
| |
| list_for_each_entry_safe(dep_tx, _dep_tx, &tx->depend_list, |
| depend_node) { |
| chan = dep_tx->chan; |
| dev = chan->device; |
| /* we can't depend on ourselves */ |
| BUG_ON(chan == tx->chan); |
| list_del(&dep_tx->depend_node); |
| tx->tx_submit(dep_tx); |
| |
| /* we need to poke the engine as client code does not |
| * know about dependency submission events |
| */ |
| dev->device_issue_pending(chan); |
| } |
| } |
| EXPORT_SYMBOL_GPL(async_tx_run_dependencies); |
| |
| static void |
| free_dma_chan_ref(struct rcu_head *rcu) |
| { |
| struct dma_chan_ref *ref; |
| ref = container_of(rcu, struct dma_chan_ref, rcu); |
| kfree(ref); |
| } |
| |
| static void |
| init_dma_chan_ref(struct dma_chan_ref *ref, struct dma_chan *chan) |
| { |
| INIT_LIST_HEAD(&ref->node); |
| INIT_RCU_HEAD(&ref->rcu); |
| ref->chan = chan; |
| atomic_set(&ref->count, 0); |
| } |
| |
| /** |
| * get_chan_ref_by_cap - returns the nth channel of the given capability |
| * defaults to returning the channel with the desired capability and the |
| * lowest reference count if the index can not be satisfied |
| * @cap: capability to match |
| * @index: nth channel desired, passing -1 has the effect of forcing the |
| * default return value |
| */ |
| static struct dma_chan_ref * |
| get_chan_ref_by_cap(enum dma_transaction_type cap, int index) |
| { |
| struct dma_chan_ref *ret_ref = NULL, *min_ref = NULL, *ref; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(ref, &async_tx_master_list, node) |
| if (dma_has_cap(cap, ref->chan->device->cap_mask)) { |
| if (!min_ref) |
| min_ref = ref; |
| else if (atomic_read(&ref->count) < |
| atomic_read(&min_ref->count)) |
| min_ref = ref; |
| |
| if (index-- == 0) { |
| ret_ref = ref; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| |
| if (!ret_ref) |
| ret_ref = min_ref; |
| |
| if (ret_ref) |
| atomic_inc(&ret_ref->count); |
| |
| return ret_ref; |
| } |
| |
| /** |
| * async_tx_rebalance - redistribute the available channels, optimize |
| * for cpu isolation in the SMP case, and opertaion isolation in the |
| * uniprocessor case |
| */ |
| static void async_tx_rebalance(void) |
| { |
| int cpu, cap, cpu_idx = 0; |
| unsigned long flags; |
| |
| if (!channel_table_initialized) |
| return; |
| |
| spin_lock_irqsave(&async_tx_lock, flags); |
| |
| /* undo the last distribution */ |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| for_each_possible_cpu(cpu) { |
| struct dma_chan_ref *ref = |
| per_cpu_ptr(channel_table[cap], cpu)->ref; |
| if (ref) { |
| atomic_set(&ref->count, 0); |
| per_cpu_ptr(channel_table[cap], cpu)->ref = |
| NULL; |
| } |
| } |
| |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| for_each_online_cpu(cpu) { |
| struct dma_chan_ref *new; |
| if (NR_CPUS > 1) |
| new = get_chan_ref_by_cap(cap, cpu_idx++); |
| else |
| new = get_chan_ref_by_cap(cap, -1); |
| |
| per_cpu_ptr(channel_table[cap], cpu)->ref = new; |
| } |
| |
| spin_unlock_irqrestore(&async_tx_lock, flags); |
| } |
| |
| static enum dma_state_client |
| dma_channel_add_remove(struct dma_client *client, |
| struct dma_chan *chan, enum dma_state state) |
| { |
| unsigned long found, flags; |
| struct dma_chan_ref *master_ref, *ref; |
| enum dma_state_client ack = DMA_DUP; /* default: take no action */ |
| |
| switch (state) { |
| case DMA_RESOURCE_AVAILABLE: |
| found = 0; |
| rcu_read_lock(); |
| list_for_each_entry_rcu(ref, &async_tx_master_list, node) |
| if (ref->chan == chan) { |
| found = 1; |
| break; |
| } |
| rcu_read_unlock(); |
| |
| pr_debug("async_tx: dma resource available [%s]\n", |
| found ? "old" : "new"); |
| |
| if (!found) |
| ack = DMA_ACK; |
| else |
| break; |
| |
| /* add the channel to the generic management list */ |
| master_ref = kmalloc(sizeof(*master_ref), GFP_KERNEL); |
| if (master_ref) { |
| /* keep a reference until async_tx is unloaded */ |
| dma_chan_get(chan); |
| init_dma_chan_ref(master_ref, chan); |
| spin_lock_irqsave(&async_tx_lock, flags); |
| list_add_tail_rcu(&master_ref->node, |
| &async_tx_master_list); |
| spin_unlock_irqrestore(&async_tx_lock, |
| flags); |
| } else { |
| printk(KERN_WARNING "async_tx: unable to create" |
| " new master entry in response to" |
| " a DMA_RESOURCE_ADDED event" |
| " (-ENOMEM)\n"); |
| return 0; |
| } |
| |
| async_tx_rebalance(); |
| break; |
| case DMA_RESOURCE_REMOVED: |
| found = 0; |
| spin_lock_irqsave(&async_tx_lock, flags); |
| list_for_each_entry_rcu(ref, &async_tx_master_list, node) |
| if (ref->chan == chan) { |
| /* permit backing devices to go away */ |
| dma_chan_put(ref->chan); |
| list_del_rcu(&ref->node); |
| call_rcu(&ref->rcu, free_dma_chan_ref); |
| found = 1; |
| break; |
| } |
| spin_unlock_irqrestore(&async_tx_lock, flags); |
| |
| pr_debug("async_tx: dma resource removed [%s]\n", |
| found ? "ours" : "not ours"); |
| |
| if (found) |
| ack = DMA_ACK; |
| else |
| break; |
| |
| async_tx_rebalance(); |
| break; |
| case DMA_RESOURCE_SUSPEND: |
| case DMA_RESOURCE_RESUME: |
| printk(KERN_WARNING "async_tx: does not support dma channel" |
| " suspend/resume\n"); |
| break; |
| default: |
| BUG(); |
| } |
| |
| return ack; |
| } |
| |
| static int __init |
| async_tx_init(void) |
| { |
| enum dma_transaction_type cap; |
| |
| spin_lock_init(&async_tx_lock); |
| bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END); |
| |
| /* an interrupt will never be an explicit operation type. |
| * clearing this bit prevents allocation to a slot in 'channel_table' |
| */ |
| clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits); |
| |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) { |
| channel_table[cap] = alloc_percpu(struct chan_ref_percpu); |
| if (!channel_table[cap]) |
| goto err; |
| } |
| |
| channel_table_initialized = 1; |
| dma_async_client_register(&async_tx_dma); |
| dma_async_client_chan_request(&async_tx_dma); |
| |
| printk(KERN_INFO "async_tx: api initialized (async)\n"); |
| |
| return 0; |
| err: |
| printk(KERN_ERR "async_tx: initialization failure\n"); |
| |
| while (--cap >= 0) |
| free_percpu(channel_table[cap]); |
| |
| return 1; |
| } |
| |
| static void __exit async_tx_exit(void) |
| { |
| enum dma_transaction_type cap; |
| |
| channel_table_initialized = 0; |
| |
| for_each_dma_cap_mask(cap, dma_cap_mask_all) |
| if (channel_table[cap]) |
| free_percpu(channel_table[cap]); |
| |
| dma_async_client_unregister(&async_tx_dma); |
| } |
| |
| /** |
| * __async_tx_find_channel - find a channel to carry out the operation or let |
| * the transaction execute synchronously |
| * @depend_tx: transaction dependency |
| * @tx_type: transaction type |
| */ |
| struct dma_chan * |
| __async_tx_find_channel(struct dma_async_tx_descriptor *depend_tx, |
| enum dma_transaction_type tx_type) |
| { |
| /* see if we can keep the chain on one channel */ |
| if (depend_tx && |
| dma_has_cap(tx_type, depend_tx->chan->device->cap_mask)) |
| return depend_tx->chan; |
| else if (likely(channel_table_initialized)) { |
| struct dma_chan_ref *ref; |
| int cpu = get_cpu(); |
| ref = per_cpu_ptr(channel_table[tx_type], cpu)->ref; |
| put_cpu(); |
| return ref ? ref->chan : NULL; |
| } else |
| return NULL; |
| } |
| EXPORT_SYMBOL_GPL(__async_tx_find_channel); |
| #else |
| static int __init async_tx_init(void) |
| { |
| printk(KERN_INFO "async_tx: api initialized (sync-only)\n"); |
| return 0; |
| } |
| |
| static void __exit async_tx_exit(void) |
| { |
| do { } while (0); |
| } |
| #endif |
| |
| void |
| async_tx_submit(struct dma_chan *chan, struct dma_async_tx_descriptor *tx, |
| enum async_tx_flags flags, struct dma_async_tx_descriptor *depend_tx, |
| dma_async_tx_callback cb_fn, void *cb_param) |
| { |
| tx->callback = cb_fn; |
| tx->callback_param = cb_param; |
| |
| /* set this new tx to run after depend_tx if: |
| * 1/ a dependency exists (depend_tx is !NULL) |
| * 2/ the tx can not be submitted to the current channel |
| */ |
| if (depend_tx && depend_tx->chan != chan) { |
| /* if ack is already set then we cannot be sure |
| * we are referring to the correct operation |
| */ |
| BUG_ON(depend_tx->ack); |
| |
| tx->parent = depend_tx; |
| spin_lock_bh(&depend_tx->lock); |
| list_add_tail(&tx->depend_node, &depend_tx->depend_list); |
| if (depend_tx->cookie == 0) { |
| struct dma_chan *dep_chan = depend_tx->chan; |
| struct dma_device *dep_dev = dep_chan->device; |
| dep_dev->device_dependency_added(dep_chan); |
| } |
| spin_unlock_bh(&depend_tx->lock); |
| |
| /* schedule an interrupt to trigger the channel switch */ |
| async_trigger_callback(ASYNC_TX_ACK, depend_tx, NULL, NULL); |
| } else { |
| tx->parent = NULL; |
| tx->tx_submit(tx); |
| } |
| |
| if (flags & ASYNC_TX_ACK) |
| async_tx_ack(tx); |
| |
| if (depend_tx && (flags & ASYNC_TX_DEP_ACK)) |
| async_tx_ack(depend_tx); |
| } |
| EXPORT_SYMBOL_GPL(async_tx_submit); |
| |
| /** |
| * async_trigger_callback - schedules the callback function to be run after |
| * any dependent operations have been completed. |
| * @flags: ASYNC_TX_ACK, ASYNC_TX_DEP_ACK |
| * @depend_tx: 'callback' requires the completion of this transaction |
| * @cb_fn: function to call after depend_tx completes |
| * @cb_param: parameter to pass to the callback routine |
| */ |
| struct dma_async_tx_descriptor * |
| async_trigger_callback(enum async_tx_flags flags, |
| struct dma_async_tx_descriptor *depend_tx, |
| dma_async_tx_callback cb_fn, void *cb_param) |
| { |
| struct dma_chan *chan; |
| struct dma_device *device; |
| struct dma_async_tx_descriptor *tx; |
| |
| if (depend_tx) { |
| chan = depend_tx->chan; |
| device = chan->device; |
| |
| /* see if we can schedule an interrupt |
| * otherwise poll for completion |
| */ |
| if (device && !dma_has_cap(DMA_INTERRUPT, device->cap_mask)) |
| device = NULL; |
| |
| tx = device ? device->device_prep_dma_interrupt(chan) : NULL; |
| } else |
| tx = NULL; |
| |
| if (tx) { |
| pr_debug("%s: (async)\n", __func__); |
| |
| async_tx_submit(chan, tx, flags, depend_tx, cb_fn, cb_param); |
| } else { |
| pr_debug("%s: (sync)\n", __func__); |
| |
| /* wait for any prerequisite operations */ |
| if (depend_tx) { |
| /* if ack is already set then we cannot be sure |
| * we are referring to the correct operation |
| */ |
| BUG_ON(depend_tx->ack); |
| if (dma_wait_for_async_tx(depend_tx) == DMA_ERROR) |
| panic("%s: DMA_ERROR waiting for depend_tx\n", |
| __func__); |
| } |
| |
| async_tx_sync_epilog(flags, depend_tx, cb_fn, cb_param); |
| } |
| |
| return tx; |
| } |
| EXPORT_SYMBOL_GPL(async_trigger_callback); |
| |
| module_init(async_tx_init); |
| module_exit(async_tx_exit); |
| |
| MODULE_AUTHOR("Intel Corporation"); |
| MODULE_DESCRIPTION("Asynchronous Bulk Memory Transactions API"); |
| MODULE_LICENSE("GPL"); |