| /* |
| * linux/drivers/ide/ppc/pmac.c |
| * |
| * Support for IDE interfaces on PowerMacs. |
| * These IDE interfaces are memory-mapped and have a DBDMA channel |
| * for doing DMA. |
| * |
| * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Some code taken from drivers/ide/ide-dma.c: |
| * |
| * Copyright (c) 1995-1998 Mark Lord |
| * |
| * TODO: - Use pre-calculated (kauai) timing tables all the time and |
| * get rid of the "rounded" tables used previously, so we have the |
| * same table format for all controllers and can then just have one |
| * big table |
| * |
| */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/delay.h> |
| #include <linux/ide.h> |
| #include <linux/notifier.h> |
| #include <linux/reboot.h> |
| #include <linux/pci.h> |
| #include <linux/adb.h> |
| #include <linux/pmu.h> |
| #include <linux/scatterlist.h> |
| |
| #include <asm/prom.h> |
| #include <asm/io.h> |
| #include <asm/dbdma.h> |
| #include <asm/ide.h> |
| #include <asm/pci-bridge.h> |
| #include <asm/machdep.h> |
| #include <asm/pmac_feature.h> |
| #include <asm/sections.h> |
| #include <asm/irq.h> |
| |
| #ifndef CONFIG_PPC64 |
| #include <asm/mediabay.h> |
| #endif |
| |
| #include "ide-timing.h" |
| |
| #undef IDE_PMAC_DEBUG |
| |
| #define DMA_WAIT_TIMEOUT 50 |
| |
| typedef struct pmac_ide_hwif { |
| unsigned long regbase; |
| int irq; |
| int kind; |
| int aapl_bus_id; |
| unsigned cable_80 : 1; |
| unsigned mediabay : 1; |
| unsigned broken_dma : 1; |
| unsigned broken_dma_warn : 1; |
| struct device_node* node; |
| struct macio_dev *mdev; |
| u32 timings[4]; |
| volatile u32 __iomem * *kauai_fcr; |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC |
| /* Those fields are duplicating what is in hwif. We currently |
| * can't use the hwif ones because of some assumptions that are |
| * beeing done by the generic code about the kind of dma controller |
| * and format of the dma table. This will have to be fixed though. |
| */ |
| volatile struct dbdma_regs __iomem * dma_regs; |
| struct dbdma_cmd* dma_table_cpu; |
| #endif |
| |
| } pmac_ide_hwif_t; |
| |
| static pmac_ide_hwif_t pmac_ide[MAX_HWIFS]; |
| static int pmac_ide_count; |
| |
| enum { |
| controller_ohare, /* OHare based */ |
| controller_heathrow, /* Heathrow/Paddington */ |
| controller_kl_ata3, /* KeyLargo ATA-3 */ |
| controller_kl_ata4, /* KeyLargo ATA-4 */ |
| controller_un_ata6, /* UniNorth2 ATA-6 */ |
| controller_k2_ata6, /* K2 ATA-6 */ |
| controller_sh_ata6, /* Shasta ATA-6 */ |
| }; |
| |
| static const char* model_name[] = { |
| "OHare ATA", /* OHare based */ |
| "Heathrow ATA", /* Heathrow/Paddington */ |
| "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */ |
| "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */ |
| "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */ |
| "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */ |
| "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */ |
| }; |
| |
| /* |
| * Extra registers, both 32-bit little-endian |
| */ |
| #define IDE_TIMING_CONFIG 0x200 |
| #define IDE_INTERRUPT 0x300 |
| |
| /* Kauai (U2) ATA has different register setup */ |
| #define IDE_KAUAI_PIO_CONFIG 0x200 |
| #define IDE_KAUAI_ULTRA_CONFIG 0x210 |
| #define IDE_KAUAI_POLL_CONFIG 0x220 |
| |
| /* |
| * Timing configuration register definitions |
| */ |
| |
| /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */ |
| #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS) |
| #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS) |
| #define IDE_SYSCLK_NS 30 /* 33Mhz cell */ |
| #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */ |
| |
| /* 133Mhz cell, found in shasta. |
| * See comments about 100 Mhz Uninorth 2... |
| * Note that PIO_MASK and MDMA_MASK seem to overlap |
| */ |
| #define TR_133_PIOREG_PIO_MASK 0xff000fff |
| #define TR_133_PIOREG_MDMA_MASK 0x00fff800 |
| #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff |
| #define TR_133_UDMAREG_UDMA_EN 0x00000001 |
| |
| /* 100Mhz cell, found in Uninorth 2. I don't have much infos about |
| * this one yet, it appears as a pci device (106b/0033) on uninorth |
| * internal PCI bus and it's clock is controlled like gem or fw. It |
| * appears to be an evolution of keylargo ATA4 with a timing register |
| * extended to 2 32bits registers and a similar DBDMA channel. Other |
| * registers seem to exist but I can't tell much about them. |
| * |
| * So far, I'm using pre-calculated tables for this extracted from |
| * the values used by the MacOS X driver. |
| * |
| * The "PIO" register controls PIO and MDMA timings, the "ULTRA" |
| * register controls the UDMA timings. At least, it seems bit 0 |
| * of this one enables UDMA vs. MDMA, and bits 4..7 are the |
| * cycle time in units of 10ns. Bits 8..15 are used by I don't |
| * know their meaning yet |
| */ |
| #define TR_100_PIOREG_PIO_MASK 0xff000fff |
| #define TR_100_PIOREG_MDMA_MASK 0x00fff000 |
| #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff |
| #define TR_100_UDMAREG_UDMA_EN 0x00000001 |
| |
| |
| /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on |
| * 40 connector cable and to 4 on 80 connector one. |
| * Clock unit is 15ns (66Mhz) |
| * |
| * 3 Values can be programmed: |
| * - Write data setup, which appears to match the cycle time. They |
| * also call it DIOW setup. |
| * - Ready to pause time (from spec) |
| * - Address setup. That one is weird. I don't see where exactly |
| * it fits in UDMA cycles, I got it's name from an obscure piece |
| * of commented out code in Darwin. They leave it to 0, we do as |
| * well, despite a comment that would lead to think it has a |
| * min value of 45ns. |
| * Apple also add 60ns to the write data setup (or cycle time ?) on |
| * reads. |
| */ |
| #define TR_66_UDMA_MASK 0xfff00000 |
| #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */ |
| #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */ |
| #define TR_66_UDMA_ADDRSETUP_SHIFT 29 |
| #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */ |
| #define TR_66_UDMA_RDY2PAUS_SHIFT 25 |
| #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */ |
| #define TR_66_UDMA_WRDATASETUP_SHIFT 21 |
| #define TR_66_MDMA_MASK 0x000ffc00 |
| #define TR_66_MDMA_RECOVERY_MASK 0x000f8000 |
| #define TR_66_MDMA_RECOVERY_SHIFT 15 |
| #define TR_66_MDMA_ACCESS_MASK 0x00007c00 |
| #define TR_66_MDMA_ACCESS_SHIFT 10 |
| #define TR_66_PIO_MASK 0x000003ff |
| #define TR_66_PIO_RECOVERY_MASK 0x000003e0 |
| #define TR_66_PIO_RECOVERY_SHIFT 5 |
| #define TR_66_PIO_ACCESS_MASK 0x0000001f |
| #define TR_66_PIO_ACCESS_SHIFT 0 |
| |
| /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo |
| * Can do pio & mdma modes, clock unit is 30ns (33Mhz) |
| * |
| * The access time and recovery time can be programmed. Some older |
| * Darwin code base limit OHare to 150ns cycle time. I decided to do |
| * the same here fore safety against broken old hardware ;) |
| * The HalfTick bit, when set, adds half a clock (15ns) to the access |
| * time and removes one from recovery. It's not supported on KeyLargo |
| * implementation afaik. The E bit appears to be set for PIO mode 0 and |
| * is used to reach long timings used in this mode. |
| */ |
| #define TR_33_MDMA_MASK 0x003ff800 |
| #define TR_33_MDMA_RECOVERY_MASK 0x001f0000 |
| #define TR_33_MDMA_RECOVERY_SHIFT 16 |
| #define TR_33_MDMA_ACCESS_MASK 0x0000f800 |
| #define TR_33_MDMA_ACCESS_SHIFT 11 |
| #define TR_33_MDMA_HALFTICK 0x00200000 |
| #define TR_33_PIO_MASK 0x000007ff |
| #define TR_33_PIO_E 0x00000400 |
| #define TR_33_PIO_RECOVERY_MASK 0x000003e0 |
| #define TR_33_PIO_RECOVERY_SHIFT 5 |
| #define TR_33_PIO_ACCESS_MASK 0x0000001f |
| #define TR_33_PIO_ACCESS_SHIFT 0 |
| |
| /* |
| * Interrupt register definitions |
| */ |
| #define IDE_INTR_DMA 0x80000000 |
| #define IDE_INTR_DEVICE 0x40000000 |
| |
| /* |
| * FCR Register on Kauai. Not sure what bit 0x4 is ... |
| */ |
| #define KAUAI_FCR_UATA_MAGIC 0x00000004 |
| #define KAUAI_FCR_UATA_RESET_N 0x00000002 |
| #define KAUAI_FCR_UATA_ENABLE 0x00000001 |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC |
| |
| /* Rounded Multiword DMA timings |
| * |
| * I gave up finding a generic formula for all controller |
| * types and instead, built tables based on timing values |
| * used by Apple in Darwin's implementation. |
| */ |
| struct mdma_timings_t { |
| int accessTime; |
| int recoveryTime; |
| int cycleTime; |
| }; |
| |
| struct mdma_timings_t mdma_timings_33[] = |
| { |
| { 240, 240, 480 }, |
| { 180, 180, 360 }, |
| { 135, 135, 270 }, |
| { 120, 120, 240 }, |
| { 105, 105, 210 }, |
| { 90, 90, 180 }, |
| { 75, 75, 150 }, |
| { 75, 45, 120 }, |
| { 0, 0, 0 } |
| }; |
| |
| struct mdma_timings_t mdma_timings_33k[] = |
| { |
| { 240, 240, 480 }, |
| { 180, 180, 360 }, |
| { 150, 150, 300 }, |
| { 120, 120, 240 }, |
| { 90, 120, 210 }, |
| { 90, 90, 180 }, |
| { 90, 60, 150 }, |
| { 90, 30, 120 }, |
| { 0, 0, 0 } |
| }; |
| |
| struct mdma_timings_t mdma_timings_66[] = |
| { |
| { 240, 240, 480 }, |
| { 180, 180, 360 }, |
| { 135, 135, 270 }, |
| { 120, 120, 240 }, |
| { 105, 105, 210 }, |
| { 90, 90, 180 }, |
| { 90, 75, 165 }, |
| { 75, 45, 120 }, |
| { 0, 0, 0 } |
| }; |
| |
| /* KeyLargo ATA-4 Ultra DMA timings (rounded) */ |
| struct { |
| int addrSetup; /* ??? */ |
| int rdy2pause; |
| int wrDataSetup; |
| } kl66_udma_timings[] = |
| { |
| { 0, 180, 120 }, /* Mode 0 */ |
| { 0, 150, 90 }, /* 1 */ |
| { 0, 120, 60 }, /* 2 */ |
| { 0, 90, 45 }, /* 3 */ |
| { 0, 90, 30 } /* 4 */ |
| }; |
| |
| /* UniNorth 2 ATA/100 timings */ |
| struct kauai_timing { |
| int cycle_time; |
| u32 timing_reg; |
| }; |
| |
| static struct kauai_timing kauai_pio_timings[] = |
| { |
| { 930 , 0x08000fff }, |
| { 600 , 0x08000a92 }, |
| { 383 , 0x0800060f }, |
| { 360 , 0x08000492 }, |
| { 330 , 0x0800048f }, |
| { 300 , 0x080003cf }, |
| { 270 , 0x080003cc }, |
| { 240 , 0x0800038b }, |
| { 239 , 0x0800030c }, |
| { 180 , 0x05000249 }, |
| { 120 , 0x04000148 } |
| }; |
| |
| static struct kauai_timing kauai_mdma_timings[] = |
| { |
| { 1260 , 0x00fff000 }, |
| { 480 , 0x00618000 }, |
| { 360 , 0x00492000 }, |
| { 270 , 0x0038e000 }, |
| { 240 , 0x0030c000 }, |
| { 210 , 0x002cb000 }, |
| { 180 , 0x00249000 }, |
| { 150 , 0x00209000 }, |
| { 120 , 0x00148000 }, |
| { 0 , 0 }, |
| }; |
| |
| static struct kauai_timing kauai_udma_timings[] = |
| { |
| { 120 , 0x000070c0 }, |
| { 90 , 0x00005d80 }, |
| { 60 , 0x00004a60 }, |
| { 45 , 0x00003a50 }, |
| { 30 , 0x00002a30 }, |
| { 20 , 0x00002921 }, |
| { 0 , 0 }, |
| }; |
| |
| static struct kauai_timing shasta_pio_timings[] = |
| { |
| { 930 , 0x08000fff }, |
| { 600 , 0x0A000c97 }, |
| { 383 , 0x07000712 }, |
| { 360 , 0x040003cd }, |
| { 330 , 0x040003cd }, |
| { 300 , 0x040003cd }, |
| { 270 , 0x040003cd }, |
| { 240 , 0x040003cd }, |
| { 239 , 0x040003cd }, |
| { 180 , 0x0400028b }, |
| { 120 , 0x0400010a } |
| }; |
| |
| static struct kauai_timing shasta_mdma_timings[] = |
| { |
| { 1260 , 0x00fff000 }, |
| { 480 , 0x00820800 }, |
| { 360 , 0x00820800 }, |
| { 270 , 0x00820800 }, |
| { 240 , 0x00820800 }, |
| { 210 , 0x00820800 }, |
| { 180 , 0x00820800 }, |
| { 150 , 0x0028b000 }, |
| { 120 , 0x001ca000 }, |
| { 0 , 0 }, |
| }; |
| |
| static struct kauai_timing shasta_udma133_timings[] = |
| { |
| { 120 , 0x00035901, }, |
| { 90 , 0x000348b1, }, |
| { 60 , 0x00033881, }, |
| { 45 , 0x00033861, }, |
| { 30 , 0x00033841, }, |
| { 20 , 0x00033031, }, |
| { 15 , 0x00033021, }, |
| { 0 , 0 }, |
| }; |
| |
| |
| static inline u32 |
| kauai_lookup_timing(struct kauai_timing* table, int cycle_time) |
| { |
| int i; |
| |
| for (i=0; table[i].cycle_time; i++) |
| if (cycle_time > table[i+1].cycle_time) |
| return table[i].timing_reg; |
| return 0; |
| } |
| |
| /* allow up to 256 DBDMA commands per xfer */ |
| #define MAX_DCMDS 256 |
| |
| /* |
| * Wait 1s for disk to answer on IDE bus after a hard reset |
| * of the device (via GPIO/FCR). |
| * |
| * Some devices seem to "pollute" the bus even after dropping |
| * the BSY bit (typically some combo drives slave on the UDMA |
| * bus) after a hard reset. Since we hard reset all drives on |
| * KeyLargo ATA66, we have to keep that delay around. I may end |
| * up not hard resetting anymore on these and keep the delay only |
| * for older interfaces instead (we have to reset when coming |
| * from MacOS...) --BenH. |
| */ |
| #define IDE_WAKEUP_DELAY (1*HZ) |
| |
| static void pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif); |
| static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq); |
| static int pmac_ide_tune_chipset(ide_drive_t *drive, u8 speed); |
| static void pmac_ide_tuneproc(ide_drive_t *drive, u8 pio); |
| static void pmac_ide_selectproc(ide_drive_t *drive); |
| static void pmac_ide_kauai_selectproc(ide_drive_t *drive); |
| |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ |
| |
| /* |
| * N.B. this can't be an initfunc, because the media-bay task can |
| * call ide_[un]register at any time. |
| */ |
| void |
| pmac_ide_init_hwif_ports(hw_regs_t *hw, |
| unsigned long data_port, unsigned long ctrl_port, |
| int *irq) |
| { |
| int i, ix; |
| |
| if (data_port == 0) |
| return; |
| |
| for (ix = 0; ix < MAX_HWIFS; ++ix) |
| if (data_port == pmac_ide[ix].regbase) |
| break; |
| |
| if (ix >= MAX_HWIFS) { |
| /* Probably a PCI interface... */ |
| for (i = IDE_DATA_OFFSET; i <= IDE_STATUS_OFFSET; ++i) |
| hw->io_ports[i] = data_port + i - IDE_DATA_OFFSET; |
| hw->io_ports[IDE_CONTROL_OFFSET] = ctrl_port; |
| return; |
| } |
| |
| for (i = 0; i < 8; ++i) |
| hw->io_ports[i] = data_port + i * 0x10; |
| hw->io_ports[8] = data_port + 0x160; |
| |
| if (irq != NULL) |
| *irq = pmac_ide[ix].irq; |
| |
| hw->dev = &pmac_ide[ix].mdev->ofdev.dev; |
| } |
| |
| #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x))) |
| |
| /* |
| * Apply the timings of the proper unit (master/slave) to the shared |
| * timing register when selecting that unit. This version is for |
| * ASICs with a single timing register |
| */ |
| static void |
| pmac_ide_selectproc(ide_drive_t *drive) |
| { |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| |
| if (pmif == NULL) |
| return; |
| |
| if (drive->select.b.unit & 0x01) |
| writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
| else |
| writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
| (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
| } |
| |
| /* |
| * Apply the timings of the proper unit (master/slave) to the shared |
| * timing register when selecting that unit. This version is for |
| * ASICs with a dual timing register (Kauai) |
| */ |
| static void |
| pmac_ide_kauai_selectproc(ide_drive_t *drive) |
| { |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| |
| if (pmif == NULL) |
| return; |
| |
| if (drive->select.b.unit & 0x01) { |
| writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); |
| writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); |
| } else { |
| writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); |
| writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG)); |
| } |
| (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG)); |
| } |
| |
| /* |
| * Force an update of controller timing values for a given drive |
| */ |
| static void |
| pmac_ide_do_update_timings(ide_drive_t *drive) |
| { |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| |
| if (pmif == NULL) |
| return; |
| |
| if (pmif->kind == controller_sh_ata6 || |
| pmif->kind == controller_un_ata6 || |
| pmif->kind == controller_k2_ata6) |
| pmac_ide_kauai_selectproc(drive); |
| else |
| pmac_ide_selectproc(drive); |
| } |
| |
| static void |
| pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port) |
| { |
| u32 tmp; |
| |
| writeb(value, (void __iomem *) port); |
| tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
| } |
| |
| /* |
| * Send the SET_FEATURE IDE command to the drive and update drive->id with |
| * the new state. We currently don't use the generic routine as it used to |
| * cause various trouble, especially with older mediabays. |
| * This code is sometimes triggering a spurrious interrupt though, I need |
| * to sort that out sooner or later and see if I can finally get the |
| * common version to work properly in all cases |
| */ |
| static int |
| pmac_ide_do_setfeature(ide_drive_t *drive, u8 command) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| int result = 1; |
| |
| disable_irq_nosync(hwif->irq); |
| udelay(1); |
| SELECT_DRIVE(drive); |
| SELECT_MASK(drive, 0); |
| udelay(1); |
| /* Get rid of pending error state */ |
| (void) hwif->INB(IDE_STATUS_REG); |
| /* Timeout bumped for some powerbooks */ |
| if (wait_for_ready(drive, 2000)) { |
| /* Timeout bumped for some powerbooks */ |
| printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready " |
| "before SET_FEATURE!\n", drive->name); |
| goto out; |
| } |
| udelay(10); |
| hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG); |
| hwif->OUTB(command, IDE_NSECTOR_REG); |
| hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); |
| hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG); |
| udelay(1); |
| /* Timeout bumped for some powerbooks */ |
| result = wait_for_ready(drive, 2000); |
| hwif->OUTB(drive->ctl, IDE_CONTROL_REG); |
| if (result) |
| printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready " |
| "after SET_FEATURE !\n", drive->name); |
| out: |
| SELECT_MASK(drive, 0); |
| if (result == 0) { |
| drive->id->dma_ultra &= ~0xFF00; |
| drive->id->dma_mword &= ~0x0F00; |
| drive->id->dma_1word &= ~0x0F00; |
| switch(command) { |
| case XFER_UDMA_7: |
| drive->id->dma_ultra |= 0x8080; break; |
| case XFER_UDMA_6: |
| drive->id->dma_ultra |= 0x4040; break; |
| case XFER_UDMA_5: |
| drive->id->dma_ultra |= 0x2020; break; |
| case XFER_UDMA_4: |
| drive->id->dma_ultra |= 0x1010; break; |
| case XFER_UDMA_3: |
| drive->id->dma_ultra |= 0x0808; break; |
| case XFER_UDMA_2: |
| drive->id->dma_ultra |= 0x0404; break; |
| case XFER_UDMA_1: |
| drive->id->dma_ultra |= 0x0202; break; |
| case XFER_UDMA_0: |
| drive->id->dma_ultra |= 0x0101; break; |
| case XFER_MW_DMA_2: |
| drive->id->dma_mword |= 0x0404; break; |
| case XFER_MW_DMA_1: |
| drive->id->dma_mword |= 0x0202; break; |
| case XFER_MW_DMA_0: |
| drive->id->dma_mword |= 0x0101; break; |
| case XFER_SW_DMA_2: |
| drive->id->dma_1word |= 0x0404; break; |
| case XFER_SW_DMA_1: |
| drive->id->dma_1word |= 0x0202; break; |
| case XFER_SW_DMA_0: |
| drive->id->dma_1word |= 0x0101; break; |
| default: break; |
| } |
| } |
| enable_irq(hwif->irq); |
| return result; |
| } |
| |
| /* |
| * Old tuning functions (called on hdparm -p), sets up drive PIO timings |
| */ |
| static void |
| pmac_ide_tuneproc(ide_drive_t *drive, u8 pio) |
| { |
| ide_pio_data_t d; |
| u32 *timings; |
| unsigned accessTicks, recTicks; |
| unsigned accessTime, recTime; |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| |
| if (pmif == NULL) |
| return; |
| |
| /* which drive is it ? */ |
| timings = &pmif->timings[drive->select.b.unit & 0x01]; |
| |
| pio = ide_get_best_pio_mode(drive, pio, 4, &d); |
| |
| switch (pmif->kind) { |
| case controller_sh_ata6: { |
| /* 133Mhz cell */ |
| u32 tr = kauai_lookup_timing(shasta_pio_timings, d.cycle_time); |
| if (tr == 0) |
| return; |
| *timings = ((*timings) & ~TR_133_PIOREG_PIO_MASK) | tr; |
| break; |
| } |
| case controller_un_ata6: |
| case controller_k2_ata6: { |
| /* 100Mhz cell */ |
| u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time); |
| if (tr == 0) |
| return; |
| *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr; |
| break; |
| } |
| case controller_kl_ata4: |
| /* 66Mhz cell */ |
| recTime = d.cycle_time - ide_pio_timings[pio].active_time |
| - ide_pio_timings[pio].setup_time; |
| recTime = max(recTime, 150U); |
| accessTime = ide_pio_timings[pio].active_time; |
| accessTime = max(accessTime, 150U); |
| accessTicks = SYSCLK_TICKS_66(accessTime); |
| accessTicks = min(accessTicks, 0x1fU); |
| recTicks = SYSCLK_TICKS_66(recTime); |
| recTicks = min(recTicks, 0x1fU); |
| *timings = ((*timings) & ~TR_66_PIO_MASK) | |
| (accessTicks << TR_66_PIO_ACCESS_SHIFT) | |
| (recTicks << TR_66_PIO_RECOVERY_SHIFT); |
| break; |
| default: { |
| /* 33Mhz cell */ |
| int ebit = 0; |
| recTime = d.cycle_time - ide_pio_timings[pio].active_time |
| - ide_pio_timings[pio].setup_time; |
| recTime = max(recTime, 150U); |
| accessTime = ide_pio_timings[pio].active_time; |
| accessTime = max(accessTime, 150U); |
| accessTicks = SYSCLK_TICKS(accessTime); |
| accessTicks = min(accessTicks, 0x1fU); |
| accessTicks = max(accessTicks, 4U); |
| recTicks = SYSCLK_TICKS(recTime); |
| recTicks = min(recTicks, 0x1fU); |
| recTicks = max(recTicks, 5U) - 4; |
| if (recTicks > 9) { |
| recTicks--; /* guess, but it's only for PIO0, so... */ |
| ebit = 1; |
| } |
| *timings = ((*timings) & ~TR_33_PIO_MASK) | |
| (accessTicks << TR_33_PIO_ACCESS_SHIFT) | |
| (recTicks << TR_33_PIO_RECOVERY_SHIFT); |
| if (ebit) |
| *timings |= TR_33_PIO_E; |
| break; |
| } |
| } |
| |
| #ifdef IDE_PMAC_DEBUG |
| printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n", |
| drive->name, pio, *timings); |
| #endif |
| |
| if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG)) |
| pmac_ide_do_update_timings(drive); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC |
| |
| /* |
| * Calculate KeyLargo ATA/66 UDMA timings |
| */ |
| static int |
| set_timings_udma_ata4(u32 *timings, u8 speed) |
| { |
| unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks; |
| |
| if (speed > XFER_UDMA_4) |
| return 1; |
| |
| rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause); |
| wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup); |
| addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup); |
| |
| *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) | |
| (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | |
| (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) | |
| (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) | |
| TR_66_UDMA_EN; |
| #ifdef IDE_PMAC_DEBUG |
| printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n", |
| speed & 0xf, *timings); |
| #endif |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate Kauai ATA/100 UDMA timings |
| */ |
| static int |
| set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed) |
| { |
| struct ide_timing *t = ide_timing_find_mode(speed); |
| u32 tr; |
| |
| if (speed > XFER_UDMA_5 || t == NULL) |
| return 1; |
| tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma); |
| if (tr == 0) |
| return 1; |
| *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr; |
| *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN; |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate Shasta ATA/133 UDMA timings |
| */ |
| static int |
| set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed) |
| { |
| struct ide_timing *t = ide_timing_find_mode(speed); |
| u32 tr; |
| |
| if (speed > XFER_UDMA_6 || t == NULL) |
| return 1; |
| tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma); |
| if (tr == 0) |
| return 1; |
| *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr; |
| *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN; |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate MDMA timings for all cells |
| */ |
| static int |
| set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2, |
| u8 speed, int drive_cycle_time) |
| { |
| int cycleTime, accessTime = 0, recTime = 0; |
| unsigned accessTicks, recTicks; |
| struct mdma_timings_t* tm = NULL; |
| int i; |
| |
| /* Get default cycle time for mode */ |
| switch(speed & 0xf) { |
| case 0: cycleTime = 480; break; |
| case 1: cycleTime = 150; break; |
| case 2: cycleTime = 120; break; |
| default: |
| return 1; |
| } |
| /* Adjust for drive */ |
| if (drive_cycle_time && drive_cycle_time > cycleTime) |
| cycleTime = drive_cycle_time; |
| /* OHare limits according to some old Apple sources */ |
| if ((intf_type == controller_ohare) && (cycleTime < 150)) |
| cycleTime = 150; |
| /* Get the proper timing array for this controller */ |
| switch(intf_type) { |
| case controller_sh_ata6: |
| case controller_un_ata6: |
| case controller_k2_ata6: |
| break; |
| case controller_kl_ata4: |
| tm = mdma_timings_66; |
| break; |
| case controller_kl_ata3: |
| tm = mdma_timings_33k; |
| break; |
| default: |
| tm = mdma_timings_33; |
| break; |
| } |
| if (tm != NULL) { |
| /* Lookup matching access & recovery times */ |
| i = -1; |
| for (;;) { |
| if (tm[i+1].cycleTime < cycleTime) |
| break; |
| i++; |
| } |
| if (i < 0) |
| return 1; |
| cycleTime = tm[i].cycleTime; |
| accessTime = tm[i].accessTime; |
| recTime = tm[i].recoveryTime; |
| |
| #ifdef IDE_PMAC_DEBUG |
| printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n", |
| drive->name, cycleTime, accessTime, recTime); |
| #endif |
| } |
| switch(intf_type) { |
| case controller_sh_ata6: { |
| /* 133Mhz cell */ |
| u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime); |
| if (tr == 0) |
| return 1; |
| *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr; |
| *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN; |
| } |
| case controller_un_ata6: |
| case controller_k2_ata6: { |
| /* 100Mhz cell */ |
| u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime); |
| if (tr == 0) |
| return 1; |
| *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr; |
| *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN; |
| } |
| break; |
| case controller_kl_ata4: |
| /* 66Mhz cell */ |
| accessTicks = SYSCLK_TICKS_66(accessTime); |
| accessTicks = min(accessTicks, 0x1fU); |
| accessTicks = max(accessTicks, 0x1U); |
| recTicks = SYSCLK_TICKS_66(recTime); |
| recTicks = min(recTicks, 0x1fU); |
| recTicks = max(recTicks, 0x3U); |
| /* Clear out mdma bits and disable udma */ |
| *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) | |
| (accessTicks << TR_66_MDMA_ACCESS_SHIFT) | |
| (recTicks << TR_66_MDMA_RECOVERY_SHIFT); |
| break; |
| case controller_kl_ata3: |
| /* 33Mhz cell on KeyLargo */ |
| accessTicks = SYSCLK_TICKS(accessTime); |
| accessTicks = max(accessTicks, 1U); |
| accessTicks = min(accessTicks, 0x1fU); |
| accessTime = accessTicks * IDE_SYSCLK_NS; |
| recTicks = SYSCLK_TICKS(recTime); |
| recTicks = max(recTicks, 1U); |
| recTicks = min(recTicks, 0x1fU); |
| *timings = ((*timings) & ~TR_33_MDMA_MASK) | |
| (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | |
| (recTicks << TR_33_MDMA_RECOVERY_SHIFT); |
| break; |
| default: { |
| /* 33Mhz cell on others */ |
| int halfTick = 0; |
| int origAccessTime = accessTime; |
| int origRecTime = recTime; |
| |
| accessTicks = SYSCLK_TICKS(accessTime); |
| accessTicks = max(accessTicks, 1U); |
| accessTicks = min(accessTicks, 0x1fU); |
| accessTime = accessTicks * IDE_SYSCLK_NS; |
| recTicks = SYSCLK_TICKS(recTime); |
| recTicks = max(recTicks, 2U) - 1; |
| recTicks = min(recTicks, 0x1fU); |
| recTime = (recTicks + 1) * IDE_SYSCLK_NS; |
| if ((accessTicks > 1) && |
| ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) && |
| ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) { |
| halfTick = 1; |
| accessTicks--; |
| } |
| *timings = ((*timings) & ~TR_33_MDMA_MASK) | |
| (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | |
| (recTicks << TR_33_MDMA_RECOVERY_SHIFT); |
| if (halfTick) |
| *timings |= TR_33_MDMA_HALFTICK; |
| } |
| } |
| #ifdef IDE_PMAC_DEBUG |
| printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n", |
| drive->name, speed & 0xf, *timings); |
| #endif |
| return 0; |
| } |
| #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */ |
| |
| /* |
| * Speedproc. This function is called by the core to set any of the standard |
| * timing (PIO, MDMA or UDMA) to both the drive and the controller. |
| * You may notice we don't use this function on normal "dma check" operation, |
| * our dedicated function is more precise as it uses the drive provided |
| * cycle time value. We should probably fix this one to deal with that too... |
| */ |
| static int |
| pmac_ide_tune_chipset (ide_drive_t *drive, byte speed) |
| { |
| int unit = (drive->select.b.unit & 0x01); |
| int ret = 0; |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| u32 *timings, *timings2; |
| |
| if (pmif == NULL) |
| return 1; |
| |
| timings = &pmif->timings[unit]; |
| timings2 = &pmif->timings[unit+2]; |
| |
| switch(speed) { |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC |
| case XFER_UDMA_6: |
| if (pmif->kind != controller_sh_ata6) |
| return 1; |
| case XFER_UDMA_5: |
| if (pmif->kind != controller_un_ata6 && |
| pmif->kind != controller_k2_ata6 && |
| pmif->kind != controller_sh_ata6) |
| return 1; |
| case XFER_UDMA_4: |
| case XFER_UDMA_3: |
| if (HWIF(drive)->udma_four == 0) |
| return 1; |
| case XFER_UDMA_2: |
| case XFER_UDMA_1: |
| case XFER_UDMA_0: |
| if (pmif->kind == controller_kl_ata4) |
| ret = set_timings_udma_ata4(timings, speed); |
| else if (pmif->kind == controller_un_ata6 |
| || pmif->kind == controller_k2_ata6) |
| ret = set_timings_udma_ata6(timings, timings2, speed); |
| else if (pmif->kind == controller_sh_ata6) |
| ret = set_timings_udma_shasta(timings, timings2, speed); |
| else |
| ret = 1; |
| break; |
| case XFER_MW_DMA_2: |
| case XFER_MW_DMA_1: |
| case XFER_MW_DMA_0: |
| ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0); |
| break; |
| case XFER_SW_DMA_2: |
| case XFER_SW_DMA_1: |
| case XFER_SW_DMA_0: |
| return 1; |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ |
| case XFER_PIO_4: |
| case XFER_PIO_3: |
| case XFER_PIO_2: |
| case XFER_PIO_1: |
| case XFER_PIO_0: |
| pmac_ide_tuneproc(drive, speed & 0x07); |
| break; |
| default: |
| ret = 1; |
| } |
| if (ret) |
| return ret; |
| |
| ret = pmac_ide_do_setfeature(drive, speed); |
| if (ret) |
| return ret; |
| |
| pmac_ide_do_update_timings(drive); |
| drive->current_speed = speed; |
| |
| return 0; |
| } |
| |
| /* |
| * Blast some well known "safe" values to the timing registers at init or |
| * wakeup from sleep time, before we do real calculation |
| */ |
| static void |
| sanitize_timings(pmac_ide_hwif_t *pmif) |
| { |
| unsigned int value, value2 = 0; |
| |
| switch(pmif->kind) { |
| case controller_sh_ata6: |
| value = 0x0a820c97; |
| value2 = 0x00033031; |
| break; |
| case controller_un_ata6: |
| case controller_k2_ata6: |
| value = 0x08618a92; |
| value2 = 0x00002921; |
| break; |
| case controller_kl_ata4: |
| value = 0x0008438c; |
| break; |
| case controller_kl_ata3: |
| value = 0x00084526; |
| break; |
| case controller_heathrow: |
| case controller_ohare: |
| default: |
| value = 0x00074526; |
| break; |
| } |
| pmif->timings[0] = pmif->timings[1] = value; |
| pmif->timings[2] = pmif->timings[3] = value2; |
| } |
| |
| unsigned long |
| pmac_ide_get_base(int index) |
| { |
| return pmac_ide[index].regbase; |
| } |
| |
| int |
| pmac_ide_check_base(unsigned long base) |
| { |
| int ix; |
| |
| for (ix = 0; ix < MAX_HWIFS; ++ix) |
| if (base == pmac_ide[ix].regbase) |
| return ix; |
| return -1; |
| } |
| |
| int |
| pmac_ide_get_irq(unsigned long base) |
| { |
| int ix; |
| |
| for (ix = 0; ix < MAX_HWIFS; ++ix) |
| if (base == pmac_ide[ix].regbase) |
| return pmac_ide[ix].irq; |
| return 0; |
| } |
| |
| static int ide_majors[] = { 3, 22, 33, 34, 56, 57 }; |
| |
| dev_t __init |
| pmac_find_ide_boot(char *bootdevice, int n) |
| { |
| int i; |
| |
| /* |
| * Look through the list of IDE interfaces for this one. |
| */ |
| for (i = 0; i < pmac_ide_count; ++i) { |
| char *name; |
| if (!pmac_ide[i].node || !pmac_ide[i].node->full_name) |
| continue; |
| name = pmac_ide[i].node->full_name; |
| if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) { |
| /* XXX should cope with the 2nd drive as well... */ |
| return MKDEV(ide_majors[i], 0); |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Suspend call back, should be called after the child devices |
| * have actually been suspended |
| */ |
| static int |
| pmac_ide_do_suspend(ide_hwif_t *hwif) |
| { |
| pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data; |
| |
| /* We clear the timings */ |
| pmif->timings[0] = 0; |
| pmif->timings[1] = 0; |
| |
| disable_irq(pmif->irq); |
| |
| /* The media bay will handle itself just fine */ |
| if (pmif->mediabay) |
| return 0; |
| |
| /* Kauai has bus control FCRs directly here */ |
| if (pmif->kauai_fcr) { |
| u32 fcr = readl(pmif->kauai_fcr); |
| fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE); |
| writel(fcr, pmif->kauai_fcr); |
| } |
| |
| /* Disable the bus on older machines and the cell on kauai */ |
| ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, |
| 0); |
| |
| return 0; |
| } |
| |
| /* Resume call back, should be called before the child devices |
| * are resumed |
| */ |
| static int |
| pmac_ide_do_resume(ide_hwif_t *hwif) |
| { |
| pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data; |
| |
| /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */ |
| if (!pmif->mediabay) { |
| ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1); |
| ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1); |
| msleep(10); |
| ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0); |
| |
| /* Kauai has it different */ |
| if (pmif->kauai_fcr) { |
| u32 fcr = readl(pmif->kauai_fcr); |
| fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE; |
| writel(fcr, pmif->kauai_fcr); |
| } |
| |
| msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); |
| } |
| |
| /* Sanitize drive timings */ |
| sanitize_timings(pmif); |
| |
| enable_irq(pmif->irq); |
| |
| return 0; |
| } |
| |
| /* |
| * Setup, register & probe an IDE channel driven by this driver, this is |
| * called by one of the 2 probe functions (macio or PCI). Note that a channel |
| * that ends up beeing free of any device is not kept around by this driver |
| * (it is kept in 2.4). This introduce an interface numbering change on some |
| * rare machines unfortunately, but it's better this way. |
| */ |
| static int |
| pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif) |
| { |
| struct device_node *np = pmif->node; |
| const int *bidp; |
| |
| pmif->cable_80 = 0; |
| pmif->broken_dma = pmif->broken_dma_warn = 0; |
| if (device_is_compatible(np, "shasta-ata")) |
| pmif->kind = controller_sh_ata6; |
| else if (device_is_compatible(np, "kauai-ata")) |
| pmif->kind = controller_un_ata6; |
| else if (device_is_compatible(np, "K2-UATA")) |
| pmif->kind = controller_k2_ata6; |
| else if (device_is_compatible(np, "keylargo-ata")) { |
| if (strcmp(np->name, "ata-4") == 0) |
| pmif->kind = controller_kl_ata4; |
| else |
| pmif->kind = controller_kl_ata3; |
| } else if (device_is_compatible(np, "heathrow-ata")) |
| pmif->kind = controller_heathrow; |
| else { |
| pmif->kind = controller_ohare; |
| pmif->broken_dma = 1; |
| } |
| |
| bidp = get_property(np, "AAPL,bus-id", NULL); |
| pmif->aapl_bus_id = bidp ? *bidp : 0; |
| |
| /* Get cable type from device-tree */ |
| if (pmif->kind == controller_kl_ata4 || pmif->kind == controller_un_ata6 |
| || pmif->kind == controller_k2_ata6 |
| || pmif->kind == controller_sh_ata6) { |
| const char* cable = get_property(np, "cable-type", NULL); |
| if (cable && !strncmp(cable, "80-", 3)) |
| pmif->cable_80 = 1; |
| } |
| /* G5's seem to have incorrect cable type in device-tree. Let's assume |
| * they have a 80 conductor cable, this seem to be always the case unless |
| * the user mucked around |
| */ |
| if (device_is_compatible(np, "K2-UATA") || |
| device_is_compatible(np, "shasta-ata")) |
| pmif->cable_80 = 1; |
| |
| /* On Kauai-type controllers, we make sure the FCR is correct */ |
| if (pmif->kauai_fcr) |
| writel(KAUAI_FCR_UATA_MAGIC | |
| KAUAI_FCR_UATA_RESET_N | |
| KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr); |
| |
| pmif->mediabay = 0; |
| |
| /* Make sure we have sane timings */ |
| sanitize_timings(pmif); |
| |
| #ifndef CONFIG_PPC64 |
| /* XXX FIXME: Media bay stuff need re-organizing */ |
| if (np->parent && np->parent->name |
| && strcasecmp(np->parent->name, "media-bay") == 0) { |
| #ifdef CONFIG_PMAC_MEDIABAY |
| media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq, hwif->index); |
| #endif /* CONFIG_PMAC_MEDIABAY */ |
| pmif->mediabay = 1; |
| if (!bidp) |
| pmif->aapl_bus_id = 1; |
| } else if (pmif->kind == controller_ohare) { |
| /* The code below is having trouble on some ohare machines |
| * (timing related ?). Until I can put my hand on one of these |
| * units, I keep the old way |
| */ |
| ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1); |
| } else |
| #endif |
| { |
| /* This is necessary to enable IDE when net-booting */ |
| ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1); |
| ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1); |
| msleep(10); |
| ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0); |
| msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY)); |
| } |
| |
| /* Setup MMIO ops */ |
| default_hwif_mmiops(hwif); |
| hwif->OUTBSYNC = pmac_outbsync; |
| |
| /* Tell common code _not_ to mess with resources */ |
| hwif->mmio = 2; |
| hwif->hwif_data = pmif; |
| pmac_ide_init_hwif_ports(&hwif->hw, pmif->regbase, 0, &hwif->irq); |
| memcpy(hwif->io_ports, hwif->hw.io_ports, sizeof(hwif->io_ports)); |
| hwif->chipset = ide_pmac; |
| hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET] || pmif->mediabay; |
| hwif->hold = pmif->mediabay; |
| hwif->udma_four = pmif->cable_80; |
| hwif->drives[0].unmask = 1; |
| hwif->drives[1].unmask = 1; |
| hwif->tuneproc = pmac_ide_tuneproc; |
| if (pmif->kind == controller_un_ata6 |
| || pmif->kind == controller_k2_ata6 |
| || pmif->kind == controller_sh_ata6) |
| hwif->selectproc = pmac_ide_kauai_selectproc; |
| else |
| hwif->selectproc = pmac_ide_selectproc; |
| hwif->speedproc = pmac_ide_tune_chipset; |
| |
| printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n", |
| hwif->index, model_name[pmif->kind], pmif->aapl_bus_id, |
| pmif->mediabay ? " (mediabay)" : "", hwif->irq); |
| |
| #ifdef CONFIG_PMAC_MEDIABAY |
| if (pmif->mediabay && check_media_bay_by_base(pmif->regbase, MB_CD) == 0) |
| hwif->noprobe = 0; |
| #endif /* CONFIG_PMAC_MEDIABAY */ |
| |
| hwif->sg_max_nents = MAX_DCMDS; |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC |
| /* has a DBDMA controller channel */ |
| if (pmif->dma_regs) |
| pmac_ide_setup_dma(pmif, hwif); |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ |
| |
| /* We probe the hwif now */ |
| probe_hwif_init(hwif); |
| |
| return 0; |
| } |
| |
| /* |
| * Attach to a macio probed interface |
| */ |
| static int __devinit |
| pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match) |
| { |
| void __iomem *base; |
| unsigned long regbase; |
| int irq; |
| ide_hwif_t *hwif; |
| pmac_ide_hwif_t *pmif; |
| int i, rc; |
| |
| i = 0; |
| while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0 |
| || pmac_ide[i].node != NULL)) |
| ++i; |
| if (i >= MAX_HWIFS) { |
| printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n"); |
| printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name); |
| return -ENODEV; |
| } |
| |
| pmif = &pmac_ide[i]; |
| hwif = &ide_hwifs[i]; |
| |
| if (macio_resource_count(mdev) == 0) { |
| printk(KERN_WARNING "ide%d: no address for %s\n", |
| i, mdev->ofdev.node->full_name); |
| return -ENXIO; |
| } |
| |
| /* Request memory resource for IO ports */ |
| if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) { |
| printk(KERN_ERR "ide%d: can't request mmio resource !\n", i); |
| return -EBUSY; |
| } |
| |
| /* XXX This is bogus. Should be fixed in the registry by checking |
| * the kind of host interrupt controller, a bit like gatwick |
| * fixes in irq.c. That works well enough for the single case |
| * where that happens though... |
| */ |
| if (macio_irq_count(mdev) == 0) { |
| printk(KERN_WARNING "ide%d: no intrs for device %s, using 13\n", |
| i, mdev->ofdev.node->full_name); |
| irq = irq_create_mapping(NULL, 13); |
| } else |
| irq = macio_irq(mdev, 0); |
| |
| base = ioremap(macio_resource_start(mdev, 0), 0x400); |
| regbase = (unsigned long) base; |
| |
| hwif->pci_dev = mdev->bus->pdev; |
| hwif->gendev.parent = &mdev->ofdev.dev; |
| |
| pmif->mdev = mdev; |
| pmif->node = mdev->ofdev.node; |
| pmif->regbase = regbase; |
| pmif->irq = irq; |
| pmif->kauai_fcr = NULL; |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC |
| if (macio_resource_count(mdev) >= 2) { |
| if (macio_request_resource(mdev, 1, "ide-pmac (dma)")) |
| printk(KERN_WARNING "ide%d: can't request DMA resource !\n", i); |
| else |
| pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000); |
| } else |
| pmif->dma_regs = NULL; |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ |
| dev_set_drvdata(&mdev->ofdev.dev, hwif); |
| |
| rc = pmac_ide_setup_device(pmif, hwif); |
| if (rc != 0) { |
| /* The inteface is released to the common IDE layer */ |
| dev_set_drvdata(&mdev->ofdev.dev, NULL); |
| iounmap(base); |
| if (pmif->dma_regs) |
| iounmap(pmif->dma_regs); |
| memset(pmif, 0, sizeof(*pmif)); |
| macio_release_resource(mdev, 0); |
| if (pmif->dma_regs) |
| macio_release_resource(mdev, 1); |
| } |
| |
| return rc; |
| } |
| |
| static int |
| pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg) |
| { |
| ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev); |
| int rc = 0; |
| |
| if (mesg.event != mdev->ofdev.dev.power.power_state.event |
| && mesg.event == PM_EVENT_SUSPEND) { |
| rc = pmac_ide_do_suspend(hwif); |
| if (rc == 0) |
| mdev->ofdev.dev.power.power_state = mesg; |
| } |
| |
| return rc; |
| } |
| |
| static int |
| pmac_ide_macio_resume(struct macio_dev *mdev) |
| { |
| ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev); |
| int rc = 0; |
| |
| if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) { |
| rc = pmac_ide_do_resume(hwif); |
| if (rc == 0) |
| mdev->ofdev.dev.power.power_state = PMSG_ON; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| * Attach to a PCI probed interface |
| */ |
| static int __devinit |
| pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| ide_hwif_t *hwif; |
| struct device_node *np; |
| pmac_ide_hwif_t *pmif; |
| void __iomem *base; |
| unsigned long rbase, rlen; |
| int i, rc; |
| |
| np = pci_device_to_OF_node(pdev); |
| if (np == NULL) { |
| printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n"); |
| return -ENODEV; |
| } |
| i = 0; |
| while (i < MAX_HWIFS && (ide_hwifs[i].io_ports[IDE_DATA_OFFSET] != 0 |
| || pmac_ide[i].node != NULL)) |
| ++i; |
| if (i >= MAX_HWIFS) { |
| printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n"); |
| printk(KERN_ERR " %s\n", np->full_name); |
| return -ENODEV; |
| } |
| |
| pmif = &pmac_ide[i]; |
| hwif = &ide_hwifs[i]; |
| |
| if (pci_enable_device(pdev)) { |
| printk(KERN_WARNING "ide%i: Can't enable PCI device for %s\n", |
| i, np->full_name); |
| return -ENXIO; |
| } |
| pci_set_master(pdev); |
| |
| if (pci_request_regions(pdev, "Kauai ATA")) { |
| printk(KERN_ERR "ide%d: Cannot obtain PCI resources for %s\n", |
| i, np->full_name); |
| return -ENXIO; |
| } |
| |
| hwif->pci_dev = pdev; |
| hwif->gendev.parent = &pdev->dev; |
| pmif->mdev = NULL; |
| pmif->node = np; |
| |
| rbase = pci_resource_start(pdev, 0); |
| rlen = pci_resource_len(pdev, 0); |
| |
| base = ioremap(rbase, rlen); |
| pmif->regbase = (unsigned long) base + 0x2000; |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC |
| pmif->dma_regs = base + 0x1000; |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ |
| pmif->kauai_fcr = base; |
| pmif->irq = pdev->irq; |
| |
| pci_set_drvdata(pdev, hwif); |
| |
| rc = pmac_ide_setup_device(pmif, hwif); |
| if (rc != 0) { |
| /* The inteface is released to the common IDE layer */ |
| pci_set_drvdata(pdev, NULL); |
| iounmap(base); |
| memset(pmif, 0, sizeof(*pmif)); |
| pci_release_regions(pdev); |
| } |
| |
| return rc; |
| } |
| |
| static int |
| pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg) |
| { |
| ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev); |
| int rc = 0; |
| |
| if (mesg.event != pdev->dev.power.power_state.event |
| && mesg.event == PM_EVENT_SUSPEND) { |
| rc = pmac_ide_do_suspend(hwif); |
| if (rc == 0) |
| pdev->dev.power.power_state = mesg; |
| } |
| |
| return rc; |
| } |
| |
| static int |
| pmac_ide_pci_resume(struct pci_dev *pdev) |
| { |
| ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev); |
| int rc = 0; |
| |
| if (pdev->dev.power.power_state.event != PM_EVENT_ON) { |
| rc = pmac_ide_do_resume(hwif); |
| if (rc == 0) |
| pdev->dev.power.power_state = PMSG_ON; |
| } |
| |
| return rc; |
| } |
| |
| static struct of_device_id pmac_ide_macio_match[] = |
| { |
| { |
| .name = "IDE", |
| }, |
| { |
| .name = "ATA", |
| }, |
| { |
| .type = "ide", |
| }, |
| { |
| .type = "ata", |
| }, |
| {}, |
| }; |
| |
| static struct macio_driver pmac_ide_macio_driver = |
| { |
| .name = "ide-pmac", |
| .match_table = pmac_ide_macio_match, |
| .probe = pmac_ide_macio_attach, |
| .suspend = pmac_ide_macio_suspend, |
| .resume = pmac_ide_macio_resume, |
| }; |
| |
| static struct pci_device_id pmac_ide_pci_match[] = { |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_ATA, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA, |
| PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, |
| }; |
| |
| static struct pci_driver pmac_ide_pci_driver = { |
| .name = "ide-pmac", |
| .id_table = pmac_ide_pci_match, |
| .probe = pmac_ide_pci_attach, |
| .suspend = pmac_ide_pci_suspend, |
| .resume = pmac_ide_pci_resume, |
| }; |
| MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match); |
| |
| void __init |
| pmac_ide_probe(void) |
| { |
| if (!machine_is(powermac)) |
| return; |
| |
| #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST |
| pci_register_driver(&pmac_ide_pci_driver); |
| macio_register_driver(&pmac_ide_macio_driver); |
| #else |
| macio_register_driver(&pmac_ide_macio_driver); |
| pci_register_driver(&pmac_ide_pci_driver); |
| #endif |
| } |
| |
| #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC |
| |
| /* |
| * pmac_ide_build_dmatable builds the DBDMA command list |
| * for a transfer and sets the DBDMA channel to point to it. |
| */ |
| static int |
| pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq) |
| { |
| struct dbdma_cmd *table; |
| int i, count = 0; |
| ide_hwif_t *hwif = HWIF(drive); |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; |
| volatile struct dbdma_regs __iomem *dma = pmif->dma_regs; |
| struct scatterlist *sg; |
| int wr = (rq_data_dir(rq) == WRITE); |
| |
| /* DMA table is already aligned */ |
| table = (struct dbdma_cmd *) pmif->dma_table_cpu; |
| |
| /* Make sure DMA controller is stopped (necessary ?) */ |
| writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control); |
| while (readl(&dma->status) & RUN) |
| udelay(1); |
| |
| hwif->sg_nents = i = ide_build_sglist(drive, rq); |
| |
| if (!i) |
| return 0; |
| |
| /* Build DBDMA commands list */ |
| sg = hwif->sg_table; |
| while (i && sg_dma_len(sg)) { |
| u32 cur_addr; |
| u32 cur_len; |
| |
| cur_addr = sg_dma_address(sg); |
| cur_len = sg_dma_len(sg); |
| |
| if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) { |
| if (pmif->broken_dma_warn == 0) { |
| printk(KERN_WARNING "%s: DMA on non aligned address," |
| "switching to PIO on Ohare chipset\n", drive->name); |
| pmif->broken_dma_warn = 1; |
| } |
| goto use_pio_instead; |
| } |
| while (cur_len) { |
| unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00; |
| |
| if (count++ >= MAX_DCMDS) { |
| printk(KERN_WARNING "%s: DMA table too small\n", |
| drive->name); |
| goto use_pio_instead; |
| } |
| st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE); |
| st_le16(&table->req_count, tc); |
| st_le32(&table->phy_addr, cur_addr); |
| table->cmd_dep = 0; |
| table->xfer_status = 0; |
| table->res_count = 0; |
| cur_addr += tc; |
| cur_len -= tc; |
| ++table; |
| } |
| sg++; |
| i--; |
| } |
| |
| /* convert the last command to an input/output last command */ |
| if (count) { |
| st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST); |
| /* add the stop command to the end of the list */ |
| memset(table, 0, sizeof(struct dbdma_cmd)); |
| st_le16(&table->command, DBDMA_STOP); |
| mb(); |
| writel(hwif->dmatable_dma, &dma->cmdptr); |
| return 1; |
| } |
| |
| printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name); |
| use_pio_instead: |
| pci_unmap_sg(hwif->pci_dev, |
| hwif->sg_table, |
| hwif->sg_nents, |
| hwif->sg_dma_direction); |
| return 0; /* revert to PIO for this request */ |
| } |
| |
| /* Teardown mappings after DMA has completed. */ |
| static void |
| pmac_ide_destroy_dmatable (ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct pci_dev *dev = HWIF(drive)->pci_dev; |
| struct scatterlist *sg = hwif->sg_table; |
| int nents = hwif->sg_nents; |
| |
| if (nents) { |
| pci_unmap_sg(dev, sg, nents, hwif->sg_dma_direction); |
| hwif->sg_nents = 0; |
| } |
| } |
| |
| /* |
| * Pick up best MDMA timing for the drive and apply it |
| */ |
| static int |
| pmac_ide_mdma_enable(ide_drive_t *drive, u16 mode) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; |
| int drive_cycle_time; |
| struct hd_driveid *id = drive->id; |
| u32 *timings, *timings2; |
| u32 timing_local[2]; |
| int ret; |
| |
| /* which drive is it ? */ |
| timings = &pmif->timings[drive->select.b.unit & 0x01]; |
| timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2]; |
| |
| /* Check if drive provide explicit cycle time */ |
| if ((id->field_valid & 2) && (id->eide_dma_time)) |
| drive_cycle_time = id->eide_dma_time; |
| else |
| drive_cycle_time = 0; |
| |
| /* Copy timings to local image */ |
| timing_local[0] = *timings; |
| timing_local[1] = *timings2; |
| |
| /* Calculate controller timings */ |
| ret = set_timings_mdma( drive, pmif->kind, |
| &timing_local[0], |
| &timing_local[1], |
| mode, |
| drive_cycle_time); |
| if (ret) |
| return 0; |
| |
| /* Set feature on drive */ |
| printk(KERN_INFO "%s: Enabling MultiWord DMA %d\n", drive->name, mode & 0xf); |
| ret = pmac_ide_do_setfeature(drive, mode); |
| if (ret) { |
| printk(KERN_WARNING "%s: Failed !\n", drive->name); |
| return 0; |
| } |
| |
| /* Apply timings to controller */ |
| *timings = timing_local[0]; |
| *timings2 = timing_local[1]; |
| |
| /* Set speed info in drive */ |
| drive->current_speed = mode; |
| if (!drive->init_speed) |
| drive->init_speed = mode; |
| |
| return 1; |
| } |
| |
| /* |
| * Pick up best UDMA timing for the drive and apply it |
| */ |
| static int |
| pmac_ide_udma_enable(ide_drive_t *drive, u16 mode) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; |
| u32 *timings, *timings2; |
| u32 timing_local[2]; |
| int ret; |
| |
| /* which drive is it ? */ |
| timings = &pmif->timings[drive->select.b.unit & 0x01]; |
| timings2 = &pmif->timings[(drive->select.b.unit & 0x01) + 2]; |
| |
| /* Copy timings to local image */ |
| timing_local[0] = *timings; |
| timing_local[1] = *timings2; |
| |
| /* Calculate timings for interface */ |
| if (pmif->kind == controller_un_ata6 |
| || pmif->kind == controller_k2_ata6) |
| ret = set_timings_udma_ata6( &timing_local[0], |
| &timing_local[1], |
| mode); |
| else if (pmif->kind == controller_sh_ata6) |
| ret = set_timings_udma_shasta( &timing_local[0], |
| &timing_local[1], |
| mode); |
| else |
| ret = set_timings_udma_ata4(&timing_local[0], mode); |
| if (ret) |
| return 0; |
| |
| /* Set feature on drive */ |
| printk(KERN_INFO "%s: Enabling Ultra DMA %d\n", drive->name, mode & 0x0f); |
| ret = pmac_ide_do_setfeature(drive, mode); |
| if (ret) { |
| printk(KERN_WARNING "%s: Failed !\n", drive->name); |
| return 0; |
| } |
| |
| /* Apply timings to controller */ |
| *timings = timing_local[0]; |
| *timings2 = timing_local[1]; |
| |
| /* Set speed info in drive */ |
| drive->current_speed = mode; |
| if (!drive->init_speed) |
| drive->init_speed = mode; |
| |
| return 1; |
| } |
| |
| /* |
| * Check what is the best DMA timing setting for the drive and |
| * call appropriate functions to apply it. |
| */ |
| static int |
| pmac_ide_dma_check(ide_drive_t *drive) |
| { |
| struct hd_driveid *id = drive->id; |
| ide_hwif_t *hwif = HWIF(drive); |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; |
| int enable = 1; |
| int map; |
| drive->using_dma = 0; |
| |
| if (drive->media == ide_floppy) |
| enable = 0; |
| if (((id->capability & 1) == 0) && !__ide_dma_good_drive(drive)) |
| enable = 0; |
| if (__ide_dma_bad_drive(drive)) |
| enable = 0; |
| |
| if (enable) { |
| short mode; |
| |
| map = XFER_MWDMA; |
| if (pmif->kind == controller_kl_ata4 |
| || pmif->kind == controller_un_ata6 |
| || pmif->kind == controller_k2_ata6 |
| || pmif->kind == controller_sh_ata6) { |
| map |= XFER_UDMA; |
| if (pmif->cable_80) { |
| map |= XFER_UDMA_66; |
| if (pmif->kind == controller_un_ata6 || |
| pmif->kind == controller_k2_ata6 || |
| pmif->kind == controller_sh_ata6) |
| map |= XFER_UDMA_100; |
| if (pmif->kind == controller_sh_ata6) |
| map |= XFER_UDMA_133; |
| } |
| } |
| mode = ide_find_best_mode(drive, map); |
| if (mode & XFER_UDMA) |
| drive->using_dma = pmac_ide_udma_enable(drive, mode); |
| else if (mode & XFER_MWDMA) |
| drive->using_dma = pmac_ide_mdma_enable(drive, mode); |
| hwif->OUTB(0, IDE_CONTROL_REG); |
| /* Apply settings to controller */ |
| pmac_ide_do_update_timings(drive); |
| } |
| return 0; |
| } |
| |
| /* |
| * Prepare a DMA transfer. We build the DMA table, adjust the timings for |
| * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion |
| */ |
| static int |
| pmac_ide_dma_setup(ide_drive_t *drive) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data; |
| struct request *rq = HWGROUP(drive)->rq; |
| u8 unit = (drive->select.b.unit & 0x01); |
| u8 ata4; |
| |
| if (pmif == NULL) |
| return 1; |
| ata4 = (pmif->kind == controller_kl_ata4); |
| |
| if (!pmac_ide_build_dmatable(drive, rq)) { |
| ide_map_sg(drive, rq); |
| return 1; |
| } |
| |
| /* Apple adds 60ns to wrDataSetup on reads */ |
| if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) { |
| writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0), |
| PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
| (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG)); |
| } |
| |
| drive->waiting_for_dma = 1; |
| |
| return 0; |
| } |
| |
| static void |
| pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command) |
| { |
| /* issue cmd to drive */ |
| ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL); |
| } |
| |
| /* |
| * Kick the DMA controller into life after the DMA command has been issued |
| * to the drive. |
| */ |
| static void |
| pmac_ide_dma_start(ide_drive_t *drive) |
| { |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| volatile struct dbdma_regs __iomem *dma; |
| |
| dma = pmif->dma_regs; |
| |
| writel((RUN << 16) | RUN, &dma->control); |
| /* Make sure it gets to the controller right now */ |
| (void)readl(&dma->control); |
| } |
| |
| /* |
| * After a DMA transfer, make sure the controller is stopped |
| */ |
| static int |
| pmac_ide_dma_end (ide_drive_t *drive) |
| { |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| volatile struct dbdma_regs __iomem *dma; |
| u32 dstat; |
| |
| if (pmif == NULL) |
| return 0; |
| dma = pmif->dma_regs; |
| |
| drive->waiting_for_dma = 0; |
| dstat = readl(&dma->status); |
| writel(((RUN|WAKE|DEAD) << 16), &dma->control); |
| pmac_ide_destroy_dmatable(drive); |
| /* verify good dma status. we don't check for ACTIVE beeing 0. We should... |
| * in theory, but with ATAPI decices doing buffer underruns, that would |
| * cause us to disable DMA, which isn't what we want |
| */ |
| return (dstat & (RUN|DEAD)) != RUN; |
| } |
| |
| /* |
| * Check out that the interrupt we got was for us. We can't always know this |
| * for sure with those Apple interfaces (well, we could on the recent ones but |
| * that's not implemented yet), on the other hand, we don't have shared interrupts |
| * so it's not really a problem |
| */ |
| static int |
| pmac_ide_dma_test_irq (ide_drive_t *drive) |
| { |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| volatile struct dbdma_regs __iomem *dma; |
| unsigned long status, timeout; |
| |
| if (pmif == NULL) |
| return 0; |
| dma = pmif->dma_regs; |
| |
| /* We have to things to deal with here: |
| * |
| * - The dbdma won't stop if the command was started |
| * but completed with an error without transferring all |
| * datas. This happens when bad blocks are met during |
| * a multi-block transfer. |
| * |
| * - The dbdma fifo hasn't yet finished flushing to |
| * to system memory when the disk interrupt occurs. |
| * |
| */ |
| |
| /* If ACTIVE is cleared, the STOP command have passed and |
| * transfer is complete. |
| */ |
| status = readl(&dma->status); |
| if (!(status & ACTIVE)) |
| return 1; |
| if (!drive->waiting_for_dma) |
| printk(KERN_WARNING "ide%d, ide_dma_test_irq \ |
| called while not waiting\n", HWIF(drive)->index); |
| |
| /* If dbdma didn't execute the STOP command yet, the |
| * active bit is still set. We consider that we aren't |
| * sharing interrupts (which is hopefully the case with |
| * those controllers) and so we just try to flush the |
| * channel for pending data in the fifo |
| */ |
| udelay(1); |
| writel((FLUSH << 16) | FLUSH, &dma->control); |
| timeout = 0; |
| for (;;) { |
| udelay(1); |
| status = readl(&dma->status); |
| if ((status & FLUSH) == 0) |
| break; |
| if (++timeout > 100) { |
| printk(KERN_WARNING "ide%d, ide_dma_test_irq \ |
| timeout flushing channel\n", HWIF(drive)->index); |
| break; |
| } |
| } |
| return 1; |
| } |
| |
| static int |
| pmac_ide_dma_host_off (ide_drive_t *drive) |
| { |
| return 0; |
| } |
| |
| static int |
| pmac_ide_dma_host_on (ide_drive_t *drive) |
| { |
| return 0; |
| } |
| |
| static int |
| pmac_ide_dma_lostirq (ide_drive_t *drive) |
| { |
| pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; |
| volatile struct dbdma_regs __iomem *dma; |
| unsigned long status; |
| |
| if (pmif == NULL) |
| return 0; |
| dma = pmif->dma_regs; |
| |
| status = readl(&dma->status); |
| printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status); |
| return 0; |
| } |
| |
| /* |
| * Allocate the data structures needed for using DMA with an interface |
| * and fill the proper list of functions pointers |
| */ |
| static void __init |
| pmac_ide_setup_dma(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif) |
| { |
| /* We won't need pci_dev if we switch to generic consistent |
| * DMA routines ... |
| */ |
| if (hwif->pci_dev == NULL) |
| return; |
| /* |
| * Allocate space for the DBDMA commands. |
| * The +2 is +1 for the stop command and +1 to allow for |
| * aligning the start address to a multiple of 16 bytes. |
| */ |
| pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent( |
| hwif->pci_dev, |
| (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd), |
| &hwif->dmatable_dma); |
| if (pmif->dma_table_cpu == NULL) { |
| printk(KERN_ERR "%s: unable to allocate DMA command list\n", |
| hwif->name); |
| return; |
| } |
| |
| hwif->ide_dma_off_quietly = &__ide_dma_off_quietly; |
| hwif->ide_dma_on = &__ide_dma_on; |
| hwif->ide_dma_check = &pmac_ide_dma_check; |
| hwif->dma_setup = &pmac_ide_dma_setup; |
| hwif->dma_exec_cmd = &pmac_ide_dma_exec_cmd; |
| hwif->dma_start = &pmac_ide_dma_start; |
| hwif->ide_dma_end = &pmac_ide_dma_end; |
| hwif->ide_dma_test_irq = &pmac_ide_dma_test_irq; |
| hwif->ide_dma_host_off = &pmac_ide_dma_host_off; |
| hwif->ide_dma_host_on = &pmac_ide_dma_host_on; |
| hwif->ide_dma_timeout = &__ide_dma_timeout; |
| hwif->ide_dma_lostirq = &pmac_ide_dma_lostirq; |
| |
| hwif->atapi_dma = 1; |
| switch(pmif->kind) { |
| case controller_sh_ata6: |
| hwif->ultra_mask = pmif->cable_80 ? 0x7f : 0x07; |
| hwif->mwdma_mask = 0x07; |
| hwif->swdma_mask = 0x00; |
| break; |
| case controller_un_ata6: |
| case controller_k2_ata6: |
| hwif->ultra_mask = pmif->cable_80 ? 0x3f : 0x07; |
| hwif->mwdma_mask = 0x07; |
| hwif->swdma_mask = 0x00; |
| break; |
| case controller_kl_ata4: |
| hwif->ultra_mask = pmif->cable_80 ? 0x1f : 0x07; |
| hwif->mwdma_mask = 0x07; |
| hwif->swdma_mask = 0x00; |
| break; |
| default: |
| hwif->ultra_mask = 0x00; |
| hwif->mwdma_mask = 0x07; |
| hwif->swdma_mask = 0x00; |
| break; |
| } |
| } |
| |
| #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ |