| /* |
| * Generic address resolution entity |
| * |
| * Authors: |
| * Pedro Roque <roque@di.fc.ul.pt> |
| * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * Fixes: |
| * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. |
| * Harald Welte Add neighbour cache statistics like rtstat |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/socket.h> |
| #include <linux/netdevice.h> |
| #include <linux/proc_fs.h> |
| #ifdef CONFIG_SYSCTL |
| #include <linux/sysctl.h> |
| #endif |
| #include <linux/times.h> |
| #include <net/net_namespace.h> |
| #include <net/neighbour.h> |
| #include <net/dst.h> |
| #include <net/sock.h> |
| #include <net/netevent.h> |
| #include <net/netlink.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/random.h> |
| #include <linux/string.h> |
| #include <linux/log2.h> |
| |
| #define NEIGH_DEBUG 1 |
| |
| #define NEIGH_PRINTK(x...) printk(x) |
| #define NEIGH_NOPRINTK(x...) do { ; } while(0) |
| #define NEIGH_PRINTK0 NEIGH_PRINTK |
| #define NEIGH_PRINTK1 NEIGH_NOPRINTK |
| #define NEIGH_PRINTK2 NEIGH_NOPRINTK |
| |
| #if NEIGH_DEBUG >= 1 |
| #undef NEIGH_PRINTK1 |
| #define NEIGH_PRINTK1 NEIGH_PRINTK |
| #endif |
| #if NEIGH_DEBUG >= 2 |
| #undef NEIGH_PRINTK2 |
| #define NEIGH_PRINTK2 NEIGH_PRINTK |
| #endif |
| |
| #define PNEIGH_HASHMASK 0xF |
| |
| static void neigh_timer_handler(unsigned long arg); |
| static void __neigh_notify(struct neighbour *n, int type, int flags); |
| static void neigh_update_notify(struct neighbour *neigh); |
| static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); |
| |
| static struct neigh_table *neigh_tables; |
| #ifdef CONFIG_PROC_FS |
| static const struct file_operations neigh_stat_seq_fops; |
| #endif |
| |
| /* |
| Neighbour hash table buckets are protected with rwlock tbl->lock. |
| |
| - All the scans/updates to hash buckets MUST be made under this lock. |
| - NOTHING clever should be made under this lock: no callbacks |
| to protocol backends, no attempts to send something to network. |
| It will result in deadlocks, if backend/driver wants to use neighbour |
| cache. |
| - If the entry requires some non-trivial actions, increase |
| its reference count and release table lock. |
| |
| Neighbour entries are protected: |
| - with reference count. |
| - with rwlock neigh->lock |
| |
| Reference count prevents destruction. |
| |
| neigh->lock mainly serializes ll address data and its validity state. |
| However, the same lock is used to protect another entry fields: |
| - timer |
| - resolution queue |
| |
| Again, nothing clever shall be made under neigh->lock, |
| the most complicated procedure, which we allow is dev->hard_header. |
| It is supposed, that dev->hard_header is simplistic and does |
| not make callbacks to neighbour tables. |
| |
| The last lock is neigh_tbl_lock. It is pure SMP lock, protecting |
| list of neighbour tables. This list is used only in process context, |
| */ |
| |
| static DEFINE_RWLOCK(neigh_tbl_lock); |
| |
| static int neigh_blackhole(struct sk_buff *skb) |
| { |
| kfree_skb(skb); |
| return -ENETDOWN; |
| } |
| |
| static void neigh_cleanup_and_release(struct neighbour *neigh) |
| { |
| if (neigh->parms->neigh_cleanup) |
| neigh->parms->neigh_cleanup(neigh); |
| |
| __neigh_notify(neigh, RTM_DELNEIGH, 0); |
| neigh_release(neigh); |
| } |
| |
| /* |
| * It is random distribution in the interval (1/2)*base...(3/2)*base. |
| * It corresponds to default IPv6 settings and is not overridable, |
| * because it is really reasonable choice. |
| */ |
| |
| unsigned long neigh_rand_reach_time(unsigned long base) |
| { |
| return (base ? (net_random() % base) + (base >> 1) : 0); |
| } |
| |
| |
| static int neigh_forced_gc(struct neigh_table *tbl) |
| { |
| int shrunk = 0; |
| int i; |
| |
| NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); |
| |
| write_lock_bh(&tbl->lock); |
| for (i = 0; i <= tbl->hash_mask; i++) { |
| struct neighbour *n, **np; |
| |
| np = &tbl->hash_buckets[i]; |
| while ((n = *np) != NULL) { |
| /* Neighbour record may be discarded if: |
| * - nobody refers to it. |
| * - it is not permanent |
| */ |
| write_lock(&n->lock); |
| if (atomic_read(&n->refcnt) == 1 && |
| !(n->nud_state & NUD_PERMANENT)) { |
| *np = n->next; |
| n->dead = 1; |
| shrunk = 1; |
| write_unlock(&n->lock); |
| neigh_cleanup_and_release(n); |
| continue; |
| } |
| write_unlock(&n->lock); |
| np = &n->next; |
| } |
| } |
| |
| tbl->last_flush = jiffies; |
| |
| write_unlock_bh(&tbl->lock); |
| |
| return shrunk; |
| } |
| |
| static void neigh_add_timer(struct neighbour *n, unsigned long when) |
| { |
| neigh_hold(n); |
| if (unlikely(mod_timer(&n->timer, when))) { |
| printk("NEIGH: BUG, double timer add, state is %x\n", |
| n->nud_state); |
| dump_stack(); |
| } |
| } |
| |
| static int neigh_del_timer(struct neighbour *n) |
| { |
| if ((n->nud_state & NUD_IN_TIMER) && |
| del_timer(&n->timer)) { |
| neigh_release(n); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void pneigh_queue_purge(struct sk_buff_head *list) |
| { |
| struct sk_buff *skb; |
| |
| while ((skb = skb_dequeue(list)) != NULL) { |
| dev_put(skb->dev); |
| kfree_skb(skb); |
| } |
| } |
| |
| static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) |
| { |
| int i; |
| |
| for (i = 0; i <= tbl->hash_mask; i++) { |
| struct neighbour *n, **np = &tbl->hash_buckets[i]; |
| |
| while ((n = *np) != NULL) { |
| if (dev && n->dev != dev) { |
| np = &n->next; |
| continue; |
| } |
| *np = n->next; |
| write_lock(&n->lock); |
| neigh_del_timer(n); |
| n->dead = 1; |
| |
| if (atomic_read(&n->refcnt) != 1) { |
| /* The most unpleasant situation. |
| We must destroy neighbour entry, |
| but someone still uses it. |
| |
| The destroy will be delayed until |
| the last user releases us, but |
| we must kill timers etc. and move |
| it to safe state. |
| */ |
| skb_queue_purge(&n->arp_queue); |
| n->output = neigh_blackhole; |
| if (n->nud_state & NUD_VALID) |
| n->nud_state = NUD_NOARP; |
| else |
| n->nud_state = NUD_NONE; |
| NEIGH_PRINTK2("neigh %p is stray.\n", n); |
| } |
| write_unlock(&n->lock); |
| neigh_cleanup_and_release(n); |
| } |
| } |
| } |
| |
| void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) |
| { |
| write_lock_bh(&tbl->lock); |
| neigh_flush_dev(tbl, dev); |
| write_unlock_bh(&tbl->lock); |
| } |
| |
| int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) |
| { |
| write_lock_bh(&tbl->lock); |
| neigh_flush_dev(tbl, dev); |
| pneigh_ifdown(tbl, dev); |
| write_unlock_bh(&tbl->lock); |
| |
| del_timer_sync(&tbl->proxy_timer); |
| pneigh_queue_purge(&tbl->proxy_queue); |
| return 0; |
| } |
| |
| static struct neighbour *neigh_alloc(struct neigh_table *tbl) |
| { |
| struct neighbour *n = NULL; |
| unsigned long now = jiffies; |
| int entries; |
| |
| entries = atomic_inc_return(&tbl->entries) - 1; |
| if (entries >= tbl->gc_thresh3 || |
| (entries >= tbl->gc_thresh2 && |
| time_after(now, tbl->last_flush + 5 * HZ))) { |
| if (!neigh_forced_gc(tbl) && |
| entries >= tbl->gc_thresh3) |
| goto out_entries; |
| } |
| |
| n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC); |
| if (!n) |
| goto out_entries; |
| |
| skb_queue_head_init(&n->arp_queue); |
| rwlock_init(&n->lock); |
| n->updated = n->used = now; |
| n->nud_state = NUD_NONE; |
| n->output = neigh_blackhole; |
| n->parms = neigh_parms_clone(&tbl->parms); |
| setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); |
| |
| NEIGH_CACHE_STAT_INC(tbl, allocs); |
| n->tbl = tbl; |
| atomic_set(&n->refcnt, 1); |
| n->dead = 1; |
| out: |
| return n; |
| |
| out_entries: |
| atomic_dec(&tbl->entries); |
| goto out; |
| } |
| |
| static struct neighbour **neigh_hash_alloc(unsigned int entries) |
| { |
| unsigned long size = entries * sizeof(struct neighbour *); |
| struct neighbour **ret; |
| |
| if (size <= PAGE_SIZE) { |
| ret = kzalloc(size, GFP_ATOMIC); |
| } else { |
| ret = (struct neighbour **) |
| __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size)); |
| } |
| return ret; |
| } |
| |
| static void neigh_hash_free(struct neighbour **hash, unsigned int entries) |
| { |
| unsigned long size = entries * sizeof(struct neighbour *); |
| |
| if (size <= PAGE_SIZE) |
| kfree(hash); |
| else |
| free_pages((unsigned long)hash, get_order(size)); |
| } |
| |
| static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries) |
| { |
| struct neighbour **new_hash, **old_hash; |
| unsigned int i, new_hash_mask, old_entries; |
| |
| NEIGH_CACHE_STAT_INC(tbl, hash_grows); |
| |
| BUG_ON(!is_power_of_2(new_entries)); |
| new_hash = neigh_hash_alloc(new_entries); |
| if (!new_hash) |
| return; |
| |
| old_entries = tbl->hash_mask + 1; |
| new_hash_mask = new_entries - 1; |
| old_hash = tbl->hash_buckets; |
| |
| get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); |
| for (i = 0; i < old_entries; i++) { |
| struct neighbour *n, *next; |
| |
| for (n = old_hash[i]; n; n = next) { |
| unsigned int hash_val = tbl->hash(n->primary_key, n->dev); |
| |
| hash_val &= new_hash_mask; |
| next = n->next; |
| |
| n->next = new_hash[hash_val]; |
| new_hash[hash_val] = n; |
| } |
| } |
| tbl->hash_buckets = new_hash; |
| tbl->hash_mask = new_hash_mask; |
| |
| neigh_hash_free(old_hash, old_entries); |
| } |
| |
| struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, |
| struct net_device *dev) |
| { |
| struct neighbour *n; |
| int key_len = tbl->key_len; |
| u32 hash_val = tbl->hash(pkey, dev); |
| |
| NEIGH_CACHE_STAT_INC(tbl, lookups); |
| |
| read_lock_bh(&tbl->lock); |
| for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { |
| if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { |
| neigh_hold(n); |
| NEIGH_CACHE_STAT_INC(tbl, hits); |
| break; |
| } |
| } |
| read_unlock_bh(&tbl->lock); |
| return n; |
| } |
| |
| struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, |
| const void *pkey) |
| { |
| struct neighbour *n; |
| int key_len = tbl->key_len; |
| u32 hash_val = tbl->hash(pkey, NULL); |
| |
| NEIGH_CACHE_STAT_INC(tbl, lookups); |
| |
| read_lock_bh(&tbl->lock); |
| for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { |
| if (!memcmp(n->primary_key, pkey, key_len) && |
| (net == n->dev->nd_net)) { |
| neigh_hold(n); |
| NEIGH_CACHE_STAT_INC(tbl, hits); |
| break; |
| } |
| } |
| read_unlock_bh(&tbl->lock); |
| return n; |
| } |
| |
| struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, |
| struct net_device *dev) |
| { |
| u32 hash_val; |
| int key_len = tbl->key_len; |
| int error; |
| struct neighbour *n1, *rc, *n = neigh_alloc(tbl); |
| |
| if (!n) { |
| rc = ERR_PTR(-ENOBUFS); |
| goto out; |
| } |
| |
| memcpy(n->primary_key, pkey, key_len); |
| n->dev = dev; |
| dev_hold(dev); |
| |
| /* Protocol specific setup. */ |
| if (tbl->constructor && (error = tbl->constructor(n)) < 0) { |
| rc = ERR_PTR(error); |
| goto out_neigh_release; |
| } |
| |
| /* Device specific setup. */ |
| if (n->parms->neigh_setup && |
| (error = n->parms->neigh_setup(n)) < 0) { |
| rc = ERR_PTR(error); |
| goto out_neigh_release; |
| } |
| |
| n->confirmed = jiffies - (n->parms->base_reachable_time << 1); |
| |
| write_lock_bh(&tbl->lock); |
| |
| if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1)) |
| neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1); |
| |
| hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; |
| |
| if (n->parms->dead) { |
| rc = ERR_PTR(-EINVAL); |
| goto out_tbl_unlock; |
| } |
| |
| for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) { |
| if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { |
| neigh_hold(n1); |
| rc = n1; |
| goto out_tbl_unlock; |
| } |
| } |
| |
| n->next = tbl->hash_buckets[hash_val]; |
| tbl->hash_buckets[hash_val] = n; |
| n->dead = 0; |
| neigh_hold(n); |
| write_unlock_bh(&tbl->lock); |
| NEIGH_PRINTK2("neigh %p is created.\n", n); |
| rc = n; |
| out: |
| return rc; |
| out_tbl_unlock: |
| write_unlock_bh(&tbl->lock); |
| out_neigh_release: |
| neigh_release(n); |
| goto out; |
| } |
| |
| struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, |
| struct net *net, const void *pkey, |
| struct net_device *dev, int creat) |
| { |
| struct pneigh_entry *n; |
| int key_len = tbl->key_len; |
| u32 hash_val = *(u32 *)(pkey + key_len - 4); |
| |
| hash_val ^= (hash_val >> 16); |
| hash_val ^= hash_val >> 8; |
| hash_val ^= hash_val >> 4; |
| hash_val &= PNEIGH_HASHMASK; |
| |
| read_lock_bh(&tbl->lock); |
| |
| for (n = tbl->phash_buckets[hash_val]; n; n = n->next) { |
| if (!memcmp(n->key, pkey, key_len) && |
| (n->net == net) && |
| (n->dev == dev || !n->dev)) { |
| read_unlock_bh(&tbl->lock); |
| goto out; |
| } |
| } |
| read_unlock_bh(&tbl->lock); |
| n = NULL; |
| if (!creat) |
| goto out; |
| |
| ASSERT_RTNL(); |
| |
| n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); |
| if (!n) |
| goto out; |
| |
| n->net = hold_net(net); |
| memcpy(n->key, pkey, key_len); |
| n->dev = dev; |
| if (dev) |
| dev_hold(dev); |
| |
| if (tbl->pconstructor && tbl->pconstructor(n)) { |
| if (dev) |
| dev_put(dev); |
| kfree(n); |
| n = NULL; |
| goto out; |
| } |
| |
| write_lock_bh(&tbl->lock); |
| n->next = tbl->phash_buckets[hash_val]; |
| tbl->phash_buckets[hash_val] = n; |
| write_unlock_bh(&tbl->lock); |
| out: |
| return n; |
| } |
| |
| |
| int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, |
| struct net_device *dev) |
| { |
| struct pneigh_entry *n, **np; |
| int key_len = tbl->key_len; |
| u32 hash_val = *(u32 *)(pkey + key_len - 4); |
| |
| hash_val ^= (hash_val >> 16); |
| hash_val ^= hash_val >> 8; |
| hash_val ^= hash_val >> 4; |
| hash_val &= PNEIGH_HASHMASK; |
| |
| write_lock_bh(&tbl->lock); |
| for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; |
| np = &n->next) { |
| if (!memcmp(n->key, pkey, key_len) && n->dev == dev && |
| (n->net == net)) { |
| *np = n->next; |
| write_unlock_bh(&tbl->lock); |
| if (tbl->pdestructor) |
| tbl->pdestructor(n); |
| if (n->dev) |
| dev_put(n->dev); |
| release_net(n->net); |
| kfree(n); |
| return 0; |
| } |
| } |
| write_unlock_bh(&tbl->lock); |
| return -ENOENT; |
| } |
| |
| static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) |
| { |
| struct pneigh_entry *n, **np; |
| u32 h; |
| |
| for (h = 0; h <= PNEIGH_HASHMASK; h++) { |
| np = &tbl->phash_buckets[h]; |
| while ((n = *np) != NULL) { |
| if (!dev || n->dev == dev) { |
| *np = n->next; |
| if (tbl->pdestructor) |
| tbl->pdestructor(n); |
| if (n->dev) |
| dev_put(n->dev); |
| release_net(n->net); |
| kfree(n); |
| continue; |
| } |
| np = &n->next; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| static void neigh_parms_destroy(struct neigh_parms *parms); |
| |
| static inline void neigh_parms_put(struct neigh_parms *parms) |
| { |
| if (atomic_dec_and_test(&parms->refcnt)) |
| neigh_parms_destroy(parms); |
| } |
| |
| /* |
| * neighbour must already be out of the table; |
| * |
| */ |
| void neigh_destroy(struct neighbour *neigh) |
| { |
| struct hh_cache *hh; |
| |
| NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); |
| |
| if (!neigh->dead) { |
| printk(KERN_WARNING |
| "Destroying alive neighbour %p\n", neigh); |
| dump_stack(); |
| return; |
| } |
| |
| if (neigh_del_timer(neigh)) |
| printk(KERN_WARNING "Impossible event.\n"); |
| |
| while ((hh = neigh->hh) != NULL) { |
| neigh->hh = hh->hh_next; |
| hh->hh_next = NULL; |
| |
| write_seqlock_bh(&hh->hh_lock); |
| hh->hh_output = neigh_blackhole; |
| write_sequnlock_bh(&hh->hh_lock); |
| if (atomic_dec_and_test(&hh->hh_refcnt)) |
| kfree(hh); |
| } |
| |
| skb_queue_purge(&neigh->arp_queue); |
| |
| dev_put(neigh->dev); |
| neigh_parms_put(neigh->parms); |
| |
| NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); |
| |
| atomic_dec(&neigh->tbl->entries); |
| kmem_cache_free(neigh->tbl->kmem_cachep, neigh); |
| } |
| |
| /* Neighbour state is suspicious; |
| disable fast path. |
| |
| Called with write_locked neigh. |
| */ |
| static void neigh_suspect(struct neighbour *neigh) |
| { |
| struct hh_cache *hh; |
| |
| NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); |
| |
| neigh->output = neigh->ops->output; |
| |
| for (hh = neigh->hh; hh; hh = hh->hh_next) |
| hh->hh_output = neigh->ops->output; |
| } |
| |
| /* Neighbour state is OK; |
| enable fast path. |
| |
| Called with write_locked neigh. |
| */ |
| static void neigh_connect(struct neighbour *neigh) |
| { |
| struct hh_cache *hh; |
| |
| NEIGH_PRINTK2("neigh %p is connected.\n", neigh); |
| |
| neigh->output = neigh->ops->connected_output; |
| |
| for (hh = neigh->hh; hh; hh = hh->hh_next) |
| hh->hh_output = neigh->ops->hh_output; |
| } |
| |
| static void neigh_periodic_timer(unsigned long arg) |
| { |
| struct neigh_table *tbl = (struct neigh_table *)arg; |
| struct neighbour *n, **np; |
| unsigned long expire, now = jiffies; |
| |
| NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); |
| |
| write_lock(&tbl->lock); |
| |
| /* |
| * periodically recompute ReachableTime from random function |
| */ |
| |
| if (time_after(now, tbl->last_rand + 300 * HZ)) { |
| struct neigh_parms *p; |
| tbl->last_rand = now; |
| for (p = &tbl->parms; p; p = p->next) |
| p->reachable_time = |
| neigh_rand_reach_time(p->base_reachable_time); |
| } |
| |
| np = &tbl->hash_buckets[tbl->hash_chain_gc]; |
| tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask); |
| |
| while ((n = *np) != NULL) { |
| unsigned int state; |
| |
| write_lock(&n->lock); |
| |
| state = n->nud_state; |
| if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { |
| write_unlock(&n->lock); |
| goto next_elt; |
| } |
| |
| if (time_before(n->used, n->confirmed)) |
| n->used = n->confirmed; |
| |
| if (atomic_read(&n->refcnt) == 1 && |
| (state == NUD_FAILED || |
| time_after(now, n->used + n->parms->gc_staletime))) { |
| *np = n->next; |
| n->dead = 1; |
| write_unlock(&n->lock); |
| neigh_cleanup_and_release(n); |
| continue; |
| } |
| write_unlock(&n->lock); |
| |
| next_elt: |
| np = &n->next; |
| } |
| |
| /* Cycle through all hash buckets every base_reachable_time/2 ticks. |
| * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 |
| * base_reachable_time. |
| */ |
| expire = tbl->parms.base_reachable_time >> 1; |
| expire /= (tbl->hash_mask + 1); |
| if (!expire) |
| expire = 1; |
| |
| if (expire>HZ) |
| mod_timer(&tbl->gc_timer, round_jiffies(now + expire)); |
| else |
| mod_timer(&tbl->gc_timer, now + expire); |
| |
| write_unlock(&tbl->lock); |
| } |
| |
| static __inline__ int neigh_max_probes(struct neighbour *n) |
| { |
| struct neigh_parms *p = n->parms; |
| return (n->nud_state & NUD_PROBE ? |
| p->ucast_probes : |
| p->ucast_probes + p->app_probes + p->mcast_probes); |
| } |
| |
| /* Called when a timer expires for a neighbour entry. */ |
| |
| static void neigh_timer_handler(unsigned long arg) |
| { |
| unsigned long now, next; |
| struct neighbour *neigh = (struct neighbour *)arg; |
| unsigned state; |
| int notify = 0; |
| |
| write_lock(&neigh->lock); |
| |
| state = neigh->nud_state; |
| now = jiffies; |
| next = now + HZ; |
| |
| if (!(state & NUD_IN_TIMER)) { |
| #ifndef CONFIG_SMP |
| printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); |
| #endif |
| goto out; |
| } |
| |
| if (state & NUD_REACHABLE) { |
| if (time_before_eq(now, |
| neigh->confirmed + neigh->parms->reachable_time)) { |
| NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); |
| next = neigh->confirmed + neigh->parms->reachable_time; |
| } else if (time_before_eq(now, |
| neigh->used + neigh->parms->delay_probe_time)) { |
| NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); |
| neigh->nud_state = NUD_DELAY; |
| neigh->updated = jiffies; |
| neigh_suspect(neigh); |
| next = now + neigh->parms->delay_probe_time; |
| } else { |
| NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); |
| neigh->nud_state = NUD_STALE; |
| neigh->updated = jiffies; |
| neigh_suspect(neigh); |
| notify = 1; |
| } |
| } else if (state & NUD_DELAY) { |
| if (time_before_eq(now, |
| neigh->confirmed + neigh->parms->delay_probe_time)) { |
| NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); |
| neigh->nud_state = NUD_REACHABLE; |
| neigh->updated = jiffies; |
| neigh_connect(neigh); |
| notify = 1; |
| next = neigh->confirmed + neigh->parms->reachable_time; |
| } else { |
| NEIGH_PRINTK2("neigh %p is probed.\n", neigh); |
| neigh->nud_state = NUD_PROBE; |
| neigh->updated = jiffies; |
| atomic_set(&neigh->probes, 0); |
| next = now + neigh->parms->retrans_time; |
| } |
| } else { |
| /* NUD_PROBE|NUD_INCOMPLETE */ |
| next = now + neigh->parms->retrans_time; |
| } |
| |
| if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && |
| atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { |
| struct sk_buff *skb; |
| |
| neigh->nud_state = NUD_FAILED; |
| neigh->updated = jiffies; |
| notify = 1; |
| NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); |
| NEIGH_PRINTK2("neigh %p is failed.\n", neigh); |
| |
| /* It is very thin place. report_unreachable is very complicated |
| routine. Particularly, it can hit the same neighbour entry! |
| |
| So that, we try to be accurate and avoid dead loop. --ANK |
| */ |
| while (neigh->nud_state == NUD_FAILED && |
| (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { |
| write_unlock(&neigh->lock); |
| neigh->ops->error_report(neigh, skb); |
| write_lock(&neigh->lock); |
| } |
| skb_queue_purge(&neigh->arp_queue); |
| } |
| |
| if (neigh->nud_state & NUD_IN_TIMER) { |
| if (time_before(next, jiffies + HZ/2)) |
| next = jiffies + HZ/2; |
| if (!mod_timer(&neigh->timer, next)) |
| neigh_hold(neigh); |
| } |
| if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { |
| struct sk_buff *skb = skb_peek(&neigh->arp_queue); |
| |
| neigh->ops->solicit(neigh, skb); |
| atomic_inc(&neigh->probes); |
| } |
| out: |
| write_unlock(&neigh->lock); |
| |
| if (notify) |
| neigh_update_notify(neigh); |
| |
| neigh_release(neigh); |
| } |
| |
| int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) |
| { |
| int rc; |
| unsigned long now; |
| |
| write_lock_bh(&neigh->lock); |
| |
| rc = 0; |
| if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) |
| goto out_unlock_bh; |
| |
| now = jiffies; |
| |
| if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { |
| if (neigh->parms->mcast_probes + neigh->parms->app_probes) { |
| atomic_set(&neigh->probes, neigh->parms->ucast_probes); |
| neigh->nud_state = NUD_INCOMPLETE; |
| neigh->updated = jiffies; |
| neigh_add_timer(neigh, now + 1); |
| } else { |
| neigh->nud_state = NUD_FAILED; |
| neigh->updated = jiffies; |
| write_unlock_bh(&neigh->lock); |
| |
| if (skb) |
| kfree_skb(skb); |
| return 1; |
| } |
| } else if (neigh->nud_state & NUD_STALE) { |
| NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); |
| neigh->nud_state = NUD_DELAY; |
| neigh->updated = jiffies; |
| neigh_add_timer(neigh, |
| jiffies + neigh->parms->delay_probe_time); |
| } |
| |
| if (neigh->nud_state == NUD_INCOMPLETE) { |
| if (skb) { |
| if (skb_queue_len(&neigh->arp_queue) >= |
| neigh->parms->queue_len) { |
| struct sk_buff *buff; |
| buff = neigh->arp_queue.next; |
| __skb_unlink(buff, &neigh->arp_queue); |
| kfree_skb(buff); |
| } |
| __skb_queue_tail(&neigh->arp_queue, skb); |
| } |
| rc = 1; |
| } |
| out_unlock_bh: |
| write_unlock_bh(&neigh->lock); |
| return rc; |
| } |
| |
| static void neigh_update_hhs(struct neighbour *neigh) |
| { |
| struct hh_cache *hh; |
| void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) |
| = neigh->dev->header_ops->cache_update; |
| |
| if (update) { |
| for (hh = neigh->hh; hh; hh = hh->hh_next) { |
| write_seqlock_bh(&hh->hh_lock); |
| update(hh, neigh->dev, neigh->ha); |
| write_sequnlock_bh(&hh->hh_lock); |
| } |
| } |
| } |
| |
| |
| |
| /* Generic update routine. |
| -- lladdr is new lladdr or NULL, if it is not supplied. |
| -- new is new state. |
| -- flags |
| NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, |
| if it is different. |
| NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" |
| lladdr instead of overriding it |
| if it is different. |
| It also allows to retain current state |
| if lladdr is unchanged. |
| NEIGH_UPDATE_F_ADMIN means that the change is administrative. |
| |
| NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing |
| NTF_ROUTER flag. |
| NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as |
| a router. |
| |
| Caller MUST hold reference count on the entry. |
| */ |
| |
| int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, |
| u32 flags) |
| { |
| u8 old; |
| int err; |
| int notify = 0; |
| struct net_device *dev; |
| int update_isrouter = 0; |
| |
| write_lock_bh(&neigh->lock); |
| |
| dev = neigh->dev; |
| old = neigh->nud_state; |
| err = -EPERM; |
| |
| if (!(flags & NEIGH_UPDATE_F_ADMIN) && |
| (old & (NUD_NOARP | NUD_PERMANENT))) |
| goto out; |
| |
| if (!(new & NUD_VALID)) { |
| neigh_del_timer(neigh); |
| if (old & NUD_CONNECTED) |
| neigh_suspect(neigh); |
| neigh->nud_state = new; |
| err = 0; |
| notify = old & NUD_VALID; |
| goto out; |
| } |
| |
| /* Compare new lladdr with cached one */ |
| if (!dev->addr_len) { |
| /* First case: device needs no address. */ |
| lladdr = neigh->ha; |
| } else if (lladdr) { |
| /* The second case: if something is already cached |
| and a new address is proposed: |
| - compare new & old |
| - if they are different, check override flag |
| */ |
| if ((old & NUD_VALID) && |
| !memcmp(lladdr, neigh->ha, dev->addr_len)) |
| lladdr = neigh->ha; |
| } else { |
| /* No address is supplied; if we know something, |
| use it, otherwise discard the request. |
| */ |
| err = -EINVAL; |
| if (!(old & NUD_VALID)) |
| goto out; |
| lladdr = neigh->ha; |
| } |
| |
| if (new & NUD_CONNECTED) |
| neigh->confirmed = jiffies; |
| neigh->updated = jiffies; |
| |
| /* If entry was valid and address is not changed, |
| do not change entry state, if new one is STALE. |
| */ |
| err = 0; |
| update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; |
| if (old & NUD_VALID) { |
| if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { |
| update_isrouter = 0; |
| if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && |
| (old & NUD_CONNECTED)) { |
| lladdr = neigh->ha; |
| new = NUD_STALE; |
| } else |
| goto out; |
| } else { |
| if (lladdr == neigh->ha && new == NUD_STALE && |
| ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || |
| (old & NUD_CONNECTED)) |
| ) |
| new = old; |
| } |
| } |
| |
| if (new != old) { |
| neigh_del_timer(neigh); |
| if (new & NUD_IN_TIMER) |
| neigh_add_timer(neigh, (jiffies + |
| ((new & NUD_REACHABLE) ? |
| neigh->parms->reachable_time : |
| 0))); |
| neigh->nud_state = new; |
| } |
| |
| if (lladdr != neigh->ha) { |
| memcpy(&neigh->ha, lladdr, dev->addr_len); |
| neigh_update_hhs(neigh); |
| if (!(new & NUD_CONNECTED)) |
| neigh->confirmed = jiffies - |
| (neigh->parms->base_reachable_time << 1); |
| notify = 1; |
| } |
| if (new == old) |
| goto out; |
| if (new & NUD_CONNECTED) |
| neigh_connect(neigh); |
| else |
| neigh_suspect(neigh); |
| if (!(old & NUD_VALID)) { |
| struct sk_buff *skb; |
| |
| /* Again: avoid dead loop if something went wrong */ |
| |
| while (neigh->nud_state & NUD_VALID && |
| (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { |
| struct neighbour *n1 = neigh; |
| write_unlock_bh(&neigh->lock); |
| /* On shaper/eql skb->dst->neighbour != neigh :( */ |
| if (skb->dst && skb->dst->neighbour) |
| n1 = skb->dst->neighbour; |
| n1->output(skb); |
| write_lock_bh(&neigh->lock); |
| } |
| skb_queue_purge(&neigh->arp_queue); |
| } |
| out: |
| if (update_isrouter) { |
| neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? |
| (neigh->flags | NTF_ROUTER) : |
| (neigh->flags & ~NTF_ROUTER); |
| } |
| write_unlock_bh(&neigh->lock); |
| |
| if (notify) |
| neigh_update_notify(neigh); |
| |
| return err; |
| } |
| |
| struct neighbour *neigh_event_ns(struct neigh_table *tbl, |
| u8 *lladdr, void *saddr, |
| struct net_device *dev) |
| { |
| struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, |
| lladdr || !dev->addr_len); |
| if (neigh) |
| neigh_update(neigh, lladdr, NUD_STALE, |
| NEIGH_UPDATE_F_OVERRIDE); |
| return neigh; |
| } |
| |
| static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, |
| __be16 protocol) |
| { |
| struct hh_cache *hh; |
| struct net_device *dev = dst->dev; |
| |
| for (hh = n->hh; hh; hh = hh->hh_next) |
| if (hh->hh_type == protocol) |
| break; |
| |
| if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) { |
| seqlock_init(&hh->hh_lock); |
| hh->hh_type = protocol; |
| atomic_set(&hh->hh_refcnt, 0); |
| hh->hh_next = NULL; |
| |
| if (dev->header_ops->cache(n, hh)) { |
| kfree(hh); |
| hh = NULL; |
| } else { |
| atomic_inc(&hh->hh_refcnt); |
| hh->hh_next = n->hh; |
| n->hh = hh; |
| if (n->nud_state & NUD_CONNECTED) |
| hh->hh_output = n->ops->hh_output; |
| else |
| hh->hh_output = n->ops->output; |
| } |
| } |
| if (hh) { |
| atomic_inc(&hh->hh_refcnt); |
| dst->hh = hh; |
| } |
| } |
| |
| /* This function can be used in contexts, where only old dev_queue_xmit |
| worked, f.e. if you want to override normal output path (eql, shaper), |
| but resolution is not made yet. |
| */ |
| |
| int neigh_compat_output(struct sk_buff *skb) |
| { |
| struct net_device *dev = skb->dev; |
| |
| __skb_pull(skb, skb_network_offset(skb)); |
| |
| if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, |
| skb->len) < 0 && |
| dev->header_ops->rebuild(skb)) |
| return 0; |
| |
| return dev_queue_xmit(skb); |
| } |
| |
| /* Slow and careful. */ |
| |
| int neigh_resolve_output(struct sk_buff *skb) |
| { |
| struct dst_entry *dst = skb->dst; |
| struct neighbour *neigh; |
| int rc = 0; |
| |
| if (!dst || !(neigh = dst->neighbour)) |
| goto discard; |
| |
| __skb_pull(skb, skb_network_offset(skb)); |
| |
| if (!neigh_event_send(neigh, skb)) { |
| int err; |
| struct net_device *dev = neigh->dev; |
| if (dev->header_ops->cache && !dst->hh) { |
| write_lock_bh(&neigh->lock); |
| if (!dst->hh) |
| neigh_hh_init(neigh, dst, dst->ops->protocol); |
| err = dev_hard_header(skb, dev, ntohs(skb->protocol), |
| neigh->ha, NULL, skb->len); |
| write_unlock_bh(&neigh->lock); |
| } else { |
| read_lock_bh(&neigh->lock); |
| err = dev_hard_header(skb, dev, ntohs(skb->protocol), |
| neigh->ha, NULL, skb->len); |
| read_unlock_bh(&neigh->lock); |
| } |
| if (err >= 0) |
| rc = neigh->ops->queue_xmit(skb); |
| else |
| goto out_kfree_skb; |
| } |
| out: |
| return rc; |
| discard: |
| NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", |
| dst, dst ? dst->neighbour : NULL); |
| out_kfree_skb: |
| rc = -EINVAL; |
| kfree_skb(skb); |
| goto out; |
| } |
| |
| /* As fast as possible without hh cache */ |
| |
| int neigh_connected_output(struct sk_buff *skb) |
| { |
| int err; |
| struct dst_entry *dst = skb->dst; |
| struct neighbour *neigh = dst->neighbour; |
| struct net_device *dev = neigh->dev; |
| |
| __skb_pull(skb, skb_network_offset(skb)); |
| |
| read_lock_bh(&neigh->lock); |
| err = dev_hard_header(skb, dev, ntohs(skb->protocol), |
| neigh->ha, NULL, skb->len); |
| read_unlock_bh(&neigh->lock); |
| if (err >= 0) |
| err = neigh->ops->queue_xmit(skb); |
| else { |
| err = -EINVAL; |
| kfree_skb(skb); |
| } |
| return err; |
| } |
| |
| static void neigh_proxy_process(unsigned long arg) |
| { |
| struct neigh_table *tbl = (struct neigh_table *)arg; |
| long sched_next = 0; |
| unsigned long now = jiffies; |
| struct sk_buff *skb; |
| |
| spin_lock(&tbl->proxy_queue.lock); |
| |
| skb = tbl->proxy_queue.next; |
| |
| while (skb != (struct sk_buff *)&tbl->proxy_queue) { |
| struct sk_buff *back = skb; |
| long tdif = NEIGH_CB(back)->sched_next - now; |
| |
| skb = skb->next; |
| if (tdif <= 0) { |
| struct net_device *dev = back->dev; |
| __skb_unlink(back, &tbl->proxy_queue); |
| if (tbl->proxy_redo && netif_running(dev)) |
| tbl->proxy_redo(back); |
| else |
| kfree_skb(back); |
| |
| dev_put(dev); |
| } else if (!sched_next || tdif < sched_next) |
| sched_next = tdif; |
| } |
| del_timer(&tbl->proxy_timer); |
| if (sched_next) |
| mod_timer(&tbl->proxy_timer, jiffies + sched_next); |
| spin_unlock(&tbl->proxy_queue.lock); |
| } |
| |
| void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, |
| struct sk_buff *skb) |
| { |
| unsigned long now = jiffies; |
| unsigned long sched_next = now + (net_random() % p->proxy_delay); |
| |
| if (tbl->proxy_queue.qlen > p->proxy_qlen) { |
| kfree_skb(skb); |
| return; |
| } |
| |
| NEIGH_CB(skb)->sched_next = sched_next; |
| NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; |
| |
| spin_lock(&tbl->proxy_queue.lock); |
| if (del_timer(&tbl->proxy_timer)) { |
| if (time_before(tbl->proxy_timer.expires, sched_next)) |
| sched_next = tbl->proxy_timer.expires; |
| } |
| dst_release(skb->dst); |
| skb->dst = NULL; |
| dev_hold(skb->dev); |
| __skb_queue_tail(&tbl->proxy_queue, skb); |
| mod_timer(&tbl->proxy_timer, sched_next); |
| spin_unlock(&tbl->proxy_queue.lock); |
| } |
| |
| static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl, |
| struct net *net, int ifindex) |
| { |
| struct neigh_parms *p; |
| |
| for (p = &tbl->parms; p; p = p->next) { |
| if (p->net != net) |
| continue; |
| if ((p->dev && p->dev->ifindex == ifindex) || |
| (!p->dev && !ifindex)) |
| return p; |
| } |
| |
| return NULL; |
| } |
| |
| struct neigh_parms *neigh_parms_alloc(struct net_device *dev, |
| struct neigh_table *tbl) |
| { |
| struct neigh_parms *p, *ref; |
| struct net *net; |
| |
| net = dev->nd_net; |
| ref = lookup_neigh_params(tbl, net, 0); |
| if (!ref) |
| return NULL; |
| |
| p = kmemdup(ref, sizeof(*p), GFP_KERNEL); |
| if (p) { |
| p->tbl = tbl; |
| atomic_set(&p->refcnt, 1); |
| INIT_RCU_HEAD(&p->rcu_head); |
| p->reachable_time = |
| neigh_rand_reach_time(p->base_reachable_time); |
| |
| if (dev->neigh_setup && dev->neigh_setup(dev, p)) { |
| kfree(p); |
| return NULL; |
| } |
| |
| dev_hold(dev); |
| p->dev = dev; |
| p->net = hold_net(net); |
| p->sysctl_table = NULL; |
| write_lock_bh(&tbl->lock); |
| p->next = tbl->parms.next; |
| tbl->parms.next = p; |
| write_unlock_bh(&tbl->lock); |
| } |
| return p; |
| } |
| |
| static void neigh_rcu_free_parms(struct rcu_head *head) |
| { |
| struct neigh_parms *parms = |
| container_of(head, struct neigh_parms, rcu_head); |
| |
| neigh_parms_put(parms); |
| } |
| |
| void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) |
| { |
| struct neigh_parms **p; |
| |
| if (!parms || parms == &tbl->parms) |
| return; |
| write_lock_bh(&tbl->lock); |
| for (p = &tbl->parms.next; *p; p = &(*p)->next) { |
| if (*p == parms) { |
| *p = parms->next; |
| parms->dead = 1; |
| write_unlock_bh(&tbl->lock); |
| if (parms->dev) |
| dev_put(parms->dev); |
| call_rcu(&parms->rcu_head, neigh_rcu_free_parms); |
| return; |
| } |
| } |
| write_unlock_bh(&tbl->lock); |
| NEIGH_PRINTK1("neigh_parms_release: not found\n"); |
| } |
| |
| static void neigh_parms_destroy(struct neigh_parms *parms) |
| { |
| release_net(parms->net); |
| kfree(parms); |
| } |
| |
| static struct lock_class_key neigh_table_proxy_queue_class; |
| |
| void neigh_table_init_no_netlink(struct neigh_table *tbl) |
| { |
| unsigned long now = jiffies; |
| unsigned long phsize; |
| |
| tbl->parms.net = &init_net; |
| atomic_set(&tbl->parms.refcnt, 1); |
| INIT_RCU_HEAD(&tbl->parms.rcu_head); |
| tbl->parms.reachable_time = |
| neigh_rand_reach_time(tbl->parms.base_reachable_time); |
| |
| if (!tbl->kmem_cachep) |
| tbl->kmem_cachep = |
| kmem_cache_create(tbl->id, tbl->entry_size, 0, |
| SLAB_HWCACHE_ALIGN|SLAB_PANIC, |
| NULL); |
| tbl->stats = alloc_percpu(struct neigh_statistics); |
| if (!tbl->stats) |
| panic("cannot create neighbour cache statistics"); |
| |
| #ifdef CONFIG_PROC_FS |
| tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat); |
| if (!tbl->pde) |
| panic("cannot create neighbour proc dir entry"); |
| tbl->pde->proc_fops = &neigh_stat_seq_fops; |
| tbl->pde->data = tbl; |
| #endif |
| |
| tbl->hash_mask = 1; |
| tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1); |
| |
| phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); |
| tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); |
| |
| if (!tbl->hash_buckets || !tbl->phash_buckets) |
| panic("cannot allocate neighbour cache hashes"); |
| |
| get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); |
| |
| rwlock_init(&tbl->lock); |
| setup_timer(&tbl->gc_timer, neigh_periodic_timer, (unsigned long)tbl); |
| tbl->gc_timer.expires = now + 1; |
| add_timer(&tbl->gc_timer); |
| |
| setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); |
| skb_queue_head_init_class(&tbl->proxy_queue, |
| &neigh_table_proxy_queue_class); |
| |
| tbl->last_flush = now; |
| tbl->last_rand = now + tbl->parms.reachable_time * 20; |
| } |
| |
| void neigh_table_init(struct neigh_table *tbl) |
| { |
| struct neigh_table *tmp; |
| |
| neigh_table_init_no_netlink(tbl); |
| write_lock(&neigh_tbl_lock); |
| for (tmp = neigh_tables; tmp; tmp = tmp->next) { |
| if (tmp->family == tbl->family) |
| break; |
| } |
| tbl->next = neigh_tables; |
| neigh_tables = tbl; |
| write_unlock(&neigh_tbl_lock); |
| |
| if (unlikely(tmp)) { |
| printk(KERN_ERR "NEIGH: Registering multiple tables for " |
| "family %d\n", tbl->family); |
| dump_stack(); |
| } |
| } |
| |
| int neigh_table_clear(struct neigh_table *tbl) |
| { |
| struct neigh_table **tp; |
| |
| /* It is not clean... Fix it to unload IPv6 module safely */ |
| del_timer_sync(&tbl->gc_timer); |
| del_timer_sync(&tbl->proxy_timer); |
| pneigh_queue_purge(&tbl->proxy_queue); |
| neigh_ifdown(tbl, NULL); |
| if (atomic_read(&tbl->entries)) |
| printk(KERN_CRIT "neighbour leakage\n"); |
| write_lock(&neigh_tbl_lock); |
| for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { |
| if (*tp == tbl) { |
| *tp = tbl->next; |
| break; |
| } |
| } |
| write_unlock(&neigh_tbl_lock); |
| |
| neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1); |
| tbl->hash_buckets = NULL; |
| |
| kfree(tbl->phash_buckets); |
| tbl->phash_buckets = NULL; |
| |
| remove_proc_entry(tbl->id, init_net.proc_net_stat); |
| |
| free_percpu(tbl->stats); |
| tbl->stats = NULL; |
| |
| kmem_cache_destroy(tbl->kmem_cachep); |
| tbl->kmem_cachep = NULL; |
| |
| return 0; |
| } |
| |
| static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) |
| { |
| struct net *net = skb->sk->sk_net; |
| struct ndmsg *ndm; |
| struct nlattr *dst_attr; |
| struct neigh_table *tbl; |
| struct net_device *dev = NULL; |
| int err = -EINVAL; |
| |
| if (nlmsg_len(nlh) < sizeof(*ndm)) |
| goto out; |
| |
| dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); |
| if (dst_attr == NULL) |
| goto out; |
| |
| ndm = nlmsg_data(nlh); |
| if (ndm->ndm_ifindex) { |
| dev = dev_get_by_index(net, ndm->ndm_ifindex); |
| if (dev == NULL) { |
| err = -ENODEV; |
| goto out; |
| } |
| } |
| |
| read_lock(&neigh_tbl_lock); |
| for (tbl = neigh_tables; tbl; tbl = tbl->next) { |
| struct neighbour *neigh; |
| |
| if (tbl->family != ndm->ndm_family) |
| continue; |
| read_unlock(&neigh_tbl_lock); |
| |
| if (nla_len(dst_attr) < tbl->key_len) |
| goto out_dev_put; |
| |
| if (ndm->ndm_flags & NTF_PROXY) { |
| err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); |
| goto out_dev_put; |
| } |
| |
| if (dev == NULL) |
| goto out_dev_put; |
| |
| neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); |
| if (neigh == NULL) { |
| err = -ENOENT; |
| goto out_dev_put; |
| } |
| |
| err = neigh_update(neigh, NULL, NUD_FAILED, |
| NEIGH_UPDATE_F_OVERRIDE | |
| NEIGH_UPDATE_F_ADMIN); |
| neigh_release(neigh); |
| goto out_dev_put; |
| } |
| read_unlock(&neigh_tbl_lock); |
| err = -EAFNOSUPPORT; |
| |
| out_dev_put: |
| if (dev) |
| dev_put(dev); |
| out: |
| return err; |
| } |
| |
| static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) |
| { |
| struct net *net = skb->sk->sk_net; |
| struct ndmsg *ndm; |
| struct nlattr *tb[NDA_MAX+1]; |
| struct neigh_table *tbl; |
| struct net_device *dev = NULL; |
| int err; |
| |
| err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); |
| if (err < 0) |
| goto out; |
| |
| err = -EINVAL; |
| if (tb[NDA_DST] == NULL) |
| goto out; |
| |
| ndm = nlmsg_data(nlh); |
| if (ndm->ndm_ifindex) { |
| dev = dev_get_by_index(net, ndm->ndm_ifindex); |
| if (dev == NULL) { |
| err = -ENODEV; |
| goto out; |
| } |
| |
| if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) |
| goto out_dev_put; |
| } |
| |
| read_lock(&neigh_tbl_lock); |
| for (tbl = neigh_tables; tbl; tbl = tbl->next) { |
| int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; |
| struct neighbour *neigh; |
| void *dst, *lladdr; |
| |
| if (tbl->family != ndm->ndm_family) |
| continue; |
| read_unlock(&neigh_tbl_lock); |
| |
| if (nla_len(tb[NDA_DST]) < tbl->key_len) |
| goto out_dev_put; |
| dst = nla_data(tb[NDA_DST]); |
| lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; |
| |
| if (ndm->ndm_flags & NTF_PROXY) { |
| struct pneigh_entry *pn; |
| |
| err = -ENOBUFS; |
| pn = pneigh_lookup(tbl, net, dst, dev, 1); |
| if (pn) { |
| pn->flags = ndm->ndm_flags; |
| err = 0; |
| } |
| goto out_dev_put; |
| } |
| |
| if (dev == NULL) |
| goto out_dev_put; |
| |
| neigh = neigh_lookup(tbl, dst, dev); |
| if (neigh == NULL) { |
| if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { |
| err = -ENOENT; |
| goto out_dev_put; |
| } |
| |
| neigh = __neigh_lookup_errno(tbl, dst, dev); |
| if (IS_ERR(neigh)) { |
| err = PTR_ERR(neigh); |
| goto out_dev_put; |
| } |
| } else { |
| if (nlh->nlmsg_flags & NLM_F_EXCL) { |
| err = -EEXIST; |
| neigh_release(neigh); |
| goto out_dev_put; |
| } |
| |
| if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) |
| flags &= ~NEIGH_UPDATE_F_OVERRIDE; |
| } |
| |
| err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); |
| neigh_release(neigh); |
| goto out_dev_put; |
| } |
| |
| read_unlock(&neigh_tbl_lock); |
| err = -EAFNOSUPPORT; |
| |
| out_dev_put: |
| if (dev) |
| dev_put(dev); |
| out: |
| return err; |
| } |
| |
| static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) |
| { |
| struct nlattr *nest; |
| |
| nest = nla_nest_start(skb, NDTA_PARMS); |
| if (nest == NULL) |
| return -ENOBUFS; |
| |
| if (parms->dev) |
| NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); |
| |
| NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); |
| NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); |
| NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); |
| NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); |
| NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); |
| NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); |
| NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); |
| NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, |
| parms->base_reachable_time); |
| NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); |
| NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); |
| NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); |
| NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); |
| NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); |
| NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); |
| |
| return nla_nest_end(skb, nest); |
| |
| nla_put_failure: |
| return nla_nest_cancel(skb, nest); |
| } |
| |
| static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, |
| u32 pid, u32 seq, int type, int flags) |
| { |
| struct nlmsghdr *nlh; |
| struct ndtmsg *ndtmsg; |
| |
| nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); |
| if (nlh == NULL) |
| return -EMSGSIZE; |
| |
| ndtmsg = nlmsg_data(nlh); |
| |
| read_lock_bh(&tbl->lock); |
| ndtmsg->ndtm_family = tbl->family; |
| ndtmsg->ndtm_pad1 = 0; |
| ndtmsg->ndtm_pad2 = 0; |
| |
| NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); |
| NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); |
| NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); |
| NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); |
| NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); |
| |
| { |
| unsigned long now = jiffies; |
| unsigned int flush_delta = now - tbl->last_flush; |
| unsigned int rand_delta = now - tbl->last_rand; |
| |
| struct ndt_config ndc = { |
| .ndtc_key_len = tbl->key_len, |
| .ndtc_entry_size = tbl->entry_size, |
| .ndtc_entries = atomic_read(&tbl->entries), |
| .ndtc_last_flush = jiffies_to_msecs(flush_delta), |
| .ndtc_last_rand = jiffies_to_msecs(rand_delta), |
| .ndtc_hash_rnd = tbl->hash_rnd, |
| .ndtc_hash_mask = tbl->hash_mask, |
| .ndtc_hash_chain_gc = tbl->hash_chain_gc, |
| .ndtc_proxy_qlen = tbl->proxy_queue.qlen, |
| }; |
| |
| NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); |
| } |
| |
| { |
| int cpu; |
| struct ndt_stats ndst; |
| |
| memset(&ndst, 0, sizeof(ndst)); |
| |
| for_each_possible_cpu(cpu) { |
| struct neigh_statistics *st; |
| |
| st = per_cpu_ptr(tbl->stats, cpu); |
| ndst.ndts_allocs += st->allocs; |
| ndst.ndts_destroys += st->destroys; |
| ndst.ndts_hash_grows += st->hash_grows; |
| ndst.ndts_res_failed += st->res_failed; |
| ndst.ndts_lookups += st->lookups; |
| ndst.ndts_hits += st->hits; |
| ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; |
| ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; |
| ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; |
| ndst.ndts_forced_gc_runs += st->forced_gc_runs; |
| } |
| |
| NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); |
| } |
| |
| BUG_ON(tbl->parms.dev); |
| if (neightbl_fill_parms(skb, &tbl->parms) < 0) |
| goto nla_put_failure; |
| |
| read_unlock_bh(&tbl->lock); |
| return nlmsg_end(skb, nlh); |
| |
| nla_put_failure: |
| read_unlock_bh(&tbl->lock); |
| nlmsg_cancel(skb, nlh); |
| return -EMSGSIZE; |
| } |
| |
| static int neightbl_fill_param_info(struct sk_buff *skb, |
| struct neigh_table *tbl, |
| struct neigh_parms *parms, |
| u32 pid, u32 seq, int type, |
| unsigned int flags) |
| { |
| struct ndtmsg *ndtmsg; |
| struct nlmsghdr *nlh; |
| |
| nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); |
| if (nlh == NULL) |
| return -EMSGSIZE; |
| |
| ndtmsg = nlmsg_data(nlh); |
| |
| read_lock_bh(&tbl->lock); |
| ndtmsg->ndtm_family = tbl->family; |
| ndtmsg->ndtm_pad1 = 0; |
| ndtmsg->ndtm_pad2 = 0; |
| |
| if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || |
| neightbl_fill_parms(skb, parms) < 0) |
| goto errout; |
| |
| read_unlock_bh(&tbl->lock); |
| return nlmsg_end(skb, nlh); |
| errout: |
| read_unlock_bh(&tbl->lock); |
| nlmsg_cancel(skb, nlh); |
| return -EMSGSIZE; |
| } |
| |
| static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { |
| [NDTA_NAME] = { .type = NLA_STRING }, |
| [NDTA_THRESH1] = { .type = NLA_U32 }, |
| [NDTA_THRESH2] = { .type = NLA_U32 }, |
| [NDTA_THRESH3] = { .type = NLA_U32 }, |
| [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, |
| [NDTA_PARMS] = { .type = NLA_NESTED }, |
| }; |
| |
| static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { |
| [NDTPA_IFINDEX] = { .type = NLA_U32 }, |
| [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, |
| [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, |
| [NDTPA_APP_PROBES] = { .type = NLA_U32 }, |
| [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, |
| [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, |
| [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, |
| [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, |
| [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, |
| [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, |
| [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, |
| [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, |
| [NDTPA_LOCKTIME] = { .type = NLA_U64 }, |
| }; |
| |
| static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) |
| { |
| struct net *net = skb->sk->sk_net; |
| struct neigh_table *tbl; |
| struct ndtmsg *ndtmsg; |
| struct nlattr *tb[NDTA_MAX+1]; |
| int err; |
| |
| err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, |
| nl_neightbl_policy); |
| if (err < 0) |
| goto errout; |
| |
| if (tb[NDTA_NAME] == NULL) { |
| err = -EINVAL; |
| goto errout; |
| } |
| |
| ndtmsg = nlmsg_data(nlh); |
| read_lock(&neigh_tbl_lock); |
| for (tbl = neigh_tables; tbl; tbl = tbl->next) { |
| if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) |
| continue; |
| |
| if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) |
| break; |
| } |
| |
| if (tbl == NULL) { |
| err = -ENOENT; |
| goto errout_locked; |
| } |
| |
| /* |
| * We acquire tbl->lock to be nice to the periodic timers and |
| * make sure they always see a consistent set of values. |
| */ |
| write_lock_bh(&tbl->lock); |
| |
| if (tb[NDTA_PARMS]) { |
| struct nlattr *tbp[NDTPA_MAX+1]; |
| struct neigh_parms *p; |
| int i, ifindex = 0; |
| |
| err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], |
| nl_ntbl_parm_policy); |
| if (err < 0) |
| goto errout_tbl_lock; |
| |
| if (tbp[NDTPA_IFINDEX]) |
| ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); |
| |
| p = lookup_neigh_params(tbl, net, ifindex); |
| if (p == NULL) { |
| err = -ENOENT; |
| goto errout_tbl_lock; |
| } |
| |
| for (i = 1; i <= NDTPA_MAX; i++) { |
| if (tbp[i] == NULL) |
| continue; |
| |
| switch (i) { |
| case NDTPA_QUEUE_LEN: |
| p->queue_len = nla_get_u32(tbp[i]); |
| break; |
| case NDTPA_PROXY_QLEN: |
| p->proxy_qlen = nla_get_u32(tbp[i]); |
| break; |
| case NDTPA_APP_PROBES: |
| p->app_probes = nla_get_u32(tbp[i]); |
| break; |
| case NDTPA_UCAST_PROBES: |
| p->ucast_probes = nla_get_u32(tbp[i]); |
| break; |
| case NDTPA_MCAST_PROBES: |
| p->mcast_probes = nla_get_u32(tbp[i]); |
| break; |
| case NDTPA_BASE_REACHABLE_TIME: |
| p->base_reachable_time = nla_get_msecs(tbp[i]); |
| break; |
| case NDTPA_GC_STALETIME: |
| p->gc_staletime = nla_get_msecs(tbp[i]); |
| break; |
| case NDTPA_DELAY_PROBE_TIME: |
| p->delay_probe_time = nla_get_msecs(tbp[i]); |
| break; |
| case NDTPA_RETRANS_TIME: |
| p->retrans_time = nla_get_msecs(tbp[i]); |
| break; |
| case NDTPA_ANYCAST_DELAY: |
| p->anycast_delay = nla_get_msecs(tbp[i]); |
| break; |
| case NDTPA_PROXY_DELAY: |
| p->proxy_delay = nla_get_msecs(tbp[i]); |
| break; |
| case NDTPA_LOCKTIME: |
| p->locktime = nla_get_msecs(tbp[i]); |
| break; |
| } |
| } |
| } |
| |
| if (tb[NDTA_THRESH1]) |
| tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); |
| |
| if (tb[NDTA_THRESH2]) |
| tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); |
| |
| if (tb[NDTA_THRESH3]) |
| tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); |
| |
| if (tb[NDTA_GC_INTERVAL]) |
| tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); |
| |
| err = 0; |
| |
| errout_tbl_lock: |
| write_unlock_bh(&tbl->lock); |
| errout_locked: |
| read_unlock(&neigh_tbl_lock); |
| errout: |
| return err; |
| } |
| |
| static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) |
| { |
| struct net *net = skb->sk->sk_net; |
| int family, tidx, nidx = 0; |
| int tbl_skip = cb->args[0]; |
| int neigh_skip = cb->args[1]; |
| struct neigh_table *tbl; |
| |
| family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; |
| |
| read_lock(&neigh_tbl_lock); |
| for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { |
| struct neigh_parms *p; |
| |
| if (tidx < tbl_skip || (family && tbl->family != family)) |
| continue; |
| |
| if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, |
| cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, |
| NLM_F_MULTI) <= 0) |
| break; |
| |
| for (nidx = 0, p = tbl->parms.next; p; p = p->next) { |
| if (net != p->net) |
| continue; |
| |
| if (nidx++ < neigh_skip) |
| continue; |
| |
| if (neightbl_fill_param_info(skb, tbl, p, |
| NETLINK_CB(cb->skb).pid, |
| cb->nlh->nlmsg_seq, |
| RTM_NEWNEIGHTBL, |
| NLM_F_MULTI) <= 0) |
| goto out; |
| } |
| |
| neigh_skip = 0; |
| } |
| out: |
| read_unlock(&neigh_tbl_lock); |
| cb->args[0] = tidx; |
| cb->args[1] = nidx; |
| |
| return skb->len; |
| } |
| |
| static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, |
| u32 pid, u32 seq, int type, unsigned int flags) |
| { |
| unsigned long now = jiffies; |
| struct nda_cacheinfo ci; |
| struct nlmsghdr *nlh; |
| struct ndmsg *ndm; |
| |
| nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); |
| if (nlh == NULL) |
| return -EMSGSIZE; |
| |
| ndm = nlmsg_data(nlh); |
| ndm->ndm_family = neigh->ops->family; |
| ndm->ndm_pad1 = 0; |
| ndm->ndm_pad2 = 0; |
| ndm->ndm_flags = neigh->flags; |
| ndm->ndm_type = neigh->type; |
| ndm->ndm_ifindex = neigh->dev->ifindex; |
| |
| NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); |
| |
| read_lock_bh(&neigh->lock); |
| ndm->ndm_state = neigh->nud_state; |
| if ((neigh->nud_state & NUD_VALID) && |
| nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) { |
| read_unlock_bh(&neigh->lock); |
| goto nla_put_failure; |
| } |
| |
| ci.ndm_used = now - neigh->used; |
| ci.ndm_confirmed = now - neigh->confirmed; |
| ci.ndm_updated = now - neigh->updated; |
| ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; |
| read_unlock_bh(&neigh->lock); |
| |
| NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); |
| NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); |
| |
| return nlmsg_end(skb, nlh); |
| |
| nla_put_failure: |
| nlmsg_cancel(skb, nlh); |
| return -EMSGSIZE; |
| } |
| |
| static void neigh_update_notify(struct neighbour *neigh) |
| { |
| call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); |
| __neigh_notify(neigh, RTM_NEWNEIGH, 0); |
| } |
| |
| static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, |
| struct netlink_callback *cb) |
| { |
| struct net * net = skb->sk->sk_net; |
| struct neighbour *n; |
| int rc, h, s_h = cb->args[1]; |
| int idx, s_idx = idx = cb->args[2]; |
| |
| read_lock_bh(&tbl->lock); |
| for (h = 0; h <= tbl->hash_mask; h++) { |
| if (h < s_h) |
| continue; |
| if (h > s_h) |
| s_idx = 0; |
| for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next) { |
| int lidx; |
| if (n->dev->nd_net != net) |
| continue; |
| lidx = idx++; |
| if (lidx < s_idx) |
| continue; |
| if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, |
| cb->nlh->nlmsg_seq, |
| RTM_NEWNEIGH, |
| NLM_F_MULTI) <= 0) { |
| read_unlock_bh(&tbl->lock); |
| rc = -1; |
| goto out; |
| } |
| } |
| } |
| read_unlock_bh(&tbl->lock); |
| rc = skb->len; |
| out: |
| cb->args[1] = h; |
| cb->args[2] = idx; |
| return rc; |
| } |
| |
| static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) |
| { |
| struct neigh_table *tbl; |
| int t, family, s_t; |
| |
| read_lock(&neigh_tbl_lock); |
| family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; |
| s_t = cb->args[0]; |
| |
| for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { |
| if (t < s_t || (family && tbl->family != family)) |
| continue; |
| if (t > s_t) |
| memset(&cb->args[1], 0, sizeof(cb->args) - |
| sizeof(cb->args[0])); |
| if (neigh_dump_table(tbl, skb, cb) < 0) |
| break; |
| } |
| read_unlock(&neigh_tbl_lock); |
| |
| cb->args[0] = t; |
| return skb->len; |
| } |
| |
| void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) |
| { |
| int chain; |
| |
| read_lock_bh(&tbl->lock); |
| for (chain = 0; chain <= tbl->hash_mask; chain++) { |
| struct neighbour *n; |
| |
| for (n = tbl->hash_buckets[chain]; n; n = n->next) |
| cb(n, cookie); |
| } |
| read_unlock_bh(&tbl->lock); |
| } |
| EXPORT_SYMBOL(neigh_for_each); |
| |
| /* The tbl->lock must be held as a writer and BH disabled. */ |
| void __neigh_for_each_release(struct neigh_table *tbl, |
| int (*cb)(struct neighbour *)) |
| { |
| int chain; |
| |
| for (chain = 0; chain <= tbl->hash_mask; chain++) { |
| struct neighbour *n, **np; |
| |
| np = &tbl->hash_buckets[chain]; |
| while ((n = *np) != NULL) { |
| int release; |
| |
| write_lock(&n->lock); |
| release = cb(n); |
| if (release) { |
| *np = n->next; |
| n->dead = 1; |
| } else |
| np = &n->next; |
| write_unlock(&n->lock); |
| if (release) |
| neigh_cleanup_and_release(n); |
| } |
| } |
| } |
| EXPORT_SYMBOL(__neigh_for_each_release); |
| |
| #ifdef CONFIG_PROC_FS |
| |
| static struct neighbour *neigh_get_first(struct seq_file *seq) |
| { |
| struct neigh_seq_state *state = seq->private; |
| struct net *net = state->p.net; |
| struct neigh_table *tbl = state->tbl; |
| struct neighbour *n = NULL; |
| int bucket = state->bucket; |
| |
| state->flags &= ~NEIGH_SEQ_IS_PNEIGH; |
| for (bucket = 0; bucket <= tbl->hash_mask; bucket++) { |
| n = tbl->hash_buckets[bucket]; |
| |
| while (n) { |
| if (n->dev->nd_net != net) |
| goto next; |
| if (state->neigh_sub_iter) { |
| loff_t fakep = 0; |
| void *v; |
| |
| v = state->neigh_sub_iter(state, n, &fakep); |
| if (!v) |
| goto next; |
| } |
| if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) |
| break; |
| if (n->nud_state & ~NUD_NOARP) |
| break; |
| next: |
| n = n->next; |
| } |
| |
| if (n) |
| break; |
| } |
| state->bucket = bucket; |
| |
| return n; |
| } |
| |
| static struct neighbour *neigh_get_next(struct seq_file *seq, |
| struct neighbour *n, |
| loff_t *pos) |
| { |
| struct neigh_seq_state *state = seq->private; |
| struct net *net = state->p.net; |
| struct neigh_table *tbl = state->tbl; |
| |
| if (state->neigh_sub_iter) { |
| void *v = state->neigh_sub_iter(state, n, pos); |
| if (v) |
| return n; |
| } |
| n = n->next; |
| |
| while (1) { |
| while (n) { |
| if (n->dev->nd_net != net) |
| goto next; |
| if (state->neigh_sub_iter) { |
| void *v = state->neigh_sub_iter(state, n, pos); |
| if (v) |
| return n; |
| goto next; |
| } |
| if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) |
| break; |
| |
| if (n->nud_state & ~NUD_NOARP) |
| break; |
| next: |
| n = n->next; |
| } |
| |
| if (n) |
| break; |
| |
| if (++state->bucket > tbl->hash_mask) |
| break; |
| |
| n = tbl->hash_buckets[state->bucket]; |
| } |
| |
| if (n && pos) |
| --(*pos); |
| return n; |
| } |
| |
| static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) |
| { |
| struct neighbour *n = neigh_get_first(seq); |
| |
| if (n) { |
| while (*pos) { |
| n = neigh_get_next(seq, n, pos); |
| if (!n) |
| break; |
| } |
| } |
| return *pos ? NULL : n; |
| } |
| |
| static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) |
| { |
| struct neigh_seq_state *state = seq->private; |
| struct net * net = state->p.net; |
| struct neigh_table *tbl = state->tbl; |
| struct pneigh_entry *pn = NULL; |
| int bucket = state->bucket; |
| |
| state->flags |= NEIGH_SEQ_IS_PNEIGH; |
| for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { |
| pn = tbl->phash_buckets[bucket]; |
| while (pn && (pn->net != net)) |
| pn = pn->next; |
| if (pn) |
| break; |
| } |
| state->bucket = bucket; |
| |
| return pn; |
| } |
| |
| static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, |
| struct pneigh_entry *pn, |
| loff_t *pos) |
| { |
| struct neigh_seq_state *state = seq->private; |
| struct net * net = state->p.net; |
| struct neigh_table *tbl = state->tbl; |
| |
| pn = pn->next; |
| while (!pn) { |
| if (++state->bucket > PNEIGH_HASHMASK) |
| break; |
| pn = tbl->phash_buckets[state->bucket]; |
| while (pn && (pn->net != net)) |
| pn = pn->next; |
| if (pn) |
| break; |
| } |
| |
| if (pn && pos) |
| --(*pos); |
| |
| return pn; |
| } |
| |
| static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) |
| { |
| struct pneigh_entry *pn = pneigh_get_first(seq); |
| |
| if (pn) { |
| while (*pos) { |
| pn = pneigh_get_next(seq, pn, pos); |
| if (!pn) |
| break; |
| } |
| } |
| return *pos ? NULL : pn; |
| } |
| |
| static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) |
| { |
| struct neigh_seq_state *state = seq->private; |
| void *rc; |
| |
| rc = neigh_get_idx(seq, pos); |
| if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) |
| rc = pneigh_get_idx(seq, pos); |
| |
| return rc; |
| } |
| |
| void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) |
| __acquires(tbl->lock) |
| { |
| struct neigh_seq_state *state = seq->private; |
| loff_t pos_minus_one; |
| |
| state->tbl = tbl; |
| state->bucket = 0; |
| state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); |
| |
| read_lock_bh(&tbl->lock); |
| |
| pos_minus_one = *pos - 1; |
| return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN; |
| } |
| EXPORT_SYMBOL(neigh_seq_start); |
| |
| void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct neigh_seq_state *state; |
| void *rc; |
| |
| if (v == SEQ_START_TOKEN) { |
| rc = neigh_get_idx(seq, pos); |
| goto out; |
| } |
| |
| state = seq->private; |
| if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { |
| rc = neigh_get_next(seq, v, NULL); |
| if (rc) |
| goto out; |
| if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) |
| rc = pneigh_get_first(seq); |
| } else { |
| BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); |
| rc = pneigh_get_next(seq, v, NULL); |
| } |
| out: |
| ++(*pos); |
| return rc; |
| } |
| EXPORT_SYMBOL(neigh_seq_next); |
| |
| void neigh_seq_stop(struct seq_file *seq, void *v) |
| __releases(tbl->lock) |
| { |
| struct neigh_seq_state *state = seq->private; |
| struct neigh_table *tbl = state->tbl; |
| |
| read_unlock_bh(&tbl->lock); |
| } |
| EXPORT_SYMBOL(neigh_seq_stop); |
| |
| /* statistics via seq_file */ |
| |
| static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| struct proc_dir_entry *pde = seq->private; |
| struct neigh_table *tbl = pde->data; |
| int cpu; |
| |
| if (*pos == 0) |
| return SEQ_START_TOKEN; |
| |
| for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) { |
| if (!cpu_possible(cpu)) |
| continue; |
| *pos = cpu+1; |
| return per_cpu_ptr(tbl->stats, cpu); |
| } |
| return NULL; |
| } |
| |
| static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct proc_dir_entry *pde = seq->private; |
| struct neigh_table *tbl = pde->data; |
| int cpu; |
| |
| for (cpu = *pos; cpu < NR_CPUS; ++cpu) { |
| if (!cpu_possible(cpu)) |
| continue; |
| *pos = cpu+1; |
| return per_cpu_ptr(tbl->stats, cpu); |
| } |
| return NULL; |
| } |
| |
| static void neigh_stat_seq_stop(struct seq_file *seq, void *v) |
| { |
| |
| } |
| |
| static int neigh_stat_seq_show(struct seq_file *seq, void *v) |
| { |
| struct proc_dir_entry *pde = seq->private; |
| struct neigh_table *tbl = pde->data; |
| struct neigh_statistics *st = v; |
| |
| if (v == SEQ_START_TOKEN) { |
| seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n"); |
| return 0; |
| } |
| |
| seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " |
| "%08lx %08lx %08lx %08lx\n", |
| atomic_read(&tbl->entries), |
| |
| st->allocs, |
| st->destroys, |
| st->hash_grows, |
| |
| st->lookups, |
| st->hits, |
| |
| st->res_failed, |
| |
| st->rcv_probes_mcast, |
| st->rcv_probes_ucast, |
| |
| st->periodic_gc_runs, |
| st->forced_gc_runs |
| ); |
| |
| return 0; |
| } |
| |
| static const struct seq_operations neigh_stat_seq_ops = { |
| .start = neigh_stat_seq_start, |
| .next = neigh_stat_seq_next, |
| .stop = neigh_stat_seq_stop, |
| .show = neigh_stat_seq_show, |
| }; |
| |
| static int neigh_stat_seq_open(struct inode *inode, struct file *file) |
| { |
| int ret = seq_open(file, &neigh_stat_seq_ops); |
| |
| if (!ret) { |
| struct seq_file *sf = file->private_data; |
| sf->private = PDE(inode); |
| } |
| return ret; |
| }; |
| |
| static const struct file_operations neigh_stat_seq_fops = { |
| .owner = THIS_MODULE, |
| .open = neigh_stat_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| |
| #endif /* CONFIG_PROC_FS */ |
| |
| static inline size_t neigh_nlmsg_size(void) |
| { |
| return NLMSG_ALIGN(sizeof(struct ndmsg)) |
| + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ |
| + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ |
| + nla_total_size(sizeof(struct nda_cacheinfo)) |
| + nla_total_size(4); /* NDA_PROBES */ |
| } |
| |
| static void __neigh_notify(struct neighbour *n, int type, int flags) |
| { |
| struct net *net = n->dev->nd_net; |
| struct sk_buff *skb; |
| int err = -ENOBUFS; |
| |
| skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); |
| if (skb == NULL) |
| goto errout; |
| |
| err = neigh_fill_info(skb, n, 0, 0, type, flags); |
| if (err < 0) { |
| /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ |
| WARN_ON(err == -EMSGSIZE); |
| kfree_skb(skb); |
| goto errout; |
| } |
| err = rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); |
| errout: |
| if (err < 0) |
| rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); |
| } |
| |
| #ifdef CONFIG_ARPD |
| void neigh_app_ns(struct neighbour *n) |
| { |
| __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); |
| } |
| #endif /* CONFIG_ARPD */ |
| |
| #ifdef CONFIG_SYSCTL |
| |
| static struct neigh_sysctl_table { |
| struct ctl_table_header *sysctl_header; |
| struct ctl_table neigh_vars[__NET_NEIGH_MAX]; |
| char *dev_name; |
| } neigh_sysctl_template __read_mostly = { |
| .neigh_vars = { |
| { |
| .ctl_name = NET_NEIGH_MCAST_SOLICIT, |
| .procname = "mcast_solicit", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| { |
| .ctl_name = NET_NEIGH_UCAST_SOLICIT, |
| .procname = "ucast_solicit", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| { |
| .ctl_name = NET_NEIGH_APP_SOLICIT, |
| .procname = "app_solicit", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| { |
| .procname = "retrans_time", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_userhz_jiffies, |
| }, |
| { |
| .ctl_name = NET_NEIGH_REACHABLE_TIME, |
| .procname = "base_reachable_time", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_jiffies, |
| .strategy = &sysctl_jiffies, |
| }, |
| { |
| .ctl_name = NET_NEIGH_DELAY_PROBE_TIME, |
| .procname = "delay_first_probe_time", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_jiffies, |
| .strategy = &sysctl_jiffies, |
| }, |
| { |
| .ctl_name = NET_NEIGH_GC_STALE_TIME, |
| .procname = "gc_stale_time", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_jiffies, |
| .strategy = &sysctl_jiffies, |
| }, |
| { |
| .ctl_name = NET_NEIGH_UNRES_QLEN, |
| .procname = "unres_qlen", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| { |
| .ctl_name = NET_NEIGH_PROXY_QLEN, |
| .procname = "proxy_qlen", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| { |
| .procname = "anycast_delay", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_userhz_jiffies, |
| }, |
| { |
| .procname = "proxy_delay", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_userhz_jiffies, |
| }, |
| { |
| .procname = "locktime", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_userhz_jiffies, |
| }, |
| { |
| .ctl_name = NET_NEIGH_RETRANS_TIME_MS, |
| .procname = "retrans_time_ms", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_ms_jiffies, |
| .strategy = &sysctl_ms_jiffies, |
| }, |
| { |
| .ctl_name = NET_NEIGH_REACHABLE_TIME_MS, |
| .procname = "base_reachable_time_ms", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_ms_jiffies, |
| .strategy = &sysctl_ms_jiffies, |
| }, |
| { |
| .ctl_name = NET_NEIGH_GC_INTERVAL, |
| .procname = "gc_interval", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec_jiffies, |
| .strategy = &sysctl_jiffies, |
| }, |
| { |
| .ctl_name = NET_NEIGH_GC_THRESH1, |
| .procname = "gc_thresh1", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| { |
| .ctl_name = NET_NEIGH_GC_THRESH2, |
| .procname = "gc_thresh2", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| { |
| .ctl_name = NET_NEIGH_GC_THRESH3, |
| .procname = "gc_thresh3", |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = &proc_dointvec, |
| }, |
| {}, |
| }, |
| }; |
| |
| int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, |
| int p_id, int pdev_id, char *p_name, |
| proc_handler *handler, ctl_handler *strategy) |
| { |
| struct neigh_sysctl_table *t; |
| const char *dev_name_source = NULL; |
| |
| #define NEIGH_CTL_PATH_ROOT 0 |
| #define NEIGH_CTL_PATH_PROTO 1 |
| #define NEIGH_CTL_PATH_NEIGH 2 |
| #define NEIGH_CTL_PATH_DEV 3 |
| |
| struct ctl_path neigh_path[] = { |
| { .procname = "net", .ctl_name = CTL_NET, }, |
| { .procname = "proto", .ctl_name = 0, }, |
| { .procname = "neigh", .ctl_name = 0, }, |
| { .procname = "default", .ctl_name = NET_PROTO_CONF_DEFAULT, }, |
| { }, |
| }; |
| |
| t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); |
| if (!t) |
| goto err; |
| |
| t->neigh_vars[0].data = &p->mcast_probes; |
| t->neigh_vars[1].data = &p->ucast_probes; |
| t->neigh_vars[2].data = &p->app_probes; |
| t->neigh_vars[3].data = &p->retrans_time; |
| t->neigh_vars[4].data = &p->base_reachable_time; |
| t->neigh_vars[5].data = &p->delay_probe_time; |
| t->neigh_vars[6].data = &p->gc_staletime; |
| t->neigh_vars[7].data = &p->queue_len; |
| t->neigh_vars[8].data = &p->proxy_qlen; |
| t->neigh_vars[9].data = &p->anycast_delay; |
| t->neigh_vars[10].data = &p->proxy_delay; |
| t->neigh_vars[11].data = &p->locktime; |
| t->neigh_vars[12].data = &p->retrans_time; |
| t->neigh_vars[13].data = &p->base_reachable_time; |
| |
| if (dev) { |
| dev_name_source = dev->name; |
| neigh_path[NEIGH_CTL_PATH_DEV].ctl_name = dev->ifindex; |
| /* Terminate the table early */ |
| memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14])); |
| } else { |
| dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname; |
| t->neigh_vars[14].data = (int *)(p + 1); |
| t->neigh_vars[15].data = (int *)(p + 1) + 1; |
| t->neigh_vars[16].data = (int *)(p + 1) + 2; |
| t->neigh_vars[17].data = (int *)(p + 1) + 3; |
| } |
| |
| |
| if (handler || strategy) { |
| /* RetransTime */ |
| t->neigh_vars[3].proc_handler = handler; |
| t->neigh_vars[3].strategy = strategy; |
| t->neigh_vars[3].extra1 = dev; |
| if (!strategy) |
| t->neigh_vars[3].ctl_name = CTL_UNNUMBERED; |
| /* ReachableTime */ |
| t->neigh_vars[4].proc_handler = handler; |
| t->neigh_vars[4].strategy = strategy; |
| t->neigh_vars[4].extra1 = dev; |
| if (!strategy) |
| t->neigh_vars[4].ctl_name = CTL_UNNUMBERED; |
| /* RetransTime (in milliseconds)*/ |
| t->neigh_vars[12].proc_handler = handler; |
| t->neigh_vars[12].strategy = strategy; |
| t->neigh_vars[12].extra1 = dev; |
| if (!strategy) |
| t->neigh_vars[12].ctl_name = CTL_UNNUMBERED; |
| /* ReachableTime (in milliseconds) */ |
| t->neigh_vars[13].proc_handler = handler; |
| t->neigh_vars[13].strategy = strategy; |
| t->neigh_vars[13].extra1 = dev; |
| if (!strategy) |
| t->neigh_vars[13].ctl_name = CTL_UNNUMBERED; |
| } |
| |
| t->dev_name = kstrdup(dev_name_source, GFP_KERNEL); |
| if (!t->dev_name) |
| goto free; |
| |
| neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name; |
| neigh_path[NEIGH_CTL_PATH_NEIGH].ctl_name = pdev_id; |
| neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name; |
| neigh_path[NEIGH_CTL_PATH_PROTO].ctl_name = p_id; |
| |
| t->sysctl_header = register_sysctl_paths(neigh_path, t->neigh_vars); |
| if (!t->sysctl_header) |
| goto free_procname; |
| |
| p->sysctl_table = t; |
| return 0; |
| |
| free_procname: |
| kfree(t->dev_name); |
| free: |
| kfree(t); |
| err: |
| return -ENOBUFS; |
| } |
| |
| void neigh_sysctl_unregister(struct neigh_parms *p) |
| { |
| if (p->sysctl_table) { |
| struct neigh_sysctl_table *t = p->sysctl_table; |
| p->sysctl_table = NULL; |
| unregister_sysctl_table(t->sysctl_header); |
| kfree(t->dev_name); |
| kfree(t); |
| } |
| } |
| |
| #endif /* CONFIG_SYSCTL */ |
| |
| static int __init neigh_init(void) |
| { |
| rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL); |
| rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL); |
| rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info); |
| |
| rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info); |
| rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL); |
| |
| return 0; |
| } |
| |
| subsys_initcall(neigh_init); |
| |
| EXPORT_SYMBOL(__neigh_event_send); |
| EXPORT_SYMBOL(neigh_changeaddr); |
| EXPORT_SYMBOL(neigh_compat_output); |
| EXPORT_SYMBOL(neigh_connected_output); |
| EXPORT_SYMBOL(neigh_create); |
| EXPORT_SYMBOL(neigh_destroy); |
| EXPORT_SYMBOL(neigh_event_ns); |
| EXPORT_SYMBOL(neigh_ifdown); |
| EXPORT_SYMBOL(neigh_lookup); |
| EXPORT_SYMBOL(neigh_lookup_nodev); |
| EXPORT_SYMBOL(neigh_parms_alloc); |
| EXPORT_SYMBOL(neigh_parms_release); |
| EXPORT_SYMBOL(neigh_rand_reach_time); |
| EXPORT_SYMBOL(neigh_resolve_output); |
| EXPORT_SYMBOL(neigh_table_clear); |
| EXPORT_SYMBOL(neigh_table_init); |
| EXPORT_SYMBOL(neigh_table_init_no_netlink); |
| EXPORT_SYMBOL(neigh_update); |
| EXPORT_SYMBOL(pneigh_enqueue); |
| EXPORT_SYMBOL(pneigh_lookup); |
| |
| #ifdef CONFIG_ARPD |
| EXPORT_SYMBOL(neigh_app_ns); |
| #endif |
| #ifdef CONFIG_SYSCTL |
| EXPORT_SYMBOL(neigh_sysctl_register); |
| EXPORT_SYMBOL(neigh_sysctl_unregister); |
| #endif |