| /* |
| * linux/fs/binfmt_elf.c |
| * |
| * These are the functions used to load ELF format executables as used |
| * on SVr4 machines. Information on the format may be found in the book |
| * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support |
| * Tools". |
| * |
| * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/fs.h> |
| #include <linux/stat.h> |
| #include <linux/time.h> |
| #include <linux/mm.h> |
| #include <linux/mman.h> |
| #include <linux/a.out.h> |
| #include <linux/errno.h> |
| #include <linux/signal.h> |
| #include <linux/binfmts.h> |
| #include <linux/string.h> |
| #include <linux/file.h> |
| #include <linux/fcntl.h> |
| #include <linux/ptrace.h> |
| #include <linux/slab.h> |
| #include <linux/shm.h> |
| #include <linux/personality.h> |
| #include <linux/elfcore.h> |
| #include <linux/init.h> |
| #include <linux/highuid.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/compiler.h> |
| #include <linux/highmem.h> |
| #include <linux/pagemap.h> |
| #include <linux/security.h> |
| #include <linux/syscalls.h> |
| #include <linux/random.h> |
| #include <linux/elf.h> |
| #include <asm/uaccess.h> |
| #include <asm/param.h> |
| #include <asm/page.h> |
| |
| static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); |
| static int load_elf_library(struct file *); |
| static unsigned long elf_map (struct file *, unsigned long, struct elf_phdr *, int, int); |
| extern int dump_fpu (struct pt_regs *, elf_fpregset_t *); |
| |
| #ifndef elf_addr_t |
| #define elf_addr_t unsigned long |
| #endif |
| |
| /* |
| * If we don't support core dumping, then supply a NULL so we |
| * don't even try. |
| */ |
| #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) |
| static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file); |
| #else |
| #define elf_core_dump NULL |
| #endif |
| |
| #if ELF_EXEC_PAGESIZE > PAGE_SIZE |
| #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE |
| #else |
| #define ELF_MIN_ALIGN PAGE_SIZE |
| #endif |
| |
| #ifndef ELF_CORE_EFLAGS |
| #define ELF_CORE_EFLAGS 0 |
| #endif |
| |
| #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) |
| #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) |
| #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) |
| |
| static struct linux_binfmt elf_format = { |
| .module = THIS_MODULE, |
| .load_binary = load_elf_binary, |
| .load_shlib = load_elf_library, |
| .core_dump = elf_core_dump, |
| .min_coredump = ELF_EXEC_PAGESIZE |
| }; |
| |
| #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE) |
| |
| static int set_brk(unsigned long start, unsigned long end) |
| { |
| start = ELF_PAGEALIGN(start); |
| end = ELF_PAGEALIGN(end); |
| if (end > start) { |
| unsigned long addr; |
| down_write(¤t->mm->mmap_sem); |
| addr = do_brk(start, end - start); |
| up_write(¤t->mm->mmap_sem); |
| if (BAD_ADDR(addr)) |
| return addr; |
| } |
| current->mm->start_brk = current->mm->brk = end; |
| return 0; |
| } |
| |
| /* We need to explicitly zero any fractional pages |
| after the data section (i.e. bss). This would |
| contain the junk from the file that should not |
| be in memory |
| */ |
| static int padzero(unsigned long elf_bss) |
| { |
| unsigned long nbyte; |
| |
| nbyte = ELF_PAGEOFFSET(elf_bss); |
| if (nbyte) { |
| nbyte = ELF_MIN_ALIGN - nbyte; |
| if (clear_user((void __user *) elf_bss, nbyte)) |
| return -EFAULT; |
| } |
| return 0; |
| } |
| |
| /* Let's use some macros to make this stack manipulation a litle clearer */ |
| #ifdef CONFIG_STACK_GROWSUP |
| #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) |
| #define STACK_ROUND(sp, items) \ |
| ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) |
| #define STACK_ALLOC(sp, len) ({ \ |
| elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ |
| old_sp; }) |
| #else |
| #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) |
| #define STACK_ROUND(sp, items) \ |
| (((unsigned long) (sp - items)) &~ 15UL) |
| #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) |
| #endif |
| |
| static int |
| create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, |
| int interp_aout, unsigned long load_addr, |
| unsigned long interp_load_addr) |
| { |
| unsigned long p = bprm->p; |
| int argc = bprm->argc; |
| int envc = bprm->envc; |
| elf_addr_t __user *argv; |
| elf_addr_t __user *envp; |
| elf_addr_t __user *sp; |
| elf_addr_t __user *u_platform; |
| const char *k_platform = ELF_PLATFORM; |
| int items; |
| elf_addr_t *elf_info; |
| int ei_index = 0; |
| struct task_struct *tsk = current; |
| |
| /* |
| * If this architecture has a platform capability string, copy it |
| * to userspace. In some cases (Sparc), this info is impossible |
| * for userspace to get any other way, in others (i386) it is |
| * merely difficult. |
| */ |
| u_platform = NULL; |
| if (k_platform) { |
| size_t len = strlen(k_platform) + 1; |
| |
| /* |
| * In some cases (e.g. Hyper-Threading), we want to avoid L1 |
| * evictions by the processes running on the same package. One |
| * thing we can do is to shuffle the initial stack for them. |
| */ |
| |
| p = arch_align_stack(p); |
| |
| u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); |
| if (__copy_to_user(u_platform, k_platform, len)) |
| return -EFAULT; |
| } |
| |
| /* Create the ELF interpreter info */ |
| elf_info = (elf_addr_t *)current->mm->saved_auxv; |
| #define NEW_AUX_ENT(id, val) \ |
| do { \ |
| elf_info[ei_index++] = id; \ |
| elf_info[ei_index++] = val; \ |
| } while (0) |
| |
| #ifdef ARCH_DLINFO |
| /* |
| * ARCH_DLINFO must come first so PPC can do its special alignment of |
| * AUXV. |
| */ |
| ARCH_DLINFO; |
| #endif |
| NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); |
| NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); |
| NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); |
| NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); |
| NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); |
| NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); |
| NEW_AUX_ENT(AT_BASE, interp_load_addr); |
| NEW_AUX_ENT(AT_FLAGS, 0); |
| NEW_AUX_ENT(AT_ENTRY, exec->e_entry); |
| NEW_AUX_ENT(AT_UID, tsk->uid); |
| NEW_AUX_ENT(AT_EUID, tsk->euid); |
| NEW_AUX_ENT(AT_GID, tsk->gid); |
| NEW_AUX_ENT(AT_EGID, tsk->egid); |
| NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); |
| if (k_platform) { |
| NEW_AUX_ENT(AT_PLATFORM, |
| (elf_addr_t)(unsigned long)u_platform); |
| } |
| if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { |
| NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); |
| } |
| #undef NEW_AUX_ENT |
| /* AT_NULL is zero; clear the rest too */ |
| memset(&elf_info[ei_index], 0, |
| sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); |
| |
| /* And advance past the AT_NULL entry. */ |
| ei_index += 2; |
| |
| sp = STACK_ADD(p, ei_index); |
| |
| items = (argc + 1) + (envc + 1); |
| if (interp_aout) { |
| items += 3; /* a.out interpreters require argv & envp too */ |
| } else { |
| items += 1; /* ELF interpreters only put argc on the stack */ |
| } |
| bprm->p = STACK_ROUND(sp, items); |
| |
| /* Point sp at the lowest address on the stack */ |
| #ifdef CONFIG_STACK_GROWSUP |
| sp = (elf_addr_t __user *)bprm->p - items - ei_index; |
| bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ |
| #else |
| sp = (elf_addr_t __user *)bprm->p; |
| #endif |
| |
| /* Now, let's put argc (and argv, envp if appropriate) on the stack */ |
| if (__put_user(argc, sp++)) |
| return -EFAULT; |
| if (interp_aout) { |
| argv = sp + 2; |
| envp = argv + argc + 1; |
| __put_user((elf_addr_t)(unsigned long)argv, sp++); |
| __put_user((elf_addr_t)(unsigned long)envp, sp++); |
| } else { |
| argv = sp; |
| envp = argv + argc + 1; |
| } |
| |
| /* Populate argv and envp */ |
| p = current->mm->arg_end = current->mm->arg_start; |
| while (argc-- > 0) { |
| size_t len; |
| __put_user((elf_addr_t)p, argv++); |
| len = strnlen_user((void __user *)p, PAGE_SIZE*MAX_ARG_PAGES); |
| if (!len || len > PAGE_SIZE*MAX_ARG_PAGES) |
| return 0; |
| p += len; |
| } |
| if (__put_user(0, argv)) |
| return -EFAULT; |
| current->mm->arg_end = current->mm->env_start = p; |
| while (envc-- > 0) { |
| size_t len; |
| __put_user((elf_addr_t)p, envp++); |
| len = strnlen_user((void __user *)p, PAGE_SIZE*MAX_ARG_PAGES); |
| if (!len || len > PAGE_SIZE*MAX_ARG_PAGES) |
| return 0; |
| p += len; |
| } |
| if (__put_user(0, envp)) |
| return -EFAULT; |
| current->mm->env_end = p; |
| |
| /* Put the elf_info on the stack in the right place. */ |
| sp = (elf_addr_t __user *)envp + 1; |
| if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) |
| return -EFAULT; |
| return 0; |
| } |
| |
| #ifndef elf_map |
| |
| static unsigned long elf_map(struct file *filep, unsigned long addr, |
| struct elf_phdr *eppnt, int prot, int type) |
| { |
| unsigned long map_addr; |
| unsigned long pageoffset = ELF_PAGEOFFSET(eppnt->p_vaddr); |
| |
| down_write(¤t->mm->mmap_sem); |
| /* mmap() will return -EINVAL if given a zero size, but a |
| * segment with zero filesize is perfectly valid */ |
| if (eppnt->p_filesz + pageoffset) |
| map_addr = do_mmap(filep, ELF_PAGESTART(addr), |
| eppnt->p_filesz + pageoffset, prot, type, |
| eppnt->p_offset - pageoffset); |
| else |
| map_addr = ELF_PAGESTART(addr); |
| up_write(¤t->mm->mmap_sem); |
| return(map_addr); |
| } |
| |
| #endif /* !elf_map */ |
| |
| /* This is much more generalized than the library routine read function, |
| so we keep this separate. Technically the library read function |
| is only provided so that we can read a.out libraries that have |
| an ELF header */ |
| |
| static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, |
| struct file *interpreter, unsigned long *interp_load_addr) |
| { |
| struct elf_phdr *elf_phdata; |
| struct elf_phdr *eppnt; |
| unsigned long load_addr = 0; |
| int load_addr_set = 0; |
| unsigned long last_bss = 0, elf_bss = 0; |
| unsigned long error = ~0UL; |
| int retval, i, size; |
| |
| /* First of all, some simple consistency checks */ |
| if (interp_elf_ex->e_type != ET_EXEC && |
| interp_elf_ex->e_type != ET_DYN) |
| goto out; |
| if (!elf_check_arch(interp_elf_ex)) |
| goto out; |
| if (!interpreter->f_op || !interpreter->f_op->mmap) |
| goto out; |
| |
| /* |
| * If the size of this structure has changed, then punt, since |
| * we will be doing the wrong thing. |
| */ |
| if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) |
| goto out; |
| if (interp_elf_ex->e_phnum < 1 || |
| interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) |
| goto out; |
| |
| /* Now read in all of the header information */ |
| size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; |
| if (size > ELF_MIN_ALIGN) |
| goto out; |
| elf_phdata = kmalloc(size, GFP_KERNEL); |
| if (!elf_phdata) |
| goto out; |
| |
| retval = kernel_read(interpreter, interp_elf_ex->e_phoff, |
| (char *)elf_phdata,size); |
| error = -EIO; |
| if (retval != size) { |
| if (retval < 0) |
| error = retval; |
| goto out_close; |
| } |
| |
| eppnt = elf_phdata; |
| for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { |
| if (eppnt->p_type == PT_LOAD) { |
| int elf_type = MAP_PRIVATE | MAP_DENYWRITE; |
| int elf_prot = 0; |
| unsigned long vaddr = 0; |
| unsigned long k, map_addr; |
| |
| if (eppnt->p_flags & PF_R) |
| elf_prot = PROT_READ; |
| if (eppnt->p_flags & PF_W) |
| elf_prot |= PROT_WRITE; |
| if (eppnt->p_flags & PF_X) |
| elf_prot |= PROT_EXEC; |
| vaddr = eppnt->p_vaddr; |
| if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) |
| elf_type |= MAP_FIXED; |
| |
| map_addr = elf_map(interpreter, load_addr + vaddr, |
| eppnt, elf_prot, elf_type); |
| error = map_addr; |
| if (BAD_ADDR(map_addr)) |
| goto out_close; |
| |
| if (!load_addr_set && |
| interp_elf_ex->e_type == ET_DYN) { |
| load_addr = map_addr - ELF_PAGESTART(vaddr); |
| load_addr_set = 1; |
| } |
| |
| /* |
| * Check to see if the section's size will overflow the |
| * allowed task size. Note that p_filesz must always be |
| * <= p_memsize so it's only necessary to check p_memsz. |
| */ |
| k = load_addr + eppnt->p_vaddr; |
| if (BAD_ADDR(k) || |
| eppnt->p_filesz > eppnt->p_memsz || |
| eppnt->p_memsz > TASK_SIZE || |
| TASK_SIZE - eppnt->p_memsz < k) { |
| error = -ENOMEM; |
| goto out_close; |
| } |
| |
| /* |
| * Find the end of the file mapping for this phdr, and |
| * keep track of the largest address we see for this. |
| */ |
| k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; |
| if (k > elf_bss) |
| elf_bss = k; |
| |
| /* |
| * Do the same thing for the memory mapping - between |
| * elf_bss and last_bss is the bss section. |
| */ |
| k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; |
| if (k > last_bss) |
| last_bss = k; |
| } |
| } |
| |
| /* |
| * Now fill out the bss section. First pad the last page up |
| * to the page boundary, and then perform a mmap to make sure |
| * that there are zero-mapped pages up to and including the |
| * last bss page. |
| */ |
| if (padzero(elf_bss)) { |
| error = -EFAULT; |
| goto out_close; |
| } |
| |
| /* What we have mapped so far */ |
| elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); |
| |
| /* Map the last of the bss segment */ |
| if (last_bss > elf_bss) { |
| down_write(¤t->mm->mmap_sem); |
| error = do_brk(elf_bss, last_bss - elf_bss); |
| up_write(¤t->mm->mmap_sem); |
| if (BAD_ADDR(error)) |
| goto out_close; |
| } |
| |
| *interp_load_addr = load_addr; |
| error = ((unsigned long)interp_elf_ex->e_entry) + load_addr; |
| |
| out_close: |
| kfree(elf_phdata); |
| out: |
| return error; |
| } |
| |
| static unsigned long load_aout_interp(struct exec *interp_ex, |
| struct file *interpreter) |
| { |
| unsigned long text_data, elf_entry = ~0UL; |
| char __user * addr; |
| loff_t offset; |
| |
| current->mm->end_code = interp_ex->a_text; |
| text_data = interp_ex->a_text + interp_ex->a_data; |
| current->mm->end_data = text_data; |
| current->mm->brk = interp_ex->a_bss + text_data; |
| |
| switch (N_MAGIC(*interp_ex)) { |
| case OMAGIC: |
| offset = 32; |
| addr = (char __user *)0; |
| break; |
| case ZMAGIC: |
| case QMAGIC: |
| offset = N_TXTOFF(*interp_ex); |
| addr = (char __user *)N_TXTADDR(*interp_ex); |
| break; |
| default: |
| goto out; |
| } |
| |
| down_write(¤t->mm->mmap_sem); |
| do_brk(0, text_data); |
| up_write(¤t->mm->mmap_sem); |
| if (!interpreter->f_op || !interpreter->f_op->read) |
| goto out; |
| if (interpreter->f_op->read(interpreter, addr, text_data, &offset) < 0) |
| goto out; |
| flush_icache_range((unsigned long)addr, |
| (unsigned long)addr + text_data); |
| |
| down_write(¤t->mm->mmap_sem); |
| do_brk(ELF_PAGESTART(text_data + ELF_MIN_ALIGN - 1), |
| interp_ex->a_bss); |
| up_write(¤t->mm->mmap_sem); |
| elf_entry = interp_ex->a_entry; |
| |
| out: |
| return elf_entry; |
| } |
| |
| /* |
| * These are the functions used to load ELF style executables and shared |
| * libraries. There is no binary dependent code anywhere else. |
| */ |
| |
| #define INTERPRETER_NONE 0 |
| #define INTERPRETER_AOUT 1 |
| #define INTERPRETER_ELF 2 |
| |
| #ifndef STACK_RND_MASK |
| #define STACK_RND_MASK 0x7ff /* with 4K pages 8MB of VA */ |
| #endif |
| |
| static unsigned long randomize_stack_top(unsigned long stack_top) |
| { |
| unsigned int random_variable = 0; |
| |
| if ((current->flags & PF_RANDOMIZE) && |
| !(current->personality & ADDR_NO_RANDOMIZE)) { |
| random_variable = get_random_int() & STACK_RND_MASK; |
| random_variable <<= PAGE_SHIFT; |
| } |
| #ifdef CONFIG_STACK_GROWSUP |
| return PAGE_ALIGN(stack_top) + random_variable; |
| #else |
| return PAGE_ALIGN(stack_top) - random_variable; |
| #endif |
| } |
| |
| static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) |
| { |
| struct file *interpreter = NULL; /* to shut gcc up */ |
| unsigned long load_addr = 0, load_bias = 0; |
| int load_addr_set = 0; |
| char * elf_interpreter = NULL; |
| unsigned int interpreter_type = INTERPRETER_NONE; |
| unsigned char ibcs2_interpreter = 0; |
| unsigned long error; |
| struct elf_phdr *elf_ppnt, *elf_phdata; |
| unsigned long elf_bss, elf_brk; |
| int elf_exec_fileno; |
| int retval, i; |
| unsigned int size; |
| unsigned long elf_entry, interp_load_addr = 0; |
| unsigned long start_code, end_code, start_data, end_data; |
| unsigned long reloc_func_desc = 0; |
| char passed_fileno[6]; |
| struct files_struct *files; |
| int have_pt_gnu_stack, executable_stack = EXSTACK_DEFAULT; |
| unsigned long def_flags = 0; |
| struct { |
| struct elfhdr elf_ex; |
| struct elfhdr interp_elf_ex; |
| struct exec interp_ex; |
| } *loc; |
| |
| loc = kmalloc(sizeof(*loc), GFP_KERNEL); |
| if (!loc) { |
| retval = -ENOMEM; |
| goto out_ret; |
| } |
| |
| /* Get the exec-header */ |
| loc->elf_ex = *((struct elfhdr *)bprm->buf); |
| |
| retval = -ENOEXEC; |
| /* First of all, some simple consistency checks */ |
| if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) |
| goto out; |
| |
| if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) |
| goto out; |
| if (!elf_check_arch(&loc->elf_ex)) |
| goto out; |
| if (!bprm->file->f_op||!bprm->file->f_op->mmap) |
| goto out; |
| |
| /* Now read in all of the header information */ |
| if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) |
| goto out; |
| if (loc->elf_ex.e_phnum < 1 || |
| loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) |
| goto out; |
| size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); |
| retval = -ENOMEM; |
| elf_phdata = kmalloc(size, GFP_KERNEL); |
| if (!elf_phdata) |
| goto out; |
| |
| retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, |
| (char *)elf_phdata, size); |
| if (retval != size) { |
| if (retval >= 0) |
| retval = -EIO; |
| goto out_free_ph; |
| } |
| |
| files = current->files; /* Refcounted so ok */ |
| retval = unshare_files(); |
| if (retval < 0) |
| goto out_free_ph; |
| if (files == current->files) { |
| put_files_struct(files); |
| files = NULL; |
| } |
| |
| /* exec will make our files private anyway, but for the a.out |
| loader stuff we need to do it earlier */ |
| retval = get_unused_fd(); |
| if (retval < 0) |
| goto out_free_fh; |
| get_file(bprm->file); |
| fd_install(elf_exec_fileno = retval, bprm->file); |
| |
| elf_ppnt = elf_phdata; |
| elf_bss = 0; |
| elf_brk = 0; |
| |
| start_code = ~0UL; |
| end_code = 0; |
| start_data = 0; |
| end_data = 0; |
| |
| for (i = 0; i < loc->elf_ex.e_phnum; i++) { |
| if (elf_ppnt->p_type == PT_INTERP) { |
| /* This is the program interpreter used for |
| * shared libraries - for now assume that this |
| * is an a.out format binary |
| */ |
| retval = -ENOEXEC; |
| if (elf_ppnt->p_filesz > PATH_MAX || |
| elf_ppnt->p_filesz < 2) |
| goto out_free_file; |
| |
| retval = -ENOMEM; |
| elf_interpreter = kmalloc(elf_ppnt->p_filesz, |
| GFP_KERNEL); |
| if (!elf_interpreter) |
| goto out_free_file; |
| |
| retval = kernel_read(bprm->file, elf_ppnt->p_offset, |
| elf_interpreter, |
| elf_ppnt->p_filesz); |
| if (retval != elf_ppnt->p_filesz) { |
| if (retval >= 0) |
| retval = -EIO; |
| goto out_free_interp; |
| } |
| /* make sure path is NULL terminated */ |
| retval = -ENOEXEC; |
| if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') |
| goto out_free_interp; |
| |
| /* If the program interpreter is one of these two, |
| * then assume an iBCS2 image. Otherwise assume |
| * a native linux image. |
| */ |
| if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 || |
| strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) |
| ibcs2_interpreter = 1; |
| |
| /* |
| * The early SET_PERSONALITY here is so that the lookup |
| * for the interpreter happens in the namespace of the |
| * to-be-execed image. SET_PERSONALITY can select an |
| * alternate root. |
| * |
| * However, SET_PERSONALITY is NOT allowed to switch |
| * this task into the new images's memory mapping |
| * policy - that is, TASK_SIZE must still evaluate to |
| * that which is appropriate to the execing application. |
| * This is because exit_mmap() needs to have TASK_SIZE |
| * evaluate to the size of the old image. |
| * |
| * So if (say) a 64-bit application is execing a 32-bit |
| * application it is the architecture's responsibility |
| * to defer changing the value of TASK_SIZE until the |
| * switch really is going to happen - do this in |
| * flush_thread(). - akpm |
| */ |
| SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); |
| |
| interpreter = open_exec(elf_interpreter); |
| retval = PTR_ERR(interpreter); |
| if (IS_ERR(interpreter)) |
| goto out_free_interp; |
| retval = kernel_read(interpreter, 0, bprm->buf, |
| BINPRM_BUF_SIZE); |
| if (retval != BINPRM_BUF_SIZE) { |
| if (retval >= 0) |
| retval = -EIO; |
| goto out_free_dentry; |
| } |
| |
| /* Get the exec headers */ |
| loc->interp_ex = *((struct exec *)bprm->buf); |
| loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); |
| break; |
| } |
| elf_ppnt++; |
| } |
| |
| elf_ppnt = elf_phdata; |
| for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) |
| if (elf_ppnt->p_type == PT_GNU_STACK) { |
| if (elf_ppnt->p_flags & PF_X) |
| executable_stack = EXSTACK_ENABLE_X; |
| else |
| executable_stack = EXSTACK_DISABLE_X; |
| break; |
| } |
| have_pt_gnu_stack = (i < loc->elf_ex.e_phnum); |
| |
| /* Some simple consistency checks for the interpreter */ |
| if (elf_interpreter) { |
| interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT; |
| |
| /* Now figure out which format our binary is */ |
| if ((N_MAGIC(loc->interp_ex) != OMAGIC) && |
| (N_MAGIC(loc->interp_ex) != ZMAGIC) && |
| (N_MAGIC(loc->interp_ex) != QMAGIC)) |
| interpreter_type = INTERPRETER_ELF; |
| |
| if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) |
| interpreter_type &= ~INTERPRETER_ELF; |
| |
| retval = -ELIBBAD; |
| if (!interpreter_type) |
| goto out_free_dentry; |
| |
| /* Make sure only one type was selected */ |
| if ((interpreter_type & INTERPRETER_ELF) && |
| interpreter_type != INTERPRETER_ELF) { |
| // FIXME - ratelimit this before re-enabling |
| // printk(KERN_WARNING "ELF: Ambiguous type, using ELF\n"); |
| interpreter_type = INTERPRETER_ELF; |
| } |
| /* Verify the interpreter has a valid arch */ |
| if ((interpreter_type == INTERPRETER_ELF) && |
| !elf_check_arch(&loc->interp_elf_ex)) |
| goto out_free_dentry; |
| } else { |
| /* Executables without an interpreter also need a personality */ |
| SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); |
| } |
| |
| /* OK, we are done with that, now set up the arg stuff, |
| and then start this sucker up */ |
| if ((!bprm->sh_bang) && (interpreter_type == INTERPRETER_AOUT)) { |
| char *passed_p = passed_fileno; |
| sprintf(passed_fileno, "%d", elf_exec_fileno); |
| |
| if (elf_interpreter) { |
| retval = copy_strings_kernel(1, &passed_p, bprm); |
| if (retval) |
| goto out_free_dentry; |
| bprm->argc++; |
| } |
| } |
| |
| /* Flush all traces of the currently running executable */ |
| retval = flush_old_exec(bprm); |
| if (retval) |
| goto out_free_dentry; |
| |
| /* Discard our unneeded old files struct */ |
| if (files) { |
| put_files_struct(files); |
| files = NULL; |
| } |
| |
| /* OK, This is the point of no return */ |
| current->mm->start_data = 0; |
| current->mm->end_data = 0; |
| current->mm->end_code = 0; |
| current->mm->mmap = NULL; |
| current->flags &= ~PF_FORKNOEXEC; |
| current->mm->def_flags = def_flags; |
| |
| /* Do this immediately, since STACK_TOP as used in setup_arg_pages |
| may depend on the personality. */ |
| SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); |
| if (elf_read_implies_exec(loc->elf_ex, executable_stack)) |
| current->personality |= READ_IMPLIES_EXEC; |
| |
| if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) |
| current->flags |= PF_RANDOMIZE; |
| arch_pick_mmap_layout(current->mm); |
| |
| /* Do this so that we can load the interpreter, if need be. We will |
| change some of these later */ |
| current->mm->free_area_cache = current->mm->mmap_base; |
| current->mm->cached_hole_size = 0; |
| retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), |
| executable_stack); |
| if (retval < 0) { |
| send_sig(SIGKILL, current, 0); |
| goto out_free_dentry; |
| } |
| |
| current->mm->start_stack = bprm->p; |
| |
| /* Now we do a little grungy work by mmaping the ELF image into |
| the correct location in memory. At this point, we assume that |
| the image should be loaded at fixed address, not at a variable |
| address. */ |
| for(i = 0, elf_ppnt = elf_phdata; |
| i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { |
| int elf_prot = 0, elf_flags; |
| unsigned long k, vaddr; |
| |
| if (elf_ppnt->p_type != PT_LOAD) |
| continue; |
| |
| if (unlikely (elf_brk > elf_bss)) { |
| unsigned long nbyte; |
| |
| /* There was a PT_LOAD segment with p_memsz > p_filesz |
| before this one. Map anonymous pages, if needed, |
| and clear the area. */ |
| retval = set_brk (elf_bss + load_bias, |
| elf_brk + load_bias); |
| if (retval) { |
| send_sig(SIGKILL, current, 0); |
| goto out_free_dentry; |
| } |
| nbyte = ELF_PAGEOFFSET(elf_bss); |
| if (nbyte) { |
| nbyte = ELF_MIN_ALIGN - nbyte; |
| if (nbyte > elf_brk - elf_bss) |
| nbyte = elf_brk - elf_bss; |
| if (clear_user((void __user *)elf_bss + |
| load_bias, nbyte)) { |
| /* |
| * This bss-zeroing can fail if the ELF |
| * file specifies odd protections. So |
| * we don't check the return value |
| */ |
| } |
| } |
| } |
| |
| if (elf_ppnt->p_flags & PF_R) |
| elf_prot |= PROT_READ; |
| if (elf_ppnt->p_flags & PF_W) |
| elf_prot |= PROT_WRITE; |
| if (elf_ppnt->p_flags & PF_X) |
| elf_prot |= PROT_EXEC; |
| |
| elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; |
| |
| vaddr = elf_ppnt->p_vaddr; |
| if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { |
| elf_flags |= MAP_FIXED; |
| } else if (loc->elf_ex.e_type == ET_DYN) { |
| /* Try and get dynamic programs out of the way of the |
| * default mmap base, as well as whatever program they |
| * might try to exec. This is because the brk will |
| * follow the loader, and is not movable. */ |
| load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); |
| } |
| |
| error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, |
| elf_prot, elf_flags); |
| if (BAD_ADDR(error)) { |
| send_sig(SIGKILL, current, 0); |
| goto out_free_dentry; |
| } |
| |
| if (!load_addr_set) { |
| load_addr_set = 1; |
| load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); |
| if (loc->elf_ex.e_type == ET_DYN) { |
| load_bias += error - |
| ELF_PAGESTART(load_bias + vaddr); |
| load_addr += load_bias; |
| reloc_func_desc = load_bias; |
| } |
| } |
| k = elf_ppnt->p_vaddr; |
| if (k < start_code) |
| start_code = k; |
| if (start_data < k) |
| start_data = k; |
| |
| /* |
| * Check to see if the section's size will overflow the |
| * allowed task size. Note that p_filesz must always be |
| * <= p_memsz so it is only necessary to check p_memsz. |
| */ |
| if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || |
| elf_ppnt->p_memsz > TASK_SIZE || |
| TASK_SIZE - elf_ppnt->p_memsz < k) { |
| /* set_brk can never work. Avoid overflows. */ |
| send_sig(SIGKILL, current, 0); |
| goto out_free_dentry; |
| } |
| |
| k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; |
| |
| if (k > elf_bss) |
| elf_bss = k; |
| if ((elf_ppnt->p_flags & PF_X) && end_code < k) |
| end_code = k; |
| if (end_data < k) |
| end_data = k; |
| k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; |
| if (k > elf_brk) |
| elf_brk = k; |
| } |
| |
| loc->elf_ex.e_entry += load_bias; |
| elf_bss += load_bias; |
| elf_brk += load_bias; |
| start_code += load_bias; |
| end_code += load_bias; |
| start_data += load_bias; |
| end_data += load_bias; |
| |
| /* Calling set_brk effectively mmaps the pages that we need |
| * for the bss and break sections. We must do this before |
| * mapping in the interpreter, to make sure it doesn't wind |
| * up getting placed where the bss needs to go. |
| */ |
| retval = set_brk(elf_bss, elf_brk); |
| if (retval) { |
| send_sig(SIGKILL, current, 0); |
| goto out_free_dentry; |
| } |
| if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { |
| send_sig(SIGSEGV, current, 0); |
| retval = -EFAULT; /* Nobody gets to see this, but.. */ |
| goto out_free_dentry; |
| } |
| |
| if (elf_interpreter) { |
| if (interpreter_type == INTERPRETER_AOUT) |
| elf_entry = load_aout_interp(&loc->interp_ex, |
| interpreter); |
| else |
| elf_entry = load_elf_interp(&loc->interp_elf_ex, |
| interpreter, |
| &interp_load_addr); |
| if (BAD_ADDR(elf_entry)) { |
| force_sig(SIGSEGV, current); |
| retval = IS_ERR((void *)elf_entry) ? |
| (int)elf_entry : -EINVAL; |
| goto out_free_dentry; |
| } |
| reloc_func_desc = interp_load_addr; |
| |
| allow_write_access(interpreter); |
| fput(interpreter); |
| kfree(elf_interpreter); |
| } else { |
| elf_entry = loc->elf_ex.e_entry; |
| if (BAD_ADDR(elf_entry)) { |
| force_sig(SIGSEGV, current); |
| retval = -EINVAL; |
| goto out_free_dentry; |
| } |
| } |
| |
| kfree(elf_phdata); |
| |
| if (interpreter_type != INTERPRETER_AOUT) |
| sys_close(elf_exec_fileno); |
| |
| set_binfmt(&elf_format); |
| |
| #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES |
| retval = arch_setup_additional_pages(bprm, executable_stack); |
| if (retval < 0) { |
| send_sig(SIGKILL, current, 0); |
| goto out; |
| } |
| #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ |
| |
| compute_creds(bprm); |
| current->flags &= ~PF_FORKNOEXEC; |
| create_elf_tables(bprm, &loc->elf_ex, |
| (interpreter_type == INTERPRETER_AOUT), |
| load_addr, interp_load_addr); |
| /* N.B. passed_fileno might not be initialized? */ |
| if (interpreter_type == INTERPRETER_AOUT) |
| current->mm->arg_start += strlen(passed_fileno) + 1; |
| current->mm->end_code = end_code; |
| current->mm->start_code = start_code; |
| current->mm->start_data = start_data; |
| current->mm->end_data = end_data; |
| current->mm->start_stack = bprm->p; |
| |
| if (current->personality & MMAP_PAGE_ZERO) { |
| /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
| and some applications "depend" upon this behavior. |
| Since we do not have the power to recompile these, we |
| emulate the SVr4 behavior. Sigh. */ |
| down_write(¤t->mm->mmap_sem); |
| error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE, 0); |
| up_write(¤t->mm->mmap_sem); |
| } |
| |
| #ifdef ELF_PLAT_INIT |
| /* |
| * The ABI may specify that certain registers be set up in special |
| * ways (on i386 %edx is the address of a DT_FINI function, for |
| * example. In addition, it may also specify (eg, PowerPC64 ELF) |
| * that the e_entry field is the address of the function descriptor |
| * for the startup routine, rather than the address of the startup |
| * routine itself. This macro performs whatever initialization to |
| * the regs structure is required as well as any relocations to the |
| * function descriptor entries when executing dynamically links apps. |
| */ |
| ELF_PLAT_INIT(regs, reloc_func_desc); |
| #endif |
| |
| start_thread(regs, elf_entry, bprm->p); |
| if (unlikely(current->ptrace & PT_PTRACED)) { |
| if (current->ptrace & PT_TRACE_EXEC) |
| ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP); |
| else |
| send_sig(SIGTRAP, current, 0); |
| } |
| retval = 0; |
| out: |
| kfree(loc); |
| out_ret: |
| return retval; |
| |
| /* error cleanup */ |
| out_free_dentry: |
| allow_write_access(interpreter); |
| if (interpreter) |
| fput(interpreter); |
| out_free_interp: |
| kfree(elf_interpreter); |
| out_free_file: |
| sys_close(elf_exec_fileno); |
| out_free_fh: |
| if (files) { |
| put_files_struct(current->files); |
| current->files = files; |
| } |
| out_free_ph: |
| kfree(elf_phdata); |
| goto out; |
| } |
| |
| /* This is really simpleminded and specialized - we are loading an |
| a.out library that is given an ELF header. */ |
| static int load_elf_library(struct file *file) |
| { |
| struct elf_phdr *elf_phdata; |
| struct elf_phdr *eppnt; |
| unsigned long elf_bss, bss, len; |
| int retval, error, i, j; |
| struct elfhdr elf_ex; |
| |
| error = -ENOEXEC; |
| retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); |
| if (retval != sizeof(elf_ex)) |
| goto out; |
| |
| if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) |
| goto out; |
| |
| /* First of all, some simple consistency checks */ |
| if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || |
| !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) |
| goto out; |
| |
| /* Now read in all of the header information */ |
| |
| j = sizeof(struct elf_phdr) * elf_ex.e_phnum; |
| /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ |
| |
| error = -ENOMEM; |
| elf_phdata = kmalloc(j, GFP_KERNEL); |
| if (!elf_phdata) |
| goto out; |
| |
| eppnt = elf_phdata; |
| error = -ENOEXEC; |
| retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); |
| if (retval != j) |
| goto out_free_ph; |
| |
| for (j = 0, i = 0; i<elf_ex.e_phnum; i++) |
| if ((eppnt + i)->p_type == PT_LOAD) |
| j++; |
| if (j != 1) |
| goto out_free_ph; |
| |
| while (eppnt->p_type != PT_LOAD) |
| eppnt++; |
| |
| /* Now use mmap to map the library into memory. */ |
| down_write(¤t->mm->mmap_sem); |
| error = do_mmap(file, |
| ELF_PAGESTART(eppnt->p_vaddr), |
| (eppnt->p_filesz + |
| ELF_PAGEOFFSET(eppnt->p_vaddr)), |
| PROT_READ | PROT_WRITE | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, |
| (eppnt->p_offset - |
| ELF_PAGEOFFSET(eppnt->p_vaddr))); |
| up_write(¤t->mm->mmap_sem); |
| if (error != ELF_PAGESTART(eppnt->p_vaddr)) |
| goto out_free_ph; |
| |
| elf_bss = eppnt->p_vaddr + eppnt->p_filesz; |
| if (padzero(elf_bss)) { |
| error = -EFAULT; |
| goto out_free_ph; |
| } |
| |
| len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + |
| ELF_MIN_ALIGN - 1); |
| bss = eppnt->p_memsz + eppnt->p_vaddr; |
| if (bss > len) { |
| down_write(¤t->mm->mmap_sem); |
| do_brk(len, bss - len); |
| up_write(¤t->mm->mmap_sem); |
| } |
| error = 0; |
| |
| out_free_ph: |
| kfree(elf_phdata); |
| out: |
| return error; |
| } |
| |
| /* |
| * Note that some platforms still use traditional core dumps and not |
| * the ELF core dump. Each platform can select it as appropriate. |
| */ |
| #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) |
| |
| /* |
| * ELF core dumper |
| * |
| * Modelled on fs/exec.c:aout_core_dump() |
| * Jeremy Fitzhardinge <jeremy@sw.oz.au> |
| */ |
| /* |
| * These are the only things you should do on a core-file: use only these |
| * functions to write out all the necessary info. |
| */ |
| static int dump_write(struct file *file, const void *addr, int nr) |
| { |
| return file->f_op->write(file, addr, nr, &file->f_pos) == nr; |
| } |
| |
| static int dump_seek(struct file *file, loff_t off) |
| { |
| if (file->f_op->llseek) { |
| if (file->f_op->llseek(file, off, 0) != off) |
| return 0; |
| } else |
| file->f_pos = off; |
| return 1; |
| } |
| |
| /* |
| * Decide whether a segment is worth dumping; default is yes to be |
| * sure (missing info is worse than too much; etc). |
| * Personally I'd include everything, and use the coredump limit... |
| * |
| * I think we should skip something. But I am not sure how. H.J. |
| */ |
| static int maydump(struct vm_area_struct *vma) |
| { |
| /* Do not dump I/O mapped devices or special mappings */ |
| if (vma->vm_flags & (VM_IO | VM_RESERVED)) |
| return 0; |
| |
| /* Dump shared memory only if mapped from an anonymous file. */ |
| if (vma->vm_flags & VM_SHARED) |
| return vma->vm_file->f_dentry->d_inode->i_nlink == 0; |
| |
| /* If it hasn't been written to, don't write it out */ |
| if (!vma->anon_vma) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* An ELF note in memory */ |
| struct memelfnote |
| { |
| const char *name; |
| int type; |
| unsigned int datasz; |
| void *data; |
| }; |
| |
| static int notesize(struct memelfnote *en) |
| { |
| int sz; |
| |
| sz = sizeof(struct elf_note); |
| sz += roundup(strlen(en->name) + 1, 4); |
| sz += roundup(en->datasz, 4); |
| |
| return sz; |
| } |
| |
| #define DUMP_WRITE(addr, nr) \ |
| do { if (!dump_write(file, (addr), (nr))) return 0; } while(0) |
| #define DUMP_SEEK(off) \ |
| do { if (!dump_seek(file, (off))) return 0; } while(0) |
| |
| static int writenote(struct memelfnote *men, struct file *file) |
| { |
| struct elf_note en; |
| |
| en.n_namesz = strlen(men->name) + 1; |
| en.n_descsz = men->datasz; |
| en.n_type = men->type; |
| |
| DUMP_WRITE(&en, sizeof(en)); |
| DUMP_WRITE(men->name, en.n_namesz); |
| /* XXX - cast from long long to long to avoid need for libgcc.a */ |
| DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */ |
| DUMP_WRITE(men->data, men->datasz); |
| DUMP_SEEK(roundup((unsigned long)file->f_pos, 4)); /* XXX */ |
| |
| return 1; |
| } |
| #undef DUMP_WRITE |
| #undef DUMP_SEEK |
| |
| #define DUMP_WRITE(addr, nr) \ |
| if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \ |
| goto end_coredump; |
| #define DUMP_SEEK(off) \ |
| if (!dump_seek(file, (off))) \ |
| goto end_coredump; |
| |
| static void fill_elf_header(struct elfhdr *elf, int segs) |
| { |
| memcpy(elf->e_ident, ELFMAG, SELFMAG); |
| elf->e_ident[EI_CLASS] = ELF_CLASS; |
| elf->e_ident[EI_DATA] = ELF_DATA; |
| elf->e_ident[EI_VERSION] = EV_CURRENT; |
| elf->e_ident[EI_OSABI] = ELF_OSABI; |
| memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); |
| |
| elf->e_type = ET_CORE; |
| elf->e_machine = ELF_ARCH; |
| elf->e_version = EV_CURRENT; |
| elf->e_entry = 0; |
| elf->e_phoff = sizeof(struct elfhdr); |
| elf->e_shoff = 0; |
| elf->e_flags = ELF_CORE_EFLAGS; |
| elf->e_ehsize = sizeof(struct elfhdr); |
| elf->e_phentsize = sizeof(struct elf_phdr); |
| elf->e_phnum = segs; |
| elf->e_shentsize = 0; |
| elf->e_shnum = 0; |
| elf->e_shstrndx = 0; |
| return; |
| } |
| |
| static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) |
| { |
| phdr->p_type = PT_NOTE; |
| phdr->p_offset = offset; |
| phdr->p_vaddr = 0; |
| phdr->p_paddr = 0; |
| phdr->p_filesz = sz; |
| phdr->p_memsz = 0; |
| phdr->p_flags = 0; |
| phdr->p_align = 0; |
| return; |
| } |
| |
| static void fill_note(struct memelfnote *note, const char *name, int type, |
| unsigned int sz, void *data) |
| { |
| note->name = name; |
| note->type = type; |
| note->datasz = sz; |
| note->data = data; |
| return; |
| } |
| |
| /* |
| * fill up all the fields in prstatus from the given task struct, except |
| * registers which need to be filled up separately. |
| */ |
| static void fill_prstatus(struct elf_prstatus *prstatus, |
| struct task_struct *p, long signr) |
| { |
| prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; |
| prstatus->pr_sigpend = p->pending.signal.sig[0]; |
| prstatus->pr_sighold = p->blocked.sig[0]; |
| prstatus->pr_pid = p->pid; |
| prstatus->pr_ppid = p->parent->pid; |
| prstatus->pr_pgrp = process_group(p); |
| prstatus->pr_sid = p->signal->session; |
| if (thread_group_leader(p)) { |
| /* |
| * This is the record for the group leader. Add in the |
| * cumulative times of previous dead threads. This total |
| * won't include the time of each live thread whose state |
| * is included in the core dump. The final total reported |
| * to our parent process when it calls wait4 will include |
| * those sums as well as the little bit more time it takes |
| * this and each other thread to finish dying after the |
| * core dump synchronization phase. |
| */ |
| cputime_to_timeval(cputime_add(p->utime, p->signal->utime), |
| &prstatus->pr_utime); |
| cputime_to_timeval(cputime_add(p->stime, p->signal->stime), |
| &prstatus->pr_stime); |
| } else { |
| cputime_to_timeval(p->utime, &prstatus->pr_utime); |
| cputime_to_timeval(p->stime, &prstatus->pr_stime); |
| } |
| cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); |
| cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); |
| } |
| |
| static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, |
| struct mm_struct *mm) |
| { |
| unsigned int i, len; |
| |
| /* first copy the parameters from user space */ |
| memset(psinfo, 0, sizeof(struct elf_prpsinfo)); |
| |
| len = mm->arg_end - mm->arg_start; |
| if (len >= ELF_PRARGSZ) |
| len = ELF_PRARGSZ-1; |
| if (copy_from_user(&psinfo->pr_psargs, |
| (const char __user *)mm->arg_start, len)) |
| return -EFAULT; |
| for(i = 0; i < len; i++) |
| if (psinfo->pr_psargs[i] == 0) |
| psinfo->pr_psargs[i] = ' '; |
| psinfo->pr_psargs[len] = 0; |
| |
| psinfo->pr_pid = p->pid; |
| psinfo->pr_ppid = p->parent->pid; |
| psinfo->pr_pgrp = process_group(p); |
| psinfo->pr_sid = p->signal->session; |
| |
| i = p->state ? ffz(~p->state) + 1 : 0; |
| psinfo->pr_state = i; |
| psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; |
| psinfo->pr_zomb = psinfo->pr_sname == 'Z'; |
| psinfo->pr_nice = task_nice(p); |
| psinfo->pr_flag = p->flags; |
| SET_UID(psinfo->pr_uid, p->uid); |
| SET_GID(psinfo->pr_gid, p->gid); |
| strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); |
| |
| return 0; |
| } |
| |
| /* Here is the structure in which status of each thread is captured. */ |
| struct elf_thread_status |
| { |
| struct list_head list; |
| struct elf_prstatus prstatus; /* NT_PRSTATUS */ |
| elf_fpregset_t fpu; /* NT_PRFPREG */ |
| struct task_struct *thread; |
| #ifdef ELF_CORE_COPY_XFPREGS |
| elf_fpxregset_t xfpu; /* NT_PRXFPREG */ |
| #endif |
| struct memelfnote notes[3]; |
| int num_notes; |
| }; |
| |
| /* |
| * In order to add the specific thread information for the elf file format, |
| * we need to keep a linked list of every threads pr_status and then create |
| * a single section for them in the final core file. |
| */ |
| static int elf_dump_thread_status(long signr, struct elf_thread_status *t) |
| { |
| int sz = 0; |
| struct task_struct *p = t->thread; |
| t->num_notes = 0; |
| |
| fill_prstatus(&t->prstatus, p, signr); |
| elf_core_copy_task_regs(p, &t->prstatus.pr_reg); |
| |
| fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), |
| &(t->prstatus)); |
| t->num_notes++; |
| sz += notesize(&t->notes[0]); |
| |
| if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, |
| &t->fpu))) { |
| fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), |
| &(t->fpu)); |
| t->num_notes++; |
| sz += notesize(&t->notes[1]); |
| } |
| |
| #ifdef ELF_CORE_COPY_XFPREGS |
| if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { |
| fill_note(&t->notes[2], "LINUX", NT_PRXFPREG, sizeof(t->xfpu), |
| &t->xfpu); |
| t->num_notes++; |
| sz += notesize(&t->notes[2]); |
| } |
| #endif |
| return sz; |
| } |
| |
| /* |
| * Actual dumper |
| * |
| * This is a two-pass process; first we find the offsets of the bits, |
| * and then they are actually written out. If we run out of core limit |
| * we just truncate. |
| */ |
| static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file) |
| { |
| #define NUM_NOTES 6 |
| int has_dumped = 0; |
| mm_segment_t fs; |
| int segs; |
| size_t size = 0; |
| int i; |
| struct vm_area_struct *vma; |
| struct elfhdr *elf = NULL; |
| loff_t offset = 0, dataoff; |
| unsigned long limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; |
| int numnote; |
| struct memelfnote *notes = NULL; |
| struct elf_prstatus *prstatus = NULL; /* NT_PRSTATUS */ |
| struct elf_prpsinfo *psinfo = NULL; /* NT_PRPSINFO */ |
| struct task_struct *g, *p; |
| LIST_HEAD(thread_list); |
| struct list_head *t; |
| elf_fpregset_t *fpu = NULL; |
| #ifdef ELF_CORE_COPY_XFPREGS |
| elf_fpxregset_t *xfpu = NULL; |
| #endif |
| int thread_status_size = 0; |
| elf_addr_t *auxv; |
| |
| /* |
| * We no longer stop all VM operations. |
| * |
| * This is because those proceses that could possibly change map_count |
| * or the mmap / vma pages are now blocked in do_exit on current |
| * finishing this core dump. |
| * |
| * Only ptrace can touch these memory addresses, but it doesn't change |
| * the map_count or the pages allocated. So no possibility of crashing |
| * exists while dumping the mm->vm_next areas to the core file. |
| */ |
| |
| /* alloc memory for large data structures: too large to be on stack */ |
| elf = kmalloc(sizeof(*elf), GFP_KERNEL); |
| if (!elf) |
| goto cleanup; |
| prstatus = kmalloc(sizeof(*prstatus), GFP_KERNEL); |
| if (!prstatus) |
| goto cleanup; |
| psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); |
| if (!psinfo) |
| goto cleanup; |
| notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), GFP_KERNEL); |
| if (!notes) |
| goto cleanup; |
| fpu = kmalloc(sizeof(*fpu), GFP_KERNEL); |
| if (!fpu) |
| goto cleanup; |
| #ifdef ELF_CORE_COPY_XFPREGS |
| xfpu = kmalloc(sizeof(*xfpu), GFP_KERNEL); |
| if (!xfpu) |
| goto cleanup; |
| #endif |
| |
| if (signr) { |
| struct elf_thread_status *tmp; |
| read_lock(&tasklist_lock); |
| do_each_thread(g,p) |
| if (current->mm == p->mm && current != p) { |
| tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); |
| if (!tmp) { |
| read_unlock(&tasklist_lock); |
| goto cleanup; |
| } |
| INIT_LIST_HEAD(&tmp->list); |
| tmp->thread = p; |
| list_add(&tmp->list, &thread_list); |
| } |
| while_each_thread(g,p); |
| read_unlock(&tasklist_lock); |
| list_for_each(t, &thread_list) { |
| struct elf_thread_status *tmp; |
| int sz; |
| |
| tmp = list_entry(t, struct elf_thread_status, list); |
| sz = elf_dump_thread_status(signr, tmp); |
| thread_status_size += sz; |
| } |
| } |
| /* now collect the dump for the current */ |
| memset(prstatus, 0, sizeof(*prstatus)); |
| fill_prstatus(prstatus, current, signr); |
| elf_core_copy_regs(&prstatus->pr_reg, regs); |
| |
| segs = current->mm->map_count; |
| #ifdef ELF_CORE_EXTRA_PHDRS |
| segs += ELF_CORE_EXTRA_PHDRS; |
| #endif |
| |
| /* Set up header */ |
| fill_elf_header(elf, segs + 1); /* including notes section */ |
| |
| has_dumped = 1; |
| current->flags |= PF_DUMPCORE; |
| |
| /* |
| * Set up the notes in similar form to SVR4 core dumps made |
| * with info from their /proc. |
| */ |
| |
| fill_note(notes + 0, "CORE", NT_PRSTATUS, sizeof(*prstatus), prstatus); |
| fill_psinfo(psinfo, current->group_leader, current->mm); |
| fill_note(notes + 1, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); |
| |
| numnote = 2; |
| |
| auxv = (elf_addr_t *)current->mm->saved_auxv; |
| |
| i = 0; |
| do |
| i += 2; |
| while (auxv[i - 2] != AT_NULL); |
| fill_note(¬es[numnote++], "CORE", NT_AUXV, |
| i * sizeof(elf_addr_t), auxv); |
| |
| /* Try to dump the FPU. */ |
| if ((prstatus->pr_fpvalid = |
| elf_core_copy_task_fpregs(current, regs, fpu))) |
| fill_note(notes + numnote++, |
| "CORE", NT_PRFPREG, sizeof(*fpu), fpu); |
| #ifdef ELF_CORE_COPY_XFPREGS |
| if (elf_core_copy_task_xfpregs(current, xfpu)) |
| fill_note(notes + numnote++, |
| "LINUX", NT_PRXFPREG, sizeof(*xfpu), xfpu); |
| #endif |
| |
| fs = get_fs(); |
| set_fs(KERNEL_DS); |
| |
| DUMP_WRITE(elf, sizeof(*elf)); |
| offset += sizeof(*elf); /* Elf header */ |
| offset += (segs+1) * sizeof(struct elf_phdr); /* Program headers */ |
| |
| /* Write notes phdr entry */ |
| { |
| struct elf_phdr phdr; |
| int sz = 0; |
| |
| for (i = 0; i < numnote; i++) |
| sz += notesize(notes + i); |
| |
| sz += thread_status_size; |
| |
| fill_elf_note_phdr(&phdr, sz, offset); |
| offset += sz; |
| DUMP_WRITE(&phdr, sizeof(phdr)); |
| } |
| |
| /* Page-align dumped data */ |
| dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
| |
| /* Write program headers for segments dump */ |
| for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { |
| struct elf_phdr phdr; |
| size_t sz; |
| |
| sz = vma->vm_end - vma->vm_start; |
| |
| phdr.p_type = PT_LOAD; |
| phdr.p_offset = offset; |
| phdr.p_vaddr = vma->vm_start; |
| phdr.p_paddr = 0; |
| phdr.p_filesz = maydump(vma) ? sz : 0; |
| phdr.p_memsz = sz; |
| offset += phdr.p_filesz; |
| phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; |
| if (vma->vm_flags & VM_WRITE) |
| phdr.p_flags |= PF_W; |
| if (vma->vm_flags & VM_EXEC) |
| phdr.p_flags |= PF_X; |
| phdr.p_align = ELF_EXEC_PAGESIZE; |
| |
| DUMP_WRITE(&phdr, sizeof(phdr)); |
| } |
| |
| #ifdef ELF_CORE_WRITE_EXTRA_PHDRS |
| ELF_CORE_WRITE_EXTRA_PHDRS; |
| #endif |
| |
| /* write out the notes section */ |
| for (i = 0; i < numnote; i++) |
| if (!writenote(notes + i, file)) |
| goto end_coredump; |
| |
| /* write out the thread status notes section */ |
| list_for_each(t, &thread_list) { |
| struct elf_thread_status *tmp = |
| list_entry(t, struct elf_thread_status, list); |
| |
| for (i = 0; i < tmp->num_notes; i++) |
| if (!writenote(&tmp->notes[i], file)) |
| goto end_coredump; |
| } |
| |
| DUMP_SEEK(dataoff); |
| |
| for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { |
| unsigned long addr; |
| |
| if (!maydump(vma)) |
| continue; |
| |
| for (addr = vma->vm_start; |
| addr < vma->vm_end; |
| addr += PAGE_SIZE) { |
| struct page *page; |
| struct vm_area_struct *vma; |
| |
| if (get_user_pages(current, current->mm, addr, 1, 0, 1, |
| &page, &vma) <= 0) { |
| DUMP_SEEK(file->f_pos + PAGE_SIZE); |
| } else { |
| if (page == ZERO_PAGE(addr)) { |
| DUMP_SEEK(file->f_pos + PAGE_SIZE); |
| } else { |
| void *kaddr; |
| flush_cache_page(vma, addr, |
| page_to_pfn(page)); |
| kaddr = kmap(page); |
| if ((size += PAGE_SIZE) > limit || |
| !dump_write(file, kaddr, |
| PAGE_SIZE)) { |
| kunmap(page); |
| page_cache_release(page); |
| goto end_coredump; |
| } |
| kunmap(page); |
| } |
| page_cache_release(page); |
| } |
| } |
| } |
| |
| #ifdef ELF_CORE_WRITE_EXTRA_DATA |
| ELF_CORE_WRITE_EXTRA_DATA; |
| #endif |
| |
| if (file->f_pos != offset) { |
| /* Sanity check */ |
| printk(KERN_WARNING |
| "elf_core_dump: file->f_pos (%Ld) != offset (%Ld)\n", |
| file->f_pos, offset); |
| } |
| |
| end_coredump: |
| set_fs(fs); |
| |
| cleanup: |
| while (!list_empty(&thread_list)) { |
| struct list_head *tmp = thread_list.next; |
| list_del(tmp); |
| kfree(list_entry(tmp, struct elf_thread_status, list)); |
| } |
| |
| kfree(elf); |
| kfree(prstatus); |
| kfree(psinfo); |
| kfree(notes); |
| kfree(fpu); |
| #ifdef ELF_CORE_COPY_XFPREGS |
| kfree(xfpu); |
| #endif |
| return has_dumped; |
| #undef NUM_NOTES |
| } |
| |
| #endif /* USE_ELF_CORE_DUMP */ |
| |
| static int __init init_elf_binfmt(void) |
| { |
| return register_binfmt(&elf_format); |
| } |
| |
| static void __exit exit_elf_binfmt(void) |
| { |
| /* Remove the COFF and ELF loaders. */ |
| unregister_binfmt(&elf_format); |
| } |
| |
| core_initcall(init_elf_binfmt); |
| module_exit(exit_elf_binfmt); |
| MODULE_LICENSE("GPL"); |