| /* Copyright (c) 2013, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/init.h> |
| #include <linux/kernel.h> |
| #include <linux/moduleparam.h> |
| #include <linux/printk.h> |
| #include <linux/notifier.h> |
| |
| #include <mach/board.h> |
| #include <mach/msm_iomap.h> |
| #include <mach/msm_smem.h> |
| #include <mach/ramdump.h> |
| #include <mach/subsystem_notif.h> |
| |
| #include "smem_private.h" |
| |
| /** |
| * OVERFLOW_ADD_UNSIGNED() - check for unsigned overflow |
| * |
| * @type: type to check for overflow |
| * @a: left value to use |
| * @b: right value to use |
| * @returns: true if a + b will result in overflow; false otherwise |
| */ |
| #define OVERFLOW_ADD_UNSIGNED(type, a, b) \ |
| (((type)~0 - (a)) < (b) ? true : false) |
| |
| #define MODEM_SBL_VERSION_INDEX 7 |
| #define SMEM_VERSION_INFO_SIZE (32 * 4) |
| #define SMEM_VERSION 0x000B |
| |
| enum { |
| MSM_SMEM_DEBUG = 1U << 0, |
| MSM_SMEM_INFO = 1U << 1, |
| }; |
| |
| static int msm_smem_debug_mask; |
| module_param_named(debug_mask, msm_smem_debug_mask, |
| int, S_IRUGO | S_IWUSR | S_IWGRP); |
| |
| #define SMEM_DBG(x...) do { \ |
| if (msm_smem_debug_mask & MSM_SMEM_DEBUG) \ |
| pr_debug(x); \ |
| } while (0) |
| |
| #define SMEM_SPINLOCK_SMEM_ALLOC "S:3" |
| |
| static remote_spinlock_t remote_spinlock; |
| static uint32_t num_smem_areas; |
| static struct smem_area *smem_areas; |
| static struct ramdump_segment *smem_ramdump_segments; |
| static int spinlocks_initialized; |
| static void *smem_ramdump_dev; |
| static DEFINE_MUTEX(spinlock_init_lock); |
| static DEFINE_SPINLOCK(smem_init_check_lock); |
| static int smem_module_inited; |
| static RAW_NOTIFIER_HEAD(smem_module_init_notifier_list); |
| static DEFINE_MUTEX(smem_module_init_notifier_lock); |
| |
| |
| struct restart_notifier_block { |
| unsigned processor; |
| char *name; |
| struct notifier_block nb; |
| }; |
| |
| static int restart_notifier_cb(struct notifier_block *this, |
| unsigned long code, |
| void *data); |
| |
| static struct restart_notifier_block restart_notifiers[] = { |
| {SMEM_MODEM, "modem", .nb.notifier_call = restart_notifier_cb}, |
| {SMEM_Q6, "lpass", .nb.notifier_call = restart_notifier_cb}, |
| {SMEM_WCNSS, "wcnss", .nb.notifier_call = restart_notifier_cb}, |
| {SMEM_DSPS, "dsps", .nb.notifier_call = restart_notifier_cb}, |
| {SMEM_MODEM, "gss", .nb.notifier_call = restart_notifier_cb}, |
| {SMEM_Q6, "adsp", .nb.notifier_call = restart_notifier_cb}, |
| }; |
| |
| static int init_smem_remote_spinlock(void); |
| |
| /** |
| * smem_phys_to_virt() - Convert a physical base and offset to virtual address |
| * |
| * @base: physical base address to check |
| * @offset: offset from the base to get the final address |
| * @returns: virtual SMEM address; NULL for failure |
| * |
| * Takes a physical address and an offset and checks if the resulting physical |
| * address would fit into one of the smem regions. If so, returns the |
| * corresponding virtual address. Otherwise returns NULL. |
| */ |
| static void *smem_phys_to_virt(phys_addr_t base, unsigned offset) |
| { |
| int i; |
| phys_addr_t phys_addr; |
| resource_size_t size; |
| |
| if (OVERFLOW_ADD_UNSIGNED(phys_addr_t, base, offset)) |
| return NULL; |
| |
| if (!smem_areas) { |
| /* |
| * Early boot - no area configuration yet, so default |
| * to using the main memory region. |
| * |
| * To remove the MSM_SHARED_RAM_BASE and the static |
| * mapping of SMEM in the future, add dump_stack() |
| * to identify the early callers of smem_get_entry() |
| * (which calls this function) and replace those calls |
| * with a new function that knows how to lookup the |
| * SMEM base address before SMEM has been probed. |
| */ |
| phys_addr = msm_shared_ram_phys; |
| size = MSM_SHARED_RAM_SIZE; |
| |
| if (base >= phys_addr && base + offset < phys_addr + size) { |
| if (OVERFLOW_ADD_UNSIGNED(uintptr_t, |
| (uintptr_t)MSM_SHARED_RAM_BASE, offset)) { |
| pr_err("%s: overflow %p %x\n", __func__, |
| MSM_SHARED_RAM_BASE, offset); |
| return NULL; |
| } |
| |
| return MSM_SHARED_RAM_BASE + offset; |
| } else { |
| return NULL; |
| } |
| } |
| for (i = 0; i < num_smem_areas; ++i) { |
| phys_addr = smem_areas[i].phys_addr; |
| size = smem_areas[i].size; |
| |
| if (base < phys_addr || base + offset >= phys_addr + size) |
| continue; |
| |
| if (OVERFLOW_ADD_UNSIGNED(uintptr_t, |
| (uintptr_t)smem_areas[i].virt_addr, offset)) { |
| pr_err("%s: overflow %p %x\n", __func__, |
| smem_areas[i].virt_addr, offset); |
| return NULL; |
| } |
| |
| return smem_areas[i].virt_addr + offset; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * smem_virt_to_phys() - Convert SMEM address to physical address. |
| * |
| * @smem_address: Address of SMEM item (returned by smem_alloc(), etc) |
| * @returns: Physical address (or NULL if there is a failure) |
| * |
| * This function should only be used if an SMEM item needs to be handed |
| * off to a DMA engine. |
| */ |
| phys_addr_t smem_virt_to_phys(void *smem_address) |
| { |
| phys_addr_t phys_addr = 0; |
| int i; |
| void *vend; |
| |
| if (!smem_areas) |
| return phys_addr; |
| |
| for (i = 0; i < num_smem_areas; ++i) { |
| vend = (void *)(smem_areas[i].virt_addr + smem_areas[i].size); |
| |
| if (smem_address >= smem_areas[i].virt_addr && |
| smem_address < vend) { |
| phys_addr = smem_address - smem_areas[i].virt_addr; |
| phys_addr += smem_areas[i].phys_addr; |
| break; |
| } |
| } |
| |
| return phys_addr; |
| } |
| EXPORT_SYMBOL(smem_virt_to_phys); |
| |
| /* smem_alloc returns the pointer to smem item if it is already allocated. |
| * Otherwise, it returns NULL. |
| */ |
| void *smem_alloc(unsigned id, unsigned size) |
| { |
| return smem_find(id, size); |
| } |
| EXPORT_SYMBOL(smem_alloc); |
| |
| /** |
| * __smem_get_entry - Get pointer and size of existing SMEM item |
| * |
| * @id: ID of SMEM item |
| * @size: Pointer to size variable for storing the result |
| * @skip_init_check: True means do not verify that SMEM has been initialized |
| * @use_rspinlock: True to use the remote spinlock |
| * @returns: Pointer to SMEM item or NULL if it doesn't exist |
| */ |
| static void *__smem_get_entry(unsigned id, unsigned *size, |
| bool skip_init_check, bool use_rspinlock) |
| { |
| struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE; |
| struct smem_heap_entry *toc = shared->heap_toc; |
| int use_spinlocks = spinlocks_initialized && use_rspinlock; |
| void *ret = 0; |
| unsigned long flags = 0; |
| |
| if (!skip_init_check && !smem_initialized_check()) |
| return ret; |
| |
| if (id >= SMEM_NUM_ITEMS) |
| return ret; |
| |
| if (use_spinlocks) |
| remote_spin_lock_irqsave(&remote_spinlock, flags); |
| /* toc is in device memory and cannot be speculatively accessed */ |
| if (toc[id].allocated) { |
| phys_addr_t phys_base; |
| |
| *size = toc[id].size; |
| barrier(); |
| |
| phys_base = toc[id].reserved & BASE_ADDR_MASK; |
| if (!phys_base) |
| phys_base = (phys_addr_t)msm_shared_ram_phys; |
| ret = smem_phys_to_virt(phys_base, toc[id].offset); |
| } else { |
| *size = 0; |
| } |
| if (use_spinlocks) |
| remote_spin_unlock_irqrestore(&remote_spinlock, flags); |
| |
| return ret; |
| } |
| |
| static void *__smem_find(unsigned id, unsigned size_in, bool skip_init_check) |
| { |
| unsigned size; |
| void *ptr; |
| |
| ptr = __smem_get_entry(id, &size, skip_init_check, true); |
| if (!ptr) |
| return 0; |
| |
| size_in = ALIGN(size_in, 8); |
| if (size_in != size) { |
| pr_err("smem_find(%d, %d): wrong size %d\n", |
| id, size_in, size); |
| return 0; |
| } |
| |
| return ptr; |
| } |
| |
| void *smem_find(unsigned id, unsigned size_in) |
| { |
| return __smem_find(id, size_in, false); |
| } |
| EXPORT_SYMBOL(smem_find); |
| |
| /* smem_alloc2 returns the pointer to smem item. If it is not allocated, |
| * it allocates it and then returns the pointer to it. |
| */ |
| void *smem_alloc2(unsigned id, unsigned size_in) |
| { |
| struct smem_shared *shared = (void *) MSM_SHARED_RAM_BASE; |
| struct smem_heap_entry *toc = shared->heap_toc; |
| unsigned long flags; |
| void *ret = NULL; |
| int rc; |
| |
| if (!smem_initialized_check()) |
| return NULL; |
| |
| if (id >= SMEM_NUM_ITEMS) |
| return NULL; |
| |
| if (unlikely(!spinlocks_initialized)) { |
| rc = init_smem_remote_spinlock(); |
| if (unlikely(rc)) { |
| pr_err("%s: remote spinlock init failed %d\n", |
| __func__, rc); |
| return NULL; |
| } |
| } |
| |
| size_in = ALIGN(size_in, 8); |
| remote_spin_lock_irqsave(&remote_spinlock, flags); |
| if (toc[id].allocated) { |
| SMEM_DBG("%s: %u already allocated\n", __func__, id); |
| if (size_in != toc[id].size) |
| pr_err("%s: wrong size %u (expected %u)\n", |
| __func__, toc[id].size, size_in); |
| else |
| ret = (void *)(MSM_SHARED_RAM_BASE + toc[id].offset); |
| } else if (id > SMEM_FIXED_ITEM_LAST) { |
| SMEM_DBG("%s: allocating %u\n", __func__, id); |
| if (shared->heap_info.heap_remaining >= size_in) { |
| toc[id].offset = shared->heap_info.free_offset; |
| toc[id].size = size_in; |
| wmb(); |
| toc[id].allocated = 1; |
| |
| shared->heap_info.free_offset += size_in; |
| shared->heap_info.heap_remaining -= size_in; |
| ret = (void *)(MSM_SHARED_RAM_BASE + toc[id].offset); |
| } else |
| pr_err("%s: not enough memory %u (required %u)\n", |
| __func__, shared->heap_info.heap_remaining, |
| size_in); |
| } |
| wmb(); |
| remote_spin_unlock_irqrestore(&remote_spinlock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(smem_alloc2); |
| |
| void *smem_get_entry(unsigned id, unsigned *size) |
| { |
| return __smem_get_entry(id, size, false, true); |
| } |
| EXPORT_SYMBOL(smem_get_entry); |
| |
| /** |
| * smem_get_entry_no_rlock - Get existing item without using remote spinlock |
| * |
| * @id: ID of SMEM item |
| * @size_out: Pointer to size variable for storing the result |
| * @returns: Pointer to SMEM item or NULL if it doesn't exist |
| * |
| * This function does not lock the remote spinlock and should only be used in |
| * failure-recover cases such as retrieving the subsystem failure reason during |
| * subsystem restart. |
| */ |
| void *smem_get_entry_no_rlock(unsigned id, unsigned *size_out) |
| { |
| return __smem_get_entry(id, size_out, false, false); |
| } |
| EXPORT_SYMBOL(smem_get_entry_no_rlock); |
| |
| /** |
| * smem_get_remote_spinlock - Remote spinlock pointer for unit testing. |
| * |
| * @returns: pointer to SMEM remote spinlock |
| */ |
| remote_spinlock_t *smem_get_remote_spinlock(void) |
| { |
| if (unlikely(!spinlocks_initialized)) |
| init_smem_remote_spinlock(); |
| return &remote_spinlock; |
| } |
| EXPORT_SYMBOL(smem_get_remote_spinlock); |
| |
| /** |
| * init_smem_remote_spinlock - Reentrant remote spinlock initialization |
| * |
| * @returns: sucess or error code for failure |
| */ |
| static int init_smem_remote_spinlock(void) |
| { |
| int rc = 0; |
| |
| /* |
| * Optimistic locking. Init only needs to be done once by the first |
| * caller. After that, serializing inits between different callers |
| * is unnecessary. The second check after the lock ensures init |
| * wasn't previously completed by someone else before the lock could |
| * be grabbed. |
| */ |
| if (!spinlocks_initialized) { |
| mutex_lock(&spinlock_init_lock); |
| if (!spinlocks_initialized) { |
| rc = remote_spin_lock_init(&remote_spinlock, |
| SMEM_SPINLOCK_SMEM_ALLOC); |
| if (!rc) |
| spinlocks_initialized = 1; |
| } |
| mutex_unlock(&spinlock_init_lock); |
| } |
| return rc; |
| } |
| |
| /** |
| * smem_initialized_check - Reentrant check that smem has been initialized |
| * |
| * @returns: true if initialized, false if not. |
| */ |
| bool smem_initialized_check(void) |
| { |
| static int checked; |
| static int is_inited; |
| unsigned long flags; |
| struct smem_shared *smem; |
| int *version_array; |
| |
| if (likely(checked)) { |
| if (unlikely(!is_inited)) |
| pr_err("%s: smem not initialized\n", __func__); |
| return is_inited; |
| } |
| |
| spin_lock_irqsave(&smem_init_check_lock, flags); |
| if (checked) { |
| spin_unlock_irqrestore(&smem_init_check_lock, flags); |
| if (unlikely(!is_inited)) |
| pr_err("%s: smem not initialized\n", __func__); |
| return is_inited; |
| } |
| |
| smem = (void *)MSM_SHARED_RAM_BASE; |
| |
| if (smem->heap_info.initialized != 1) |
| goto failed; |
| if (smem->heap_info.reserved != 0) |
| goto failed; |
| |
| version_array = __smem_find(SMEM_VERSION_INFO, SMEM_VERSION_INFO_SIZE, |
| true); |
| if (version_array == NULL) |
| goto failed; |
| if (version_array[MODEM_SBL_VERSION_INDEX] != SMEM_VERSION << 16) |
| goto failed; |
| |
| is_inited = 1; |
| checked = 1; |
| spin_unlock_irqrestore(&smem_init_check_lock, flags); |
| return is_inited; |
| |
| failed: |
| is_inited = 0; |
| checked = 1; |
| spin_unlock_irqrestore(&smem_init_check_lock, flags); |
| pr_err("%s: bootloader failure detected, shared memory not inited\n", |
| __func__); |
| return is_inited; |
| } |
| EXPORT_SYMBOL(smem_initialized_check); |
| |
| static int restart_notifier_cb(struct notifier_block *this, |
| unsigned long code, |
| void *data) |
| { |
| if (code == SUBSYS_AFTER_SHUTDOWN) { |
| struct restart_notifier_block *notifier; |
| |
| notifier = container_of(this, |
| struct restart_notifier_block, nb); |
| SMEM_DBG("%s: ssrestart for processor %d ('%s')\n", |
| __func__, notifier->processor, |
| notifier->name); |
| |
| remote_spin_release(&remote_spinlock, notifier->processor); |
| remote_spin_release_all(notifier->processor); |
| |
| if (smem_ramdump_dev) { |
| int ret; |
| |
| SMEM_DBG("%s: saving ramdump\n", __func__); |
| /* |
| * XPU protection does not currently allow the |
| * auxiliary memory regions to be dumped. If this |
| * changes, then num_smem_areas + 1 should be passed |
| * into do_elf_ramdump() to dump all regions. |
| */ |
| ret = do_elf_ramdump(smem_ramdump_dev, |
| smem_ramdump_segments, 1); |
| if (ret < 0) |
| pr_err("%s: unable to dump smem %d\n", __func__, |
| ret); |
| } |
| } |
| |
| return NOTIFY_DONE; |
| } |
| |
| static __init int modem_restart_late_init(void) |
| { |
| int i; |
| void *handle; |
| struct restart_notifier_block *nb; |
| |
| smem_ramdump_dev = create_ramdump_device("smem", NULL); |
| if (IS_ERR_OR_NULL(smem_ramdump_dev)) { |
| pr_err("%s: Unable to create smem ramdump device.\n", |
| __func__); |
| smem_ramdump_dev = NULL; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(restart_notifiers); i++) { |
| nb = &restart_notifiers[i]; |
| handle = subsys_notif_register_notifier(nb->name, &nb->nb); |
| SMEM_DBG("%s: registering notif for '%s', handle=%p\n", |
| __func__, nb->name, handle); |
| } |
| |
| return 0; |
| } |
| late_initcall(modem_restart_late_init); |
| |
| int smem_module_init_notifier_register(struct notifier_block *nb) |
| { |
| int ret; |
| if (!nb) |
| return -EINVAL; |
| mutex_lock(&smem_module_init_notifier_lock); |
| ret = raw_notifier_chain_register(&smem_module_init_notifier_list, nb); |
| if (smem_module_inited) |
| nb->notifier_call(nb, 0, NULL); |
| mutex_unlock(&smem_module_init_notifier_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(smem_module_init_notifier_register); |
| |
| int smem_module_init_notifier_unregister(struct notifier_block *nb) |
| { |
| int ret; |
| if (!nb) |
| return -EINVAL; |
| mutex_lock(&smem_module_init_notifier_lock); |
| ret = raw_notifier_chain_unregister(&smem_module_init_notifier_list, |
| nb); |
| mutex_unlock(&smem_module_init_notifier_lock); |
| return ret; |
| } |
| EXPORT_SYMBOL(smem_module_init_notifier_unregister); |
| |
| static void smem_module_init_notify(uint32_t state, void *data) |
| { |
| mutex_lock(&smem_module_init_notifier_lock); |
| smem_module_inited = 1; |
| raw_notifier_call_chain(&smem_module_init_notifier_list, |
| state, data); |
| mutex_unlock(&smem_module_init_notifier_lock); |
| } |
| |
| static int msm_smem_probe(struct platform_device *pdev) |
| { |
| char *key; |
| struct resource *r; |
| phys_addr_t aux_mem_base; |
| resource_size_t aux_mem_size; |
| int temp_string_size = 11; /* max 3 digit count */ |
| char temp_string[temp_string_size]; |
| int ret; |
| struct ramdump_segment *ramdump_segments_tmp = NULL; |
| struct smem_area *smem_areas_tmp = NULL; |
| int smem_idx = 0; |
| |
| if (!smem_initialized_check()) |
| return -ENODEV; |
| |
| key = "irq-reg-base"; |
| r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key); |
| if (!r) { |
| pr_err("%s: missing '%s'\n", __func__, key); |
| return -ENODEV; |
| } |
| |
| num_smem_areas = 1; |
| while (1) { |
| scnprintf(temp_string, temp_string_size, "aux-mem%d", |
| num_smem_areas); |
| r = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| temp_string); |
| if (!r) |
| break; |
| |
| ++num_smem_areas; |
| if (num_smem_areas > 999) { |
| pr_err("%s: max num aux mem regions reached\n", |
| __func__); |
| break; |
| } |
| } |
| /* Initialize main SMEM region and SSR ramdump region */ |
| key = "smem"; |
| r = platform_get_resource_byname(pdev, IORESOURCE_MEM, key); |
| if (!r) { |
| pr_err("%s: missing '%s'\n", __func__, key); |
| return -ENODEV; |
| } |
| |
| smem_areas_tmp = kmalloc_array(num_smem_areas, sizeof(struct smem_area), |
| GFP_KERNEL); |
| if (!smem_areas_tmp) { |
| pr_err("%s: smem areas kmalloc failed\n", __func__); |
| ret = -ENOMEM; |
| goto free_smem_areas; |
| } |
| |
| ramdump_segments_tmp = kmalloc_array(num_smem_areas, |
| sizeof(struct ramdump_segment), GFP_KERNEL); |
| if (!ramdump_segments_tmp) { |
| pr_err("%s: ramdump segment kmalloc failed\n", __func__); |
| ret = -ENOMEM; |
| goto free_smem_areas; |
| } |
| smem_areas_tmp[smem_idx].phys_addr = r->start; |
| smem_areas_tmp[smem_idx].size = resource_size(r); |
| smem_areas_tmp[smem_idx].virt_addr = MSM_SHARED_RAM_BASE; |
| |
| ramdump_segments_tmp[smem_idx].address = r->start; |
| ramdump_segments_tmp[smem_idx].size = resource_size(r); |
| ++smem_idx; |
| |
| /* Configure auxiliary SMEM regions */ |
| while (1) { |
| scnprintf(temp_string, temp_string_size, "aux-mem%d", |
| smem_idx); |
| r = platform_get_resource_byname(pdev, IORESOURCE_MEM, |
| temp_string); |
| if (!r) |
| break; |
| aux_mem_base = r->start; |
| aux_mem_size = resource_size(r); |
| |
| ramdump_segments_tmp[smem_idx].address = aux_mem_base; |
| ramdump_segments_tmp[smem_idx].size = aux_mem_size; |
| |
| smem_areas_tmp[smem_idx].phys_addr = aux_mem_base; |
| smem_areas_tmp[smem_idx].size = aux_mem_size; |
| smem_areas_tmp[smem_idx].virt_addr = ioremap_nocache( |
| (unsigned long)(smem_areas_tmp[smem_idx].phys_addr), |
| smem_areas_tmp[smem_idx].size); |
| SMEM_DBG("%s: %s = %pa %pa -> %p", __func__, temp_string, |
| &aux_mem_base, &aux_mem_size, |
| smem_areas_tmp[smem_idx].virt_addr); |
| |
| if (!smem_areas_tmp[smem_idx].virt_addr) { |
| pr_err("%s: ioremap_nocache() of addr:%pa size: %pa\n", |
| __func__, |
| &smem_areas_tmp[smem_idx].phys_addr, |
| &smem_areas_tmp[smem_idx].size); |
| ret = -ENOMEM; |
| goto free_smem_areas; |
| } |
| |
| if (OVERFLOW_ADD_UNSIGNED(uintptr_t, |
| (uintptr_t)smem_areas_tmp[smem_idx].virt_addr, |
| smem_areas_tmp[smem_idx].size)) { |
| pr_err("%s: invalid virtual address block %i: %p:%pa\n", |
| __func__, smem_idx, |
| smem_areas_tmp[smem_idx].virt_addr, |
| &smem_areas_tmp[smem_idx].size); |
| ++smem_idx; |
| ret = -EINVAL; |
| goto free_smem_areas; |
| } |
| |
| ++smem_idx; |
| if (smem_idx > 999) { |
| pr_err("%s: max num aux mem regions reached\n", |
| __func__); |
| break; |
| } |
| } |
| |
| ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, &pdev->dev); |
| if (ret) |
| pr_err("%s: of_platform_populate failed %d\n", __func__, ret); |
| |
| smem_areas = smem_areas_tmp; |
| smem_ramdump_segments = ramdump_segments_tmp; |
| return 0; |
| |
| free_smem_areas: |
| for (smem_idx = smem_idx - 1; smem_idx >= 1; --smem_idx) |
| iounmap(smem_areas_tmp[smem_idx].virt_addr); |
| |
| num_smem_areas = 0; |
| kfree(ramdump_segments_tmp); |
| kfree(smem_areas_tmp); |
| return ret; |
| } |
| |
| static struct of_device_id msm_smem_match_table[] = { |
| { .compatible = "qcom,smem" }, |
| {}, |
| }; |
| |
| static struct platform_driver msm_smem_driver = { |
| .probe = msm_smem_probe, |
| .driver = { |
| .name = "msm_smem", |
| .owner = THIS_MODULE, |
| .of_match_table = msm_smem_match_table, |
| }, |
| }; |
| |
| int __init msm_smem_init(void) |
| { |
| static bool registered; |
| int rc; |
| |
| if (registered) |
| return 0; |
| |
| registered = true; |
| |
| rc = init_smem_remote_spinlock(); |
| if (rc) { |
| pr_err("%s: remote spinlock init failed %d\n", __func__, rc); |
| return rc; |
| } |
| |
| rc = platform_driver_register(&msm_smem_driver); |
| if (rc) { |
| pr_err("%s: msm_smem_driver register failed %d\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| smem_module_init_notify(0, NULL); |
| |
| return 0; |
| } |
| |
| module_init(msm_smem_init); |