blob: 0933d20dca1817f8bc5c39272afe72ae8515e2a0 [file] [log] [blame]
/*
* Copyright (C) 2002 ARM Ltd.
* All Rights Reserved
* Copyright (c) 2010-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/regulator/krait-regulator.h>
#include <asm/hardware/gic.h>
#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/mach-types.h>
#include <asm/smp_plat.h>
#include <mach/socinfo.h>
#include <mach/hardware.h>
#include <mach/msm_iomap.h>
#include "pm.h"
#include "scm-boot.h"
#include "spm.h"
#define VDD_SC1_ARRAY_CLAMP_GFS_CTL 0x15A0
#define SCSS_CPU1CORE_RESET 0xD80
#define SCSS_DBG_STATUS_CORE_PWRDUP 0xE64
extern void msm_secondary_startup(void);
/*
* control for which core is the next to come out of the secondary
* boot "holding pen".
*/
volatile int pen_release = -1;
/*
* Write pen_release in a way that is guaranteed to be visible to all
* observers, irrespective of whether they're taking part in coherency
* or not. This is necessary for the hotplug code to work reliably.
*/
static void __cpuinit write_pen_release(int val)
{
pen_release = val;
smp_wmb();
__cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
}
static DEFINE_SPINLOCK(boot_lock);
void __cpuinit platform_secondary_init(unsigned int cpu)
{
WARN_ON(msm_platform_secondary_init(cpu));
/*
* if any interrupts are already enabled for the primary
* core (e.g. timer irq), then they will not have been enabled
* for us: do so
*/
gic_secondary_init(0);
/*
* let the primary processor know we're out of the
* pen, then head off into the C entry point
*/
write_pen_release(-1);
/*
* Synchronise with the boot thread.
*/
spin_lock(&boot_lock);
spin_unlock(&boot_lock);
}
static int __cpuinit scorpion_release_secondary(void)
{
void *base_ptr = ioremap_nocache(0x00902000, SZ_4K*2);
if (!base_ptr)
return -EINVAL;
writel_relaxed(0, base_ptr + VDD_SC1_ARRAY_CLAMP_GFS_CTL);
dmb();
writel_relaxed(0, base_ptr + SCSS_CPU1CORE_RESET);
writel_relaxed(3, base_ptr + SCSS_DBG_STATUS_CORE_PWRDUP);
mb();
iounmap(base_ptr);
return 0;
}
static int __cpuinit krait_release_secondary_sim(unsigned long base, int cpu)
{
void *base_ptr = ioremap_nocache(base + (cpu * 0x10000), SZ_4K);
if (!base_ptr)
return -ENODEV;
if (machine_is_msm8974_sim() || machine_is_mpq8092_sim()) {
writel_relaxed(0x800, base_ptr+0x04);
writel_relaxed(0x3FFF, base_ptr+0x14);
}
mb();
iounmap(base_ptr);
return 0;
}
static int __cpuinit krait_release_secondary(unsigned long base, int cpu)
{
void *base_ptr = ioremap_nocache(base + (cpu * 0x10000), SZ_4K);
if (!base_ptr)
return -ENODEV;
msm_spm_turn_on_cpu_rail(cpu);
if (cpu_is_krait_v1() || cpu_is_krait_v2()) {
writel_relaxed(0x109, base_ptr+0x04);
writel_relaxed(0x101, base_ptr+0x04);
mb();
ndelay(300);
writel_relaxed(0x121, base_ptr+0x04);
} else
writel_relaxed(0x021, base_ptr+0x04);
mb();
udelay(2);
writel_relaxed(0x020, base_ptr+0x04);
mb();
udelay(2);
writel_relaxed(0x000, base_ptr+0x04);
mb();
udelay(100);
writel_relaxed(0x080, base_ptr+0x04);
mb();
iounmap(base_ptr);
return 0;
}
static int __cpuinit krait_release_secondary_p3(unsigned long base, int cpu)
{
void *base_ptr = ioremap_nocache(base + (cpu * 0x10000), SZ_4K);
if (!base_ptr)
return -ENODEV;
secondary_cpu_hs_init(base_ptr);
writel_relaxed(0x021, base_ptr+0x04);
mb();
udelay(2);
writel_relaxed(0x020, base_ptr+0x04);
mb();
udelay(2);
writel_relaxed(0x000, base_ptr+0x04);
mb();
writel_relaxed(0x080, base_ptr+0x04);
mb();
iounmap(base_ptr);
return 0;
}
static int __cpuinit release_secondary(unsigned int cpu)
{
BUG_ON(cpu >= get_core_count());
if (cpu_is_msm8x60())
return scorpion_release_secondary();
if (machine_is_msm8974_sim() || machine_is_mpq8092_sim())
return krait_release_secondary_sim(0xf9088000, cpu);
if (soc_class_is_msm8960() || soc_class_is_msm8930() ||
soc_class_is_apq8064())
return krait_release_secondary(0x02088000, cpu);
if (cpu_is_msm8974())
return krait_release_secondary_p3(0xf9088000, cpu);
WARN(1, "unknown CPU case in release_secondary\n");
return -EINVAL;
}
DEFINE_PER_CPU(int, cold_boot_done);
int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
{
unsigned long timeout;
pr_debug("Starting secondary CPU %d\n", cpu);
/* Set preset_lpj to avoid subsequent lpj recalculations */
preset_lpj = loops_per_jiffy;
if (per_cpu(cold_boot_done, cpu) == false) {
release_secondary(cpu);
per_cpu(cold_boot_done, cpu) = true;
}
/*
* set synchronisation state between this boot processor
* and the secondary one
*/
spin_lock(&boot_lock);
/*
* The secondary processor is waiting to be released from
* the holding pen - release it, then wait for it to flag
* that it has been released by resetting pen_release.
*
* Note that "pen_release" is the hardware CPU ID, whereas
* "cpu" is Linux's internal ID.
*/
write_pen_release(cpu_logical_map(cpu));
/*
* Send the secondary CPU a soft interrupt, thereby causing
* the boot monitor to read the system wide flags register,
* and branch to the address found there.
*/
gic_raise_softirq(cpumask_of(cpu), 1);
timeout = jiffies + (1 * HZ);
while (time_before(jiffies, timeout)) {
smp_rmb();
if (pen_release == -1)
break;
udelay(10);
}
/*
* now the secondary core is starting up let it run its
* calibrations, then wait for it to finish
*/
spin_unlock(&boot_lock);
return pen_release != -1 ? -ENOSYS : 0;
}
/*
* Initialise the CPU possible map early - this describes the CPUs
* which may be present or become present in the system.
*/
void __init smp_init_cpus(void)
{
unsigned int i, ncores = get_core_count();
if (ncores > nr_cpu_ids) {
pr_warn("SMP: %u cores greater than maximum (%u), clipping\n",
ncores, nr_cpu_ids);
ncores = nr_cpu_ids;
}
for (i = 0; i < ncores; i++)
set_cpu_possible(i, true);
set_smp_cross_call(gic_raise_softirq);
}
static int cold_boot_flags[] __initdata = {
0,
SCM_FLAG_COLDBOOT_CPU1,
SCM_FLAG_COLDBOOT_CPU2,
SCM_FLAG_COLDBOOT_CPU3,
};
void __init platform_smp_prepare_cpus(unsigned int max_cpus)
{
int cpu, map;
unsigned int flags = 0;
for_each_present_cpu(cpu) {
map = cpu_logical_map(cpu);
if (map > ARRAY_SIZE(cold_boot_flags)) {
set_cpu_present(cpu, false);
__WARN();
continue;
}
flags |= cold_boot_flags[map];
}
if (scm_set_boot_addr(virt_to_phys(msm_secondary_startup), flags))
pr_warn("Failed to set CPU boot address\n");
}