| /* drivers/serial/msm_serial_hs.c |
| * |
| * MSM 7k High speed uart driver |
| * |
| * Copyright (c) 2008 Google Inc. |
| * Copyright (c) 2007-2013, The Linux Foundation. All rights reserved. |
| * Modified: Nick Pelly <npelly@google.com> |
| * |
| * All source code in this file is licensed under the following license |
| * except where indicated. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| * See the GNU General Public License for more details. |
| * |
| * Has optional support for uart power management independent of linux |
| * suspend/resume: |
| * |
| * RX wakeup. |
| * UART wakeup can be triggered by RX activity (using a wakeup GPIO on the |
| * UART RX pin). This should only be used if there is not a wakeup |
| * GPIO on the UART CTS, and the first RX byte is known (for example, with the |
| * Bluetooth Texas Instruments HCILL protocol), since the first RX byte will |
| * always be lost. RTS will be asserted even while the UART is off in this mode |
| * of operation. See msm_serial_hs_platform_data.rx_wakeup_irq. |
| */ |
| |
| #include <linux/module.h> |
| |
| #include <linux/serial.h> |
| #include <linux/serial_core.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/ioport.h> |
| #include <linux/atomic.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/clk.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmapool.h> |
| #include <linux/tty_flip.h> |
| #include <linux/wait.h> |
| #include <linux/sysfs.h> |
| #include <linux/stat.h> |
| #include <linux/device.h> |
| #include <linux/wakelock.h> |
| #include <linux/debugfs.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_gpio.h> |
| #include <linux/gpio.h> |
| #include <asm/atomic.h> |
| #include <asm/irq.h> |
| |
| #include <mach/hardware.h> |
| #include <mach/dma.h> |
| #include <mach/sps.h> |
| #include <mach/msm_serial_hs.h> |
| #include <mach/msm_bus.h> |
| |
| #include "msm_serial_hs_hwreg.h" |
| #define UART_SPS_CONS_PERIPHERAL 0 |
| #define UART_SPS_PROD_PERIPHERAL 1 |
| |
| static int hs_serial_debug_mask = 1; |
| module_param_named(debug_mask, hs_serial_debug_mask, |
| int, S_IRUGO | S_IWUSR | S_IWGRP); |
| /* |
| * There are 3 different kind of UART Core available on MSM. |
| * High Speed UART (i.e. Legacy HSUART), GSBI based HSUART |
| * and BSLP based HSUART. |
| */ |
| enum uart_core_type { |
| LEGACY_HSUART, |
| GSBI_HSUART, |
| BLSP_HSUART, |
| }; |
| |
| enum flush_reason { |
| FLUSH_NONE, |
| FLUSH_DATA_READY, |
| FLUSH_DATA_INVALID, /* values after this indicate invalid data */ |
| FLUSH_IGNORE = FLUSH_DATA_INVALID, |
| FLUSH_STOP, |
| FLUSH_SHUTDOWN, |
| }; |
| |
| enum msm_hs_clk_states_e { |
| MSM_HS_CLK_PORT_OFF, /* port not in use */ |
| MSM_HS_CLK_OFF, /* clock disabled */ |
| MSM_HS_CLK_REQUEST_OFF, /* disable after TX and RX flushed */ |
| MSM_HS_CLK_ON, /* clock enabled */ |
| }; |
| |
| /* Track the forced RXSTALE flush during clock off sequence. |
| * These states are only valid during MSM_HS_CLK_REQUEST_OFF */ |
| enum msm_hs_clk_req_off_state_e { |
| CLK_REQ_OFF_START, |
| CLK_REQ_OFF_RXSTALE_ISSUED, |
| CLK_REQ_OFF_FLUSH_ISSUED, |
| CLK_REQ_OFF_RXSTALE_FLUSHED, |
| }; |
| |
| /* SPS data structures to support HSUART with BAM |
| * @sps_pipe - This struct defines BAM pipe descriptor |
| * @sps_connect - This struct defines a connection's end point |
| * @sps_register - This struct defines a event registration parameters |
| */ |
| struct msm_hs_sps_ep_conn_data { |
| struct sps_pipe *pipe_handle; |
| struct sps_connect config; |
| struct sps_register_event event; |
| }; |
| |
| struct msm_hs_tx { |
| unsigned int tx_ready_int_en; /* ok to dma more tx */ |
| unsigned int dma_in_flight; /* tx dma in progress */ |
| enum flush_reason flush; |
| wait_queue_head_t wait; |
| struct msm_dmov_cmd xfer; |
| dmov_box *command_ptr; |
| u32 *command_ptr_ptr; |
| dma_addr_t mapped_cmd_ptr; |
| dma_addr_t mapped_cmd_ptr_ptr; |
| int tx_count; |
| dma_addr_t dma_base; |
| struct tasklet_struct tlet; |
| struct msm_hs_sps_ep_conn_data cons; |
| }; |
| |
| struct msm_hs_rx { |
| enum flush_reason flush; |
| struct msm_dmov_cmd xfer; |
| dma_addr_t cmdptr_dmaaddr; |
| dmov_box *command_ptr; |
| u32 *command_ptr_ptr; |
| dma_addr_t mapped_cmd_ptr; |
| wait_queue_head_t wait; |
| dma_addr_t rbuffer; |
| unsigned char *buffer; |
| unsigned int buffer_pending; |
| struct dma_pool *pool; |
| struct wake_lock wake_lock; |
| struct delayed_work flip_insert_work; |
| struct tasklet_struct tlet; |
| struct msm_hs_sps_ep_conn_data prod; |
| }; |
| enum buffer_states { |
| NONE_PENDING = 0x0, |
| FIFO_OVERRUN = 0x1, |
| PARITY_ERROR = 0x2, |
| CHARS_NORMAL = 0x4, |
| }; |
| |
| /* optional low power wakeup, typically on a GPIO RX irq */ |
| struct msm_hs_wakeup { |
| int irq; /* < 0 indicates low power wakeup disabled */ |
| unsigned char ignore; /* bool */ |
| |
| /* bool: inject char into rx tty on wakeup */ |
| unsigned char inject_rx; |
| char rx_to_inject; |
| }; |
| |
| struct msm_hs_port { |
| struct uart_port uport; |
| unsigned long imr_reg; /* shadow value of UARTDM_IMR */ |
| struct clk *clk; |
| struct clk *pclk; |
| struct msm_hs_tx tx; |
| struct msm_hs_rx rx; |
| /* gsbi uarts have to do additional writes to gsbi memory */ |
| /* block and top control status block. The following pointers */ |
| /* keep a handle to these blocks. */ |
| unsigned char __iomem *mapped_gsbi; |
| int dma_tx_channel; |
| int dma_rx_channel; |
| int dma_tx_crci; |
| int dma_rx_crci; |
| struct hrtimer clk_off_timer; /* to poll TXEMT before clock off */ |
| ktime_t clk_off_delay; |
| enum msm_hs_clk_states_e clk_state; |
| enum msm_hs_clk_req_off_state_e clk_req_off_state; |
| atomic_t clk_count; |
| struct msm_hs_wakeup wakeup; |
| struct wake_lock dma_wake_lock; /* held while any DMA active */ |
| |
| struct dentry *loopback_dir; |
| struct work_struct clock_off_w; /* work for actual clock off */ |
| struct workqueue_struct *hsuart_wq; /* hsuart workqueue */ |
| struct mutex clk_mutex; /* mutex to guard against clock off/clock on */ |
| struct work_struct disconnect_rx_endpoint; /* disconnect rx_endpoint */ |
| bool tty_flush_receive; |
| enum uart_core_type uart_type; |
| u32 bam_handle; |
| resource_size_t bam_mem; |
| int bam_irq; |
| unsigned char __iomem *bam_base; |
| unsigned int bam_tx_ep_pipe_index; |
| unsigned int bam_rx_ep_pipe_index; |
| /* struct sps_event_notify is an argument passed when triggering a |
| * callback event object registered for an SPS connection end point. |
| */ |
| struct sps_event_notify notify; |
| /* bus client handler */ |
| u32 bus_perf_client; |
| /* BLSP UART required BUS Scaling data */ |
| struct msm_bus_scale_pdata *bus_scale_table; |
| bool rx_discard_flush_issued; |
| int rx_count_callback; |
| bool rx_bam_inprogress; |
| unsigned int *reg_ptr; |
| }; |
| |
| unsigned int regmap_nonblsp[UART_DM_LAST] = { |
| [UART_DM_MR1] = UARTDM_MR1_ADDR, |
| [UART_DM_MR2] = UARTDM_MR2_ADDR, |
| [UART_DM_IMR] = UARTDM_IMR_ADDR, |
| [UART_DM_SR] = UARTDM_SR_ADDR, |
| [UART_DM_CR] = UARTDM_CR_ADDR, |
| [UART_DM_CSR] = UARTDM_CSR_ADDR, |
| [UART_DM_IPR] = UARTDM_IPR_ADDR, |
| [UART_DM_ISR] = UARTDM_ISR_ADDR, |
| [UART_DM_RX_TOTAL_SNAP] = UARTDM_RX_TOTAL_SNAP_ADDR, |
| [UART_DM_TFWR] = UARTDM_TFWR_ADDR, |
| [UART_DM_RFWR] = UARTDM_RFWR_ADDR, |
| [UART_DM_RF] = UARTDM_RF_ADDR, |
| [UART_DM_TF] = UARTDM_TF_ADDR, |
| [UART_DM_MISR] = UARTDM_MISR_ADDR, |
| [UART_DM_DMRX] = UARTDM_DMRX_ADDR, |
| [UART_DM_NCF_TX] = UARTDM_NCF_TX_ADDR, |
| [UART_DM_DMEN] = UARTDM_DMEN_ADDR, |
| [UART_DM_TXFS] = UARTDM_TXFS_ADDR, |
| [UART_DM_RXFS] = UARTDM_RXFS_ADDR, |
| [UART_DM_RX_TRANS_CTRL] = UARTDM_RX_TRANS_CTRL_ADDR, |
| }; |
| |
| unsigned int regmap_blsp[UART_DM_LAST] = { |
| [UART_DM_MR1] = 0x0, |
| [UART_DM_MR2] = 0x4, |
| [UART_DM_IMR] = 0xb0, |
| [UART_DM_SR] = 0xa4, |
| [UART_DM_CR] = 0xa8, |
| [UART_DM_CSR] = 0xa0, |
| [UART_DM_IPR] = 0x18, |
| [UART_DM_ISR] = 0xb4, |
| [UART_DM_RX_TOTAL_SNAP] = 0xbc, |
| [UART_DM_TFWR] = 0x1c, |
| [UART_DM_RFWR] = 0x20, |
| [UART_DM_RF] = 0x140, |
| [UART_DM_TF] = 0x100, |
| [UART_DM_MISR] = 0xac, |
| [UART_DM_DMRX] = 0x34, |
| [UART_DM_NCF_TX] = 0x40, |
| [UART_DM_DMEN] = 0x3c, |
| [UART_DM_TXFS] = 0x4c, |
| [UART_DM_RXFS] = 0x50, |
| [UART_DM_RX_TRANS_CTRL] = 0xcc, |
| }; |
| |
| static struct of_device_id msm_hs_match_table[] = { |
| { .compatible = "qcom,msm-hsuart-v14", |
| .data = regmap_blsp |
| }, |
| { |
| .compatible = "qcom,msm-hsuart-v13", |
| .data = regmap_nonblsp |
| }, |
| {} |
| }; |
| |
| |
| #define MSM_UARTDM_BURST_SIZE 16 /* DM burst size (in bytes) */ |
| #define UARTDM_TX_BUF_SIZE UART_XMIT_SIZE |
| #define UARTDM_RX_BUF_SIZE 512 |
| #define RETRY_TIMEOUT 5 |
| #define UARTDM_NR 256 |
| #define BAM_PIPE_MIN 0 |
| #define BAM_PIPE_MAX 11 |
| #define BUS_SCALING 1 |
| #define BUS_RESET 0 |
| #define RX_FLUSH_COMPLETE_TIMEOUT 300 /* In jiffies */ |
| #define BLSP_UART_CLK_FMAX 63160000 |
| |
| static struct dentry *debug_base; |
| static struct msm_hs_port q_uart_port[UARTDM_NR]; |
| static struct platform_driver msm_serial_hs_platform_driver; |
| static struct uart_driver msm_hs_driver; |
| static struct uart_ops msm_hs_ops; |
| static void msm_hs_start_rx_locked(struct uart_port *uport); |
| static void msm_serial_hs_rx_tlet(unsigned long tlet_ptr); |
| static void flip_insert_work(struct work_struct *work); |
| static void msm_hs_bus_voting(struct msm_hs_port *msm_uport, unsigned int vote); |
| |
| #define UARTDM_TO_MSM(uart_port) \ |
| container_of((uart_port), struct msm_hs_port, uport) |
| |
| |
| static int msm_hs_ioctl(struct uart_port *uport, unsigned int cmd, |
| unsigned long arg) |
| { |
| int ret = 0, state = 1; |
| enum msm_hs_clk_states_e clk_state; |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| switch (cmd) { |
| case MSM_ENABLE_UART_CLOCK: { |
| pr_debug("%s():ENABLE UART CLOCK: cmd=%d\n", __func__, cmd); |
| msm_hs_request_clock_on(&msm_uport->uport); |
| break; |
| } |
| case MSM_DISABLE_UART_CLOCK: { |
| pr_debug("%s():DISABLE UART CLOCK: cmd=%d\n", __func__, cmd); |
| msm_hs_request_clock_off(&msm_uport->uport); |
| break; |
| } |
| case MSM_GET_UART_CLOCK_STATUS: { |
| /* Return value 0 - UART CLOCK is OFF |
| * Return value 1 - UART CLOCK is ON */ |
| pr_debug("%s():GET UART CLOCK STATUS: cmd=%d\n", __func__, cmd); |
| spin_lock_irqsave(&msm_uport->uport.lock, flags); |
| clk_state = msm_uport->clk_state; |
| spin_unlock_irqrestore(&msm_uport->uport.lock, flags); |
| if (clk_state <= MSM_HS_CLK_OFF) |
| state = 0; |
| ret = state; |
| break; |
| } |
| default: { |
| pr_debug("%s():Unknown cmd specified: cmd=%d\n", __func__, cmd); |
| ret = -ENOIOCTLCMD; |
| break; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int msm_hs_clock_vote(struct msm_hs_port *msm_uport) |
| { |
| int rc = 0; |
| |
| if (1 == atomic_inc_return(&msm_uport->clk_count)) { |
| msm_hs_bus_voting(msm_uport, BUS_SCALING); |
| /* Turn on core clk and iface clk */ |
| rc = clk_prepare_enable(msm_uport->clk); |
| if (rc) { |
| dev_err(msm_uport->uport.dev, |
| "%s: Could not turn on core clk [%d]\n", |
| __func__, rc); |
| return rc; |
| } |
| |
| if (msm_uport->pclk) { |
| rc = clk_prepare_enable(msm_uport->pclk); |
| if (rc) { |
| clk_disable_unprepare(msm_uport->clk); |
| dev_err(msm_uport->uport.dev, |
| "%s: Could not turn on pclk [%d]\n", |
| __func__, rc); |
| return rc; |
| } |
| } |
| msm_uport->clk_state = MSM_HS_CLK_ON; |
| } |
| |
| |
| return rc; |
| } |
| |
| static void msm_hs_clock_unvote(struct msm_hs_port *msm_uport) |
| { |
| int rc = atomic_dec_return(&msm_uport->clk_count); |
| |
| if (rc < 0) { |
| msm_hs_bus_voting(msm_uport, BUS_RESET); |
| WARN(rc, "msm_uport->clk_count < 0!"); |
| dev_err(msm_uport->uport.dev, |
| "%s: Clocks count invalid [%d]\n", __func__, |
| atomic_read(&msm_uport->clk_count)); |
| return; |
| } |
| |
| if (0 == rc) { |
| msm_hs_bus_voting(msm_uport, BUS_RESET); |
| /* Turn off the core clk and iface clk*/ |
| clk_disable_unprepare(msm_uport->clk); |
| if (msm_uport->pclk) |
| clk_disable_unprepare(msm_uport->pclk); |
| msm_uport->clk_state = MSM_HS_CLK_OFF; |
| } |
| } |
| |
| static ssize_t show_clock(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| int state = 1; |
| enum msm_hs_clk_states_e clk_state; |
| unsigned long flags; |
| |
| struct platform_device *pdev = container_of(dev, struct |
| platform_device, dev); |
| struct msm_hs_port *msm_uport = &q_uart_port[pdev->id]; |
| |
| spin_lock_irqsave(&msm_uport->uport.lock, flags); |
| clk_state = msm_uport->clk_state; |
| spin_unlock_irqrestore(&msm_uport->uport.lock, flags); |
| |
| if (clk_state <= MSM_HS_CLK_OFF) |
| state = 0; |
| |
| return snprintf(buf, PAGE_SIZE, "%d\n", state); |
| } |
| |
| static ssize_t set_clock(struct device *dev, struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| int state; |
| struct platform_device *pdev = container_of(dev, struct |
| platform_device, dev); |
| struct msm_hs_port *msm_uport = &q_uart_port[pdev->id]; |
| |
| state = buf[0] - '0'; |
| switch (state) { |
| case 0: { |
| msm_hs_request_clock_off(&msm_uport->uport); |
| break; |
| } |
| case 1: { |
| msm_hs_request_clock_on(&msm_uport->uport); |
| break; |
| } |
| default: { |
| return -EINVAL; |
| } |
| } |
| return count; |
| } |
| |
| static DEVICE_ATTR(clock, S_IWUSR | S_IRUGO, show_clock, set_clock); |
| |
| static inline unsigned int use_low_power_wakeup(struct msm_hs_port *msm_uport) |
| { |
| return (msm_uport->wakeup.irq > 0); |
| } |
| |
| static inline int is_gsbi_uart(struct msm_hs_port *msm_uport) |
| { |
| /* assume gsbi uart if gsbi resource found in pdata */ |
| return ((msm_uport->mapped_gsbi != NULL)); |
| } |
| static unsigned int is_blsp_uart(struct msm_hs_port *msm_uport) |
| { |
| return (msm_uport->uart_type == BLSP_HSUART); |
| } |
| |
| static void msm_hs_bus_voting(struct msm_hs_port *msm_uport, unsigned int vote) |
| { |
| int ret; |
| |
| if (is_blsp_uart(msm_uport) && msm_uport->bus_perf_client) { |
| pr_debug("Bus voting:%d\n", vote); |
| ret = msm_bus_scale_client_update_request( |
| msm_uport->bus_perf_client, vote); |
| if (ret) |
| pr_err("%s(): Failed for Bus voting: %d\n", |
| __func__, vote); |
| } |
| } |
| |
| static inline unsigned int msm_hs_read(struct uart_port *uport, |
| unsigned int index) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| unsigned int offset; |
| |
| offset = *(msm_uport->reg_ptr + index); |
| |
| return readl_relaxed(uport->membase + offset); |
| } |
| |
| static inline void msm_hs_write(struct uart_port *uport, unsigned int index, |
| unsigned int value) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| unsigned int offset; |
| |
| offset = *(msm_uport->reg_ptr + index); |
| writel_relaxed(value, uport->membase + offset); |
| } |
| |
| static void msm_hs_release_port(struct uart_port *port) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(port); |
| struct platform_device *pdev = to_platform_device(port->dev); |
| struct resource *gsbi_resource; |
| resource_size_t size; |
| |
| if (is_gsbi_uart(msm_uport)) { |
| iowrite32(GSBI_PROTOCOL_IDLE, msm_uport->mapped_gsbi + |
| GSBI_CONTROL_ADDR); |
| gsbi_resource = platform_get_resource_byname(pdev, |
| IORESOURCE_MEM, |
| "gsbi_resource"); |
| if (unlikely(!gsbi_resource)) |
| return; |
| |
| size = resource_size(gsbi_resource); |
| release_mem_region(gsbi_resource->start, size); |
| iounmap(msm_uport->mapped_gsbi); |
| msm_uport->mapped_gsbi = NULL; |
| } |
| } |
| |
| static int msm_hs_request_port(struct uart_port *port) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(port); |
| struct platform_device *pdev = to_platform_device(port->dev); |
| struct resource *gsbi_resource; |
| resource_size_t size; |
| |
| gsbi_resource = platform_get_resource_byname(pdev, |
| IORESOURCE_MEM, |
| "gsbi_resource"); |
| if (gsbi_resource) { |
| size = resource_size(gsbi_resource); |
| if (unlikely(!request_mem_region(gsbi_resource->start, size, |
| "msm_serial_hs"))) |
| return -EBUSY; |
| msm_uport->mapped_gsbi = ioremap(gsbi_resource->start, |
| size); |
| if (!msm_uport->mapped_gsbi) { |
| release_mem_region(gsbi_resource->start, size); |
| return -EBUSY; |
| } |
| } |
| /* no gsbi uart */ |
| return 0; |
| } |
| |
| static int msm_serial_loopback_enable_set(void *data, u64 val) |
| { |
| struct msm_hs_port *msm_uport = data; |
| struct uart_port *uport = &(msm_uport->uport); |
| unsigned long flags; |
| int ret = 0; |
| |
| msm_hs_clock_vote(msm_uport); |
| |
| if (val) { |
| spin_lock_irqsave(&uport->lock, flags); |
| ret = msm_hs_read(uport, UART_DM_MR2); |
| if (is_blsp_uart(msm_uport)) |
| ret |= (UARTDM_MR2_LOOP_MODE_BMSK | |
| UARTDM_MR2_RFR_CTS_LOOP_MODE_BMSK); |
| else |
| ret |= UARTDM_MR2_LOOP_MODE_BMSK; |
| msm_hs_write(uport, UART_DM_MR2, ret); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } else { |
| spin_lock_irqsave(&uport->lock, flags); |
| ret = msm_hs_read(uport, UART_DM_MR2); |
| if (is_blsp_uart(msm_uport)) |
| ret &= ~(UARTDM_MR2_LOOP_MODE_BMSK | |
| UARTDM_MR2_RFR_CTS_LOOP_MODE_BMSK); |
| else |
| ret &= ~UARTDM_MR2_LOOP_MODE_BMSK; |
| msm_hs_write(uport, UART_DM_MR2, ret); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| /* Calling CLOCK API. Hence mb() requires here. */ |
| mb(); |
| |
| msm_hs_clock_unvote(msm_uport); |
| return 0; |
| } |
| |
| static int msm_serial_loopback_enable_get(void *data, u64 *val) |
| { |
| struct msm_hs_port *msm_uport = data; |
| struct uart_port *uport = &(msm_uport->uport); |
| unsigned long flags; |
| int ret = 0; |
| |
| msm_hs_clock_vote(msm_uport); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| ret = msm_hs_read(&msm_uport->uport, UART_DM_MR2); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| msm_hs_clock_unvote(msm_uport); |
| |
| *val = (ret & UARTDM_MR2_LOOP_MODE_BMSK) ? 1 : 0; |
| |
| return 0; |
| } |
| DEFINE_SIMPLE_ATTRIBUTE(loopback_enable_fops, msm_serial_loopback_enable_get, |
| msm_serial_loopback_enable_set, "%llu\n"); |
| |
| /* |
| * msm_serial_hs debugfs node: <debugfs_root>/msm_serial_hs/loopback.<id> |
| * writing 1 turns on internal loopback mode in HW. Useful for automation |
| * test scripts. |
| * writing 0 disables the internal loopback mode. Default is disabled. |
| */ |
| static void __devinit msm_serial_debugfs_init(struct msm_hs_port *msm_uport, |
| int id) |
| { |
| char node_name[15]; |
| snprintf(node_name, sizeof(node_name), "loopback.%d", id); |
| msm_uport->loopback_dir = debugfs_create_file(node_name, |
| S_IRUGO | S_IWUSR, |
| debug_base, |
| msm_uport, |
| &loopback_enable_fops); |
| |
| if (IS_ERR_OR_NULL(msm_uport->loopback_dir)) |
| pr_err("%s(): Cannot create loopback.%d debug entry", |
| __func__, id); |
| } |
| |
| static int __devexit msm_hs_remove(struct platform_device *pdev) |
| { |
| |
| struct msm_hs_port *msm_uport; |
| struct device *dev; |
| |
| if (pdev->id < 0 || pdev->id >= UARTDM_NR) { |
| printk(KERN_ERR "Invalid plaform device ID = %d\n", pdev->id); |
| return -EINVAL; |
| } |
| |
| msm_uport = &q_uart_port[pdev->id]; |
| dev = msm_uport->uport.dev; |
| |
| sysfs_remove_file(&pdev->dev.kobj, &dev_attr_clock.attr); |
| debugfs_remove(msm_uport->loopback_dir); |
| |
| dma_unmap_single(dev, msm_uport->rx.mapped_cmd_ptr, sizeof(dmov_box), |
| DMA_TO_DEVICE); |
| dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer, |
| msm_uport->rx.rbuffer); |
| dma_pool_destroy(msm_uport->rx.pool); |
| |
| dma_unmap_single(dev, msm_uport->rx.cmdptr_dmaaddr, sizeof(u32), |
| DMA_TO_DEVICE); |
| dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr_ptr, sizeof(u32), |
| DMA_TO_DEVICE); |
| dma_unmap_single(dev, msm_uport->tx.mapped_cmd_ptr, sizeof(dmov_box), |
| DMA_TO_DEVICE); |
| |
| wake_lock_destroy(&msm_uport->rx.wake_lock); |
| wake_lock_destroy(&msm_uport->dma_wake_lock); |
| destroy_workqueue(msm_uport->hsuart_wq); |
| mutex_destroy(&msm_uport->clk_mutex); |
| |
| uart_remove_one_port(&msm_hs_driver, &msm_uport->uport); |
| clk_put(msm_uport->clk); |
| if (msm_uport->pclk) |
| clk_put(msm_uport->pclk); |
| |
| /* Free the tx resources */ |
| kfree(msm_uport->tx.command_ptr); |
| kfree(msm_uport->tx.command_ptr_ptr); |
| |
| /* Free the rx resources */ |
| kfree(msm_uport->rx.command_ptr); |
| kfree(msm_uport->rx.command_ptr_ptr); |
| |
| iounmap(msm_uport->uport.membase); |
| |
| return 0; |
| } |
| |
| static int msm_hs_init_clk(struct uart_port *uport) |
| { |
| int ret; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| /* Set up the MREG/NREG/DREG/MNDREG */ |
| ret = clk_set_rate(msm_uport->clk, uport->uartclk); |
| if (ret) { |
| printk(KERN_WARNING "Error setting clock rate on UART\n"); |
| return ret; |
| } |
| |
| ret = msm_hs_clock_vote(msm_uport); |
| if (ret) { |
| printk(KERN_ERR "Error could not turn on UART clk\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| |
| /* Connect a UART peripheral's SPS endpoint(consumer endpoint) |
| * |
| * Also registers a SPS callback function for the consumer |
| * process with the SPS driver |
| * |
| * @uport - Pointer to uart uport structure |
| * |
| * @return - 0 if successful else negative value. |
| * |
| */ |
| |
| static int msm_hs_spsconnect_tx(struct uart_port *uport) |
| { |
| int ret; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct sps_pipe *sps_pipe_handle = tx->cons.pipe_handle; |
| struct sps_connect *sps_config = &tx->cons.config; |
| struct sps_register_event *sps_event = &tx->cons.event; |
| |
| /* Establish connection between peripheral and memory endpoint */ |
| ret = sps_connect(sps_pipe_handle, sps_config); |
| if (ret) { |
| pr_err("msm_serial_hs: sps_connect() failed for tx!!\n" |
| "pipe_handle=0x%x ret=%d", (u32)sps_pipe_handle, ret); |
| return ret; |
| } |
| /* Register callback event for EOT (End of transfer) event. */ |
| ret = sps_register_event(sps_pipe_handle, sps_event); |
| if (ret) { |
| pr_err("msm_serial_hs: sps_connect() failed for tx!!\n" |
| "pipe_handle=0x%x ret=%d", (u32)sps_pipe_handle, ret); |
| goto reg_event_err; |
| } |
| return 0; |
| |
| reg_event_err: |
| sps_disconnect(sps_pipe_handle); |
| return ret; |
| } |
| |
| /* Connect a UART peripheral's SPS endpoint(producer endpoint) |
| * |
| * Also registers a SPS callback function for the producer |
| * process with the SPS driver |
| * |
| * @uport - Pointer to uart uport structure |
| * |
| * @return - 0 if successful else negative value. |
| * |
| */ |
| |
| static int msm_hs_spsconnect_rx(struct uart_port *uport) |
| { |
| int ret; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle; |
| struct sps_connect *sps_config = &rx->prod.config; |
| struct sps_register_event *sps_event = &rx->prod.event; |
| |
| /* Establish connection between peripheral and memory endpoint */ |
| ret = sps_connect(sps_pipe_handle, sps_config); |
| if (ret) { |
| pr_err("msm_serial_hs: sps_connect() failed for rx!!\n" |
| "pipe_handle=0x%x ret=%d", (u32)sps_pipe_handle, ret); |
| return ret; |
| } |
| /* Register callback event for DESC_DONE event. */ |
| ret = sps_register_event(sps_pipe_handle, sps_event); |
| if (ret) { |
| pr_err("msm_serial_hs: sps_connect() failed for rx!!\n" |
| "pipe_handle=0x%x ret=%d", (u32)sps_pipe_handle, ret); |
| goto reg_event_err; |
| } |
| return 0; |
| |
| reg_event_err: |
| sps_disconnect(sps_pipe_handle); |
| return ret; |
| } |
| |
| /* |
| * programs the UARTDM_CSR register with correct bit rates |
| * |
| * Interrupts should be disabled before we are called, as |
| * we modify Set Baud rate |
| * Set receive stale interrupt level, dependant on Bit Rate |
| * Goal is to have around 8 ms before indicate stale. |
| * roundup (((Bit Rate * .008) / 10) + 1 |
| */ |
| static void msm_hs_set_bps_locked(struct uart_port *uport, |
| unsigned int bps) |
| { |
| unsigned long rxstale; |
| unsigned long data; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| switch (bps) { |
| case 300: |
| msm_hs_write(uport, UART_DM_CSR, 0x00); |
| rxstale = 1; |
| break; |
| case 600: |
| msm_hs_write(uport, UART_DM_CSR, 0x11); |
| rxstale = 1; |
| break; |
| case 1200: |
| msm_hs_write(uport, UART_DM_CSR, 0x22); |
| rxstale = 1; |
| break; |
| case 2400: |
| msm_hs_write(uport, UART_DM_CSR, 0x33); |
| rxstale = 1; |
| break; |
| case 4800: |
| msm_hs_write(uport, UART_DM_CSR, 0x44); |
| rxstale = 1; |
| break; |
| case 9600: |
| msm_hs_write(uport, UART_DM_CSR, 0x55); |
| rxstale = 2; |
| break; |
| case 14400: |
| msm_hs_write(uport, UART_DM_CSR, 0x66); |
| rxstale = 3; |
| break; |
| case 19200: |
| msm_hs_write(uport, UART_DM_CSR, 0x77); |
| rxstale = 4; |
| break; |
| case 28800: |
| msm_hs_write(uport, UART_DM_CSR, 0x88); |
| rxstale = 6; |
| break; |
| case 38400: |
| msm_hs_write(uport, UART_DM_CSR, 0x99); |
| rxstale = 8; |
| break; |
| case 57600: |
| msm_hs_write(uport, UART_DM_CSR, 0xaa); |
| rxstale = 16; |
| break; |
| case 76800: |
| msm_hs_write(uport, UART_DM_CSR, 0xbb); |
| rxstale = 16; |
| break; |
| case 115200: |
| msm_hs_write(uport, UART_DM_CSR, 0xcc); |
| rxstale = 31; |
| break; |
| case 230400: |
| msm_hs_write(uport, UART_DM_CSR, 0xee); |
| rxstale = 31; |
| break; |
| case 460800: |
| msm_hs_write(uport, UART_DM_CSR, 0xff); |
| rxstale = 31; |
| break; |
| case 4000000: |
| case 3686400: |
| case 3200000: |
| case 3500000: |
| case 3000000: |
| case 2500000: |
| case 1500000: |
| case 1152000: |
| case 1000000: |
| case 921600: |
| msm_hs_write(uport, UART_DM_CSR, 0xff); |
| rxstale = 31; |
| break; |
| default: |
| msm_hs_write(uport, UART_DM_CSR, 0xff); |
| /* default to 9600 */ |
| bps = 9600; |
| rxstale = 2; |
| break; |
| } |
| /* |
| * uart baud rate depends on CSR and MND Values |
| * we are updating CSR before and then calling |
| * clk_set_rate which updates MND Values. Hence |
| * dsb requires here. |
| */ |
| mb(); |
| if (bps > 460800) { |
| uport->uartclk = bps * 16; |
| if (is_blsp_uart(msm_uport)) { |
| /* BLSP based UART supports maximum clock frequency |
| * of 63.16 Mhz. With this (63.16 Mhz) clock frequency |
| * UART can support baud rate of 3.94 Mbps which is |
| * equivalent to 4 Mbps. |
| * UART hardware is robust enough to handle this |
| * deviation to achieve baud rate ~4 Mbps. |
| */ |
| if (bps == 4000000) |
| uport->uartclk = BLSP_UART_CLK_FMAX; |
| } |
| } else { |
| uport->uartclk = 7372800; |
| } |
| |
| if (clk_set_rate(msm_uport->clk, uport->uartclk)) { |
| printk(KERN_WARNING "Error setting clock rate on UART\n"); |
| WARN_ON(1); |
| } |
| |
| data = rxstale & UARTDM_IPR_STALE_LSB_BMSK; |
| data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2); |
| |
| msm_hs_write(uport, UART_DM_IPR, data); |
| /* |
| * It is suggested to do reset of transmitter and receiver after |
| * changing any protocol configuration. Here Baud rate and stale |
| * timeout are getting updated. Hence reset transmitter and receiver. |
| */ |
| msm_hs_write(uport, UART_DM_CR, RESET_TX); |
| msm_hs_write(uport, UART_DM_CR, RESET_RX); |
| } |
| |
| |
| static void msm_hs_set_std_bps_locked(struct uart_port *uport, |
| unsigned int bps) |
| { |
| unsigned long rxstale; |
| unsigned long data; |
| |
| switch (bps) { |
| case 9600: |
| msm_hs_write(uport, UART_DM_CSR, 0x99); |
| rxstale = 2; |
| break; |
| case 14400: |
| msm_hs_write(uport, UART_DM_CSR, 0xaa); |
| rxstale = 3; |
| break; |
| case 19200: |
| msm_hs_write(uport, UART_DM_CSR, 0xbb); |
| rxstale = 4; |
| break; |
| case 28800: |
| msm_hs_write(uport, UART_DM_CSR, 0xcc); |
| rxstale = 6; |
| break; |
| case 38400: |
| msm_hs_write(uport, UART_DM_CSR, 0xdd); |
| rxstale = 8; |
| break; |
| case 57600: |
| msm_hs_write(uport, UART_DM_CSR, 0xee); |
| rxstale = 16; |
| break; |
| case 115200: |
| msm_hs_write(uport, UART_DM_CSR, 0xff); |
| rxstale = 31; |
| break; |
| default: |
| msm_hs_write(uport, UART_DM_CSR, 0x99); |
| /* default to 9600 */ |
| bps = 9600; |
| rxstale = 2; |
| break; |
| } |
| |
| data = rxstale & UARTDM_IPR_STALE_LSB_BMSK; |
| data |= UARTDM_IPR_STALE_TIMEOUT_MSB_BMSK & (rxstale << 2); |
| |
| msm_hs_write(uport, UART_DM_IPR, data); |
| } |
| |
| |
| /* |
| * termios : new ktermios |
| * oldtermios: old ktermios previous setting |
| * |
| * Configure the serial port |
| */ |
| static void msm_hs_set_termios(struct uart_port *uport, |
| struct ktermios *termios, |
| struct ktermios *oldtermios) |
| { |
| unsigned int bps; |
| unsigned long data; |
| int ret; |
| unsigned int c_cflag = termios->c_cflag; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle; |
| |
| mutex_lock(&msm_uport->clk_mutex); |
| msm_hs_write(uport, UART_DM_IMR, 0); |
| |
| /* Clear the Rx Ready Ctl bit - This ensures that |
| * flow control lines stop the other side from sending |
| * data while we change the parameters |
| */ |
| data = msm_hs_read(uport, UART_DM_MR1); |
| data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK; |
| msm_hs_write(uport, UART_DM_MR1, data); |
| |
| /* |
| * Disable Rx channel of UARTDM |
| * DMA Rx Stall happens if enqueue and flush of Rx command happens |
| * concurrently. Hence before changing the baud rate/protocol |
| * configuration and sending flush command to ADM, disable the Rx |
| * channel of UARTDM. |
| * Note: should not reset the receiver here immediately as it is not |
| * suggested to do disable/reset or reset/disable at the same time. |
| */ |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| if (is_blsp_uart(msm_uport)) { |
| /* Disable UARTDM RX BAM Interface */ |
| data &= ~UARTDM_RX_BAM_ENABLE_BMSK; |
| } else { |
| data &= ~UARTDM_RX_DM_EN_BMSK; |
| } |
| |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| |
| /* 300 is the minimum baud support by the driver */ |
| bps = uart_get_baud_rate(uport, termios, oldtermios, 200, 4000000); |
| |
| /* Temporary remapping 200 BAUD to 3.2 mbps */ |
| if (bps == 200) |
| bps = 3200000; |
| |
| uport->uartclk = clk_get_rate(msm_uport->clk); |
| if (!uport->uartclk) |
| msm_hs_set_std_bps_locked(uport, bps); |
| else |
| msm_hs_set_bps_locked(uport, bps); |
| |
| data = msm_hs_read(uport, UART_DM_MR2); |
| data &= ~UARTDM_MR2_PARITY_MODE_BMSK; |
| /* set parity */ |
| if (PARENB == (c_cflag & PARENB)) { |
| if (PARODD == (c_cflag & PARODD)) { |
| data |= ODD_PARITY; |
| } else if (CMSPAR == (c_cflag & CMSPAR)) { |
| data |= SPACE_PARITY; |
| } else { |
| data |= EVEN_PARITY; |
| } |
| } |
| |
| /* Set bits per char */ |
| data &= ~UARTDM_MR2_BITS_PER_CHAR_BMSK; |
| |
| switch (c_cflag & CSIZE) { |
| case CS5: |
| data |= FIVE_BPC; |
| break; |
| case CS6: |
| data |= SIX_BPC; |
| break; |
| case CS7: |
| data |= SEVEN_BPC; |
| break; |
| default: |
| data |= EIGHT_BPC; |
| break; |
| } |
| /* stop bits */ |
| if (c_cflag & CSTOPB) { |
| data |= STOP_BIT_TWO; |
| } else { |
| /* otherwise 1 stop bit */ |
| data |= STOP_BIT_ONE; |
| } |
| data |= UARTDM_MR2_ERROR_MODE_BMSK; |
| /* write parity/bits per char/stop bit configuration */ |
| msm_hs_write(uport, UART_DM_MR2, data); |
| |
| uport->ignore_status_mask = termios->c_iflag & INPCK; |
| uport->ignore_status_mask |= termios->c_iflag & IGNPAR; |
| uport->ignore_status_mask |= termios->c_iflag & IGNBRK; |
| |
| uport->read_status_mask = (termios->c_cflag & CREAD); |
| |
| |
| /* Set Transmit software time out */ |
| uart_update_timeout(uport, c_cflag, bps); |
| |
| msm_hs_write(uport, UART_DM_CR, RESET_RX); |
| msm_hs_write(uport, UART_DM_CR, RESET_TX); |
| |
| if (msm_uport->rx.flush == FLUSH_NONE) { |
| wake_lock(&msm_uport->rx.wake_lock); |
| msm_uport->rx.flush = FLUSH_IGNORE; |
| /* |
| * Before using dmov APIs make sure that |
| * previous writel are completed. Hence |
| * dsb requires here. |
| */ |
| mb(); |
| if (is_blsp_uart(msm_uport)) { |
| if (msm_uport->rx_bam_inprogress) |
| ret = wait_event_timeout(msm_uport->rx.wait, |
| msm_uport->rx_bam_inprogress == false, |
| RX_FLUSH_COMPLETE_TIMEOUT); |
| ret = sps_disconnect(sps_pipe_handle); |
| if (ret) |
| pr_err("%s(): sps_disconnect failed\n", |
| __func__); |
| msm_hs_spsconnect_rx(uport); |
| msm_serial_hs_rx_tlet((unsigned long) &rx->tlet); |
| } else { |
| msm_uport->rx_discard_flush_issued = true; |
| /* do discard flush */ |
| msm_dmov_flush(msm_uport->dma_rx_channel, 0); |
| pr_debug("%s(): wainting for flush completion.\n", |
| __func__); |
| ret = wait_event_timeout(msm_uport->rx.wait, |
| msm_uport->rx_discard_flush_issued == false, |
| RX_FLUSH_COMPLETE_TIMEOUT); |
| if (!ret) |
| pr_err("%s(): Discard flush pending.\n", |
| __func__); |
| } |
| } |
| |
| /* Configure HW flow control |
| * UART Core would see status of CTS line when it is sending data |
| * to remote uart to confirm that it can receive or not. |
| * UART Core would trigger RFR if it is not having any space with |
| * RX FIFO. |
| */ |
| data = msm_hs_read(uport, UART_DM_MR1); |
| data &= ~(UARTDM_MR1_CTS_CTL_BMSK | UARTDM_MR1_RX_RDY_CTL_BMSK); |
| if (c_cflag & CRTSCTS) { |
| data |= UARTDM_MR1_CTS_CTL_BMSK; |
| data |= UARTDM_MR1_RX_RDY_CTL_BMSK; |
| } |
| msm_hs_write(uport, UART_DM_MR1, data); |
| |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| mb(); |
| mutex_unlock(&msm_uport->clk_mutex); |
| } |
| |
| /* |
| * Standard API, Transmitter |
| * Any character in the transmit shift register is sent |
| */ |
| unsigned int msm_hs_tx_empty(struct uart_port *uport) |
| { |
| unsigned int data; |
| unsigned int ret = 0; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_hs_clock_vote(msm_uport); |
| data = msm_hs_read(uport, UARTDM_SR_ADDR); |
| msm_hs_clock_unvote(msm_uport); |
| |
| if (data & UARTDM_SR_TXEMT_BMSK) |
| ret = TIOCSER_TEMT; |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(msm_hs_tx_empty); |
| |
| /* |
| * Standard API, Stop transmitter. |
| * Any character in the transmit shift register is sent as |
| * well as the current data mover transfer . |
| */ |
| static void msm_hs_stop_tx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_uport->tx.tx_ready_int_en = 0; |
| } |
| |
| /* Disconnect BAM RX Endpoint Pipe Index from workqueue context*/ |
| static void hsuart_disconnect_rx_endpoint_work(struct work_struct *w) |
| { |
| struct msm_hs_port *msm_uport = container_of(w, struct msm_hs_port, |
| disconnect_rx_endpoint); |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| struct sps_pipe *sps_pipe_handle = rx->prod.pipe_handle; |
| int ret = 0; |
| |
| ret = sps_disconnect(sps_pipe_handle); |
| if (ret) |
| pr_err("%s(): sps_disconnect failed\n", __func__); |
| |
| wake_lock_timeout(&msm_uport->rx.wake_lock, HZ / 2); |
| msm_uport->rx.flush = FLUSH_SHUTDOWN; |
| wake_up(&msm_uport->rx.wait); |
| } |
| |
| /* |
| * Standard API, Stop receiver as soon as possible. |
| * |
| * Function immediately terminates the operation of the |
| * channel receiver and any incoming characters are lost. None |
| * of the receiver status bits are affected by this command and |
| * characters that are already in the receive FIFO there. |
| */ |
| static void msm_hs_stop_rx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| unsigned int data; |
| |
| /* disable dlink */ |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| if (is_blsp_uart(msm_uport)) |
| data &= ~UARTDM_RX_BAM_ENABLE_BMSK; |
| else |
| data &= ~UARTDM_RX_DM_EN_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| |
| /* calling DMOV or CLOCK API. Hence mb() */ |
| mb(); |
| /* Disable the receiver */ |
| if (msm_uport->rx.flush == FLUSH_NONE) { |
| wake_lock(&msm_uport->rx.wake_lock); |
| if (is_blsp_uart(msm_uport)) { |
| msm_uport->rx.flush = FLUSH_STOP; |
| /* workqueue for BAM rx endpoint disconnect */ |
| queue_work(msm_uport->hsuart_wq, |
| &msm_uport->disconnect_rx_endpoint); |
| } else { |
| /* do discard flush */ |
| msm_dmov_flush(msm_uport->dma_rx_channel, 0); |
| } |
| } |
| if (!is_blsp_uart(msm_uport) && msm_uport->rx.flush != FLUSH_SHUTDOWN) |
| msm_uport->rx.flush = FLUSH_STOP; |
| |
| } |
| |
| /* Transmit the next chunk of data */ |
| static void msm_hs_submit_tx_locked(struct uart_port *uport) |
| { |
| int left; |
| int tx_count; |
| int aligned_tx_count; |
| dma_addr_t src_addr; |
| dma_addr_t aligned_src_addr; |
| u32 flags = SPS_IOVEC_FLAG_EOT; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct circ_buf *tx_buf = &msm_uport->uport.state->xmit; |
| struct sps_pipe *sps_pipe_handle; |
| |
| if (uart_circ_empty(tx_buf) || uport->state->port.tty->stopped) { |
| msm_hs_stop_tx_locked(uport); |
| return; |
| } |
| |
| tx->dma_in_flight = 1; |
| |
| tx_count = uart_circ_chars_pending(tx_buf); |
| |
| if (UARTDM_TX_BUF_SIZE < tx_count) |
| tx_count = UARTDM_TX_BUF_SIZE; |
| |
| left = UART_XMIT_SIZE - tx_buf->tail; |
| |
| if (tx_count > left) |
| tx_count = left; |
| |
| src_addr = tx->dma_base + tx_buf->tail; |
| /* Mask the src_addr to align on a cache |
| * and add those bytes to tx_count */ |
| aligned_src_addr = src_addr & ~(dma_get_cache_alignment() - 1); |
| aligned_tx_count = tx_count + src_addr - aligned_src_addr; |
| |
| dma_sync_single_for_device(uport->dev, aligned_src_addr, |
| aligned_tx_count, DMA_TO_DEVICE); |
| |
| if (is_blsp_uart(msm_uport)) { |
| /* Issue TX BAM Start IFC command */ |
| msm_hs_write(uport, UART_DM_CR, START_TX_BAM_IFC); |
| } else { |
| tx->command_ptr->num_rows = |
| (((tx_count + 15) >> 4) << 16) | |
| ((tx_count + 15) >> 4); |
| tx->command_ptr->src_row_addr = src_addr; |
| |
| dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr, |
| sizeof(dmov_box), DMA_TO_DEVICE); |
| |
| *tx->command_ptr_ptr = CMD_PTR_LP | |
| DMOV_CMD_ADDR(tx->mapped_cmd_ptr); |
| } |
| |
| /* Save tx_count to use in Callback */ |
| tx->tx_count = tx_count; |
| msm_hs_write(uport, UART_DM_NCF_TX, tx_count); |
| |
| /* Disable the tx_ready interrupt */ |
| msm_uport->imr_reg &= ~UARTDM_ISR_TX_READY_BMSK; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| /* Calling next DMOV API. Hence mb() here. */ |
| mb(); |
| |
| msm_uport->tx.flush = FLUSH_NONE; |
| |
| if (is_blsp_uart(msm_uport)) { |
| sps_pipe_handle = tx->cons.pipe_handle; |
| /* Queue transfer request to SPS */ |
| sps_transfer_one(sps_pipe_handle, src_addr, tx_count, |
| msm_uport, flags); |
| } else { |
| dma_sync_single_for_device(uport->dev, tx->mapped_cmd_ptr_ptr, |
| sizeof(u32), DMA_TO_DEVICE); |
| |
| msm_dmov_enqueue_cmd(msm_uport->dma_tx_channel, &tx->xfer); |
| } |
| } |
| |
| /* Start to receive the next chunk of data */ |
| static void msm_hs_start_rx_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| struct sps_pipe *sps_pipe_handle; |
| u32 flags = SPS_IOVEC_FLAG_INT; |
| unsigned int buffer_pending = msm_uport->rx.buffer_pending; |
| unsigned int data; |
| |
| msm_uport->rx.buffer_pending = 0; |
| if (buffer_pending && hs_serial_debug_mask) |
| printk(KERN_ERR "Error: rx started in buffer state = %x", |
| buffer_pending); |
| |
| msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT); |
| msm_hs_write(uport, UART_DM_DMRX, UARTDM_RX_BUF_SIZE); |
| msm_hs_write(uport, UART_DM_CR, STALE_EVENT_ENABLE); |
| msm_uport->imr_reg |= UARTDM_ISR_RXLEV_BMSK; |
| |
| /* |
| * Enable UARTDM Rx Interface as previously it has been |
| * disable in set_termios before configuring baud rate. |
| */ |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| if (is_blsp_uart(msm_uport)) { |
| /* Enable UARTDM Rx BAM Interface */ |
| data |= UARTDM_RX_BAM_ENABLE_BMSK; |
| } else { |
| data |= UARTDM_RX_DM_EN_BMSK; |
| } |
| |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| /* Calling next DMOV API. Hence mb() here. */ |
| mb(); |
| |
| if (is_blsp_uart(msm_uport)) { |
| /* |
| * RX-transfer will be automatically re-activated |
| * after last data of previous transfer was read. |
| */ |
| data = (RX_STALE_AUTO_RE_EN | RX_TRANS_AUTO_RE_ACTIVATE | |
| RX_DMRX_CYCLIC_EN); |
| msm_hs_write(uport, UART_DM_RX_TRANS_CTRL, data); |
| /* Issue RX BAM Start IFC command */ |
| msm_hs_write(uport, UART_DM_CR, START_RX_BAM_IFC); |
| mb(); |
| } |
| |
| msm_uport->rx.flush = FLUSH_NONE; |
| |
| if (is_blsp_uart(msm_uport)) { |
| msm_uport->rx_bam_inprogress = true; |
| sps_pipe_handle = rx->prod.pipe_handle; |
| /* Queue transfer request to SPS */ |
| sps_transfer_one(sps_pipe_handle, rx->rbuffer, |
| UARTDM_RX_BUF_SIZE, msm_uport, flags); |
| msm_uport->rx_bam_inprogress = false; |
| wake_up(&msm_uport->rx.wait); |
| } else { |
| msm_dmov_enqueue_cmd(msm_uport->dma_rx_channel, |
| &msm_uport->rx.xfer); |
| } |
| } |
| |
| static void flip_insert_work(struct work_struct *work) |
| { |
| unsigned long flags; |
| int retval; |
| struct msm_hs_port *msm_uport = |
| container_of(work, struct msm_hs_port, |
| rx.flip_insert_work.work); |
| struct tty_struct *tty = msm_uport->uport.state->port.tty; |
| |
| spin_lock_irqsave(&msm_uport->uport.lock, flags); |
| if (msm_uport->rx.buffer_pending == NONE_PENDING) { |
| if (hs_serial_debug_mask) |
| printk(KERN_ERR "Error: No buffer pending in %s", |
| __func__); |
| return; |
| } |
| if (msm_uport->rx.buffer_pending & FIFO_OVERRUN) { |
| retval = tty_insert_flip_char(tty, 0, TTY_OVERRUN); |
| if (retval) |
| msm_uport->rx.buffer_pending &= ~FIFO_OVERRUN; |
| } |
| if (msm_uport->rx.buffer_pending & PARITY_ERROR) { |
| retval = tty_insert_flip_char(tty, 0, TTY_PARITY); |
| if (retval) |
| msm_uport->rx.buffer_pending &= ~PARITY_ERROR; |
| } |
| if (msm_uport->rx.buffer_pending & CHARS_NORMAL) { |
| int rx_count, rx_offset; |
| rx_count = (msm_uport->rx.buffer_pending & 0xFFFF0000) >> 16; |
| rx_offset = (msm_uport->rx.buffer_pending & 0xFFD0) >> 5; |
| retval = tty_insert_flip_string(tty, msm_uport->rx.buffer + |
| rx_offset, rx_count); |
| msm_uport->rx.buffer_pending &= (FIFO_OVERRUN | |
| PARITY_ERROR); |
| if (retval != rx_count) |
| msm_uport->rx.buffer_pending |= CHARS_NORMAL | |
| retval << 8 | (rx_count - retval) << 16; |
| } |
| if (msm_uport->rx.buffer_pending) |
| schedule_delayed_work(&msm_uport->rx.flip_insert_work, |
| msecs_to_jiffies(RETRY_TIMEOUT)); |
| else |
| if ((msm_uport->clk_state == MSM_HS_CLK_ON) && |
| (msm_uport->rx.flush <= FLUSH_IGNORE)) { |
| if (hs_serial_debug_mask) |
| printk(KERN_WARNING |
| "msm_serial_hs: " |
| "Pending buffers cleared. " |
| "Restarting\n"); |
| msm_hs_start_rx_locked(&msm_uport->uport); |
| } |
| spin_unlock_irqrestore(&msm_uport->uport.lock, flags); |
| tty_flip_buffer_push(tty); |
| } |
| |
| static void msm_serial_hs_rx_tlet(unsigned long tlet_ptr) |
| { |
| int retval; |
| int rx_count; |
| unsigned long status; |
| unsigned long flags; |
| unsigned int error_f = 0; |
| struct uart_port *uport; |
| struct msm_hs_port *msm_uport; |
| unsigned int flush; |
| struct tty_struct *tty; |
| struct sps_event_notify *notify; |
| struct msm_hs_rx *rx; |
| struct sps_pipe *sps_pipe_handle; |
| u32 sps_flags = SPS_IOVEC_FLAG_INT; |
| |
| msm_uport = container_of((struct tasklet_struct *)tlet_ptr, |
| struct msm_hs_port, rx.tlet); |
| uport = &msm_uport->uport; |
| tty = uport->state->port.tty; |
| notify = &msm_uport->notify; |
| rx = &msm_uport->rx; |
| |
| status = msm_hs_read(uport, UART_DM_SR); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| if (!is_blsp_uart(msm_uport)) |
| msm_hs_write(uport, UART_DM_CR, STALE_EVENT_DISABLE); |
| |
| /* overflow is not connect to data in a FIFO */ |
| if (unlikely((status & UARTDM_SR_OVERRUN_BMSK) && |
| (uport->read_status_mask & CREAD))) { |
| retval = tty_insert_flip_char(tty, 0, TTY_OVERRUN); |
| if (!retval) |
| msm_uport->rx.buffer_pending |= TTY_OVERRUN; |
| uport->icount.buf_overrun++; |
| error_f = 1; |
| } |
| |
| if (!(uport->ignore_status_mask & INPCK)) |
| status = status & ~(UARTDM_SR_PAR_FRAME_BMSK); |
| |
| if (unlikely(status & UARTDM_SR_PAR_FRAME_BMSK)) { |
| /* Can not tell difference between parity & frame error */ |
| if (hs_serial_debug_mask) |
| printk(KERN_WARNING "msm_serial_hs: parity error\n"); |
| uport->icount.parity++; |
| error_f = 1; |
| if (!(uport->ignore_status_mask & IGNPAR)) { |
| retval = tty_insert_flip_char(tty, 0, TTY_PARITY); |
| if (!retval) |
| msm_uport->rx.buffer_pending |= TTY_PARITY; |
| } |
| } |
| |
| if (unlikely(status & UARTDM_SR_RX_BREAK_BMSK)) { |
| if (hs_serial_debug_mask) |
| printk(KERN_WARNING "msm_serial_hs: Rx break\n"); |
| uport->icount.brk++; |
| error_f = 1; |
| if (!(uport->ignore_status_mask & IGNBRK)) { |
| retval = tty_insert_flip_char(tty, 0, TTY_BREAK); |
| if (!retval) |
| msm_uport->rx.buffer_pending |= TTY_BREAK; |
| } |
| } |
| |
| if (error_f) |
| msm_hs_write(uport, UART_DM_CR, RESET_ERROR_STATUS); |
| |
| if (msm_uport->clk_req_off_state == CLK_REQ_OFF_FLUSH_ISSUED) |
| msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_FLUSHED; |
| flush = msm_uport->rx.flush; |
| if (flush == FLUSH_IGNORE) |
| if (!msm_uport->rx.buffer_pending) |
| msm_hs_start_rx_locked(uport); |
| |
| if (flush == FLUSH_STOP) { |
| msm_uport->rx.flush = FLUSH_SHUTDOWN; |
| wake_up(&msm_uport->rx.wait); |
| } |
| if (flush >= FLUSH_DATA_INVALID) |
| goto out; |
| |
| if (is_blsp_uart(msm_uport)) { |
| rx_count = msm_uport->rx_count_callback; |
| } else { |
| rx_count = msm_hs_read(uport, UART_DM_RX_TOTAL_SNAP); |
| /* order the read of rx.buffer */ |
| rmb(); |
| } |
| |
| if (0 != (uport->read_status_mask & CREAD)) { |
| retval = tty_insert_flip_string(tty, msm_uport->rx.buffer, |
| rx_count); |
| if (retval != rx_count) { |
| msm_uport->rx.buffer_pending |= CHARS_NORMAL | |
| retval << 5 | (rx_count - retval) << 16; |
| } |
| } |
| |
| /* order the read of rx.buffer and the start of next rx xfer */ |
| wmb(); |
| |
| if (!msm_uport->rx.buffer_pending) { |
| if (is_blsp_uart(msm_uport)) { |
| msm_uport->rx.flush = FLUSH_NONE; |
| msm_uport->rx_bam_inprogress = true; |
| sps_pipe_handle = rx->prod.pipe_handle; |
| /* Queue transfer request to SPS */ |
| sps_transfer_one(sps_pipe_handle, rx->rbuffer, |
| UARTDM_RX_BUF_SIZE, msm_uport, sps_flags); |
| msm_uport->rx_bam_inprogress = false; |
| wake_up(&msm_uport->rx.wait); |
| } else { |
| msm_hs_start_rx_locked(uport); |
| } |
| } |
| out: |
| if (msm_uport->rx.buffer_pending) { |
| if (hs_serial_debug_mask) |
| printk(KERN_WARNING |
| "msm_serial_hs: " |
| "tty buffer exhausted. " |
| "Stalling\n"); |
| schedule_delayed_work(&msm_uport->rx.flip_insert_work |
| , msecs_to_jiffies(RETRY_TIMEOUT)); |
| } |
| /* release wakelock in 500ms, not immediately, because higher layers |
| * don't always take wakelocks when they should */ |
| wake_lock_timeout(&msm_uport->rx.wake_lock, HZ / 2); |
| /* tty_flip_buffer_push() might call msm_hs_start(), so unlock */ |
| spin_unlock_irqrestore(&uport->lock, flags); |
| if (flush < FLUSH_DATA_INVALID) |
| tty_flip_buffer_push(tty); |
| } |
| |
| /* Enable the transmitter Interrupt */ |
| static void msm_hs_start_tx_locked(struct uart_port *uport ) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| if (msm_uport->tx.tx_ready_int_en == 0) { |
| msm_uport->tx.tx_ready_int_en = 1; |
| if (msm_uport->tx.dma_in_flight == 0) |
| msm_hs_submit_tx_locked(uport); |
| } |
| } |
| |
| /** |
| * Callback notification from SPS driver |
| * |
| * This callback function gets triggered called from |
| * SPS driver when requested SPS data transfer is |
| * completed. |
| * |
| */ |
| |
| static void msm_hs_sps_tx_callback(struct sps_event_notify *notify) |
| { |
| struct msm_hs_port *msm_uport = |
| (struct msm_hs_port *) |
| ((struct sps_event_notify *)notify)->user; |
| |
| msm_uport->notify = *notify; |
| pr_debug("%s: sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n", |
| __func__, notify->event_id, |
| notify->data.transfer.iovec.addr, |
| notify->data.transfer.iovec.size, |
| notify->data.transfer.iovec.flags); |
| |
| tasklet_schedule(&msm_uport->tx.tlet); |
| } |
| |
| /* |
| * This routine is called when we are done with a DMA transfer |
| * |
| * This routine is registered with Data mover when we set |
| * up a Data Mover transfer. It is called from Data mover ISR |
| * when the DMA transfer is done. |
| */ |
| static void msm_hs_dmov_tx_callback(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, |
| struct msm_dmov_errdata *err) |
| { |
| struct msm_hs_port *msm_uport; |
| |
| msm_uport = container_of(cmd_ptr, struct msm_hs_port, tx.xfer); |
| if (msm_uport->tx.flush == FLUSH_STOP) |
| /* DMA FLUSH unsuccesfful */ |
| WARN_ON(!(result & DMOV_RSLT_FLUSH)); |
| else |
| /* DMA did not finish properly */ |
| WARN_ON(!(result & DMOV_RSLT_DONE)); |
| |
| tasklet_schedule(&msm_uport->tx.tlet); |
| } |
| |
| static void msm_serial_hs_tx_tlet(unsigned long tlet_ptr) |
| { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = container_of((struct tasklet_struct *) |
| tlet_ptr, struct msm_hs_port, tx.tlet); |
| |
| spin_lock_irqsave(&(msm_uport->uport.lock), flags); |
| if (msm_uport->tx.flush == FLUSH_STOP) { |
| msm_uport->tx.flush = FLUSH_SHUTDOWN; |
| wake_up(&msm_uport->tx.wait); |
| spin_unlock_irqrestore(&(msm_uport->uport.lock), flags); |
| return; |
| } |
| |
| msm_uport->imr_reg |= UARTDM_ISR_TX_READY_BMSK; |
| msm_hs_write(&(msm_uport->uport), UART_DM_IMR, msm_uport->imr_reg); |
| /* Calling clk API. Hence mb() requires. */ |
| mb(); |
| |
| spin_unlock_irqrestore(&(msm_uport->uport.lock), flags); |
| } |
| |
| /** |
| * Callback notification from SPS driver |
| * |
| * This callback function gets triggered called from |
| * SPS driver when requested SPS data transfer is |
| * completed. |
| * |
| */ |
| |
| static void msm_hs_sps_rx_callback(struct sps_event_notify *notify) |
| { |
| |
| struct msm_hs_port *msm_uport = |
| (struct msm_hs_port *) |
| ((struct sps_event_notify *)notify)->user; |
| struct uart_port *uport; |
| unsigned long flags; |
| |
| uport = &(msm_uport->uport); |
| msm_uport->notify = *notify; |
| pr_debug("%s: sps ev_id=%d, addr=0x%x, size=0x%x, flags=0x%x\n", |
| __func__, notify->event_id, |
| notify->data.transfer.iovec.addr, |
| notify->data.transfer.iovec.size, |
| notify->data.transfer.iovec.flags); |
| |
| if (msm_uport->rx.flush == FLUSH_NONE) { |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_uport->rx_count_callback = notify->data.transfer.iovec.size; |
| spin_unlock_irqrestore(&uport->lock, flags); |
| tasklet_schedule(&msm_uport->rx.tlet); |
| } |
| } |
| |
| /* |
| * This routine is called when we are done with a DMA transfer or the |
| * a flush has been sent to the data mover driver. |
| * |
| * This routine is registered with Data mover when we set up a Data Mover |
| * transfer. It is called from Data mover ISR when the DMA transfer is done. |
| */ |
| static void msm_hs_dmov_rx_callback(struct msm_dmov_cmd *cmd_ptr, |
| unsigned int result, |
| struct msm_dmov_errdata *err) |
| { |
| struct msm_hs_port *msm_uport; |
| struct uart_port *uport; |
| unsigned long flags; |
| |
| msm_uport = container_of(cmd_ptr, struct msm_hs_port, rx.xfer); |
| uport = &(msm_uport->uport); |
| |
| pr_debug("%s(): called result:%x\n", __func__, result); |
| if (!(result & DMOV_RSLT_ERROR)) { |
| if (result & DMOV_RSLT_FLUSH) { |
| if (msm_uport->rx_discard_flush_issued) { |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_uport->rx_discard_flush_issued = false; |
| spin_unlock_irqrestore(&uport->lock, flags); |
| wake_up(&msm_uport->rx.wait); |
| } |
| } |
| } |
| |
| tasklet_schedule(&msm_uport->rx.tlet); |
| } |
| |
| /* |
| * Standard API, Current states of modem control inputs |
| * |
| * Since CTS can be handled entirely by HARDWARE we always |
| * indicate clear to send and count on the TX FIFO to block when |
| * it fills up. |
| * |
| * - TIOCM_DCD |
| * - TIOCM_CTS |
| * - TIOCM_DSR |
| * - TIOCM_RI |
| * (Unsupported) DCD and DSR will return them high. RI will return low. |
| */ |
| static unsigned int msm_hs_get_mctrl_locked(struct uart_port *uport) |
| { |
| return TIOCM_DSR | TIOCM_CAR | TIOCM_CTS; |
| } |
| |
| /* |
| * Standard API, Set or clear RFR_signal |
| * |
| * Set RFR high, (Indicate we are not ready for data), we disable auto |
| * ready for receiving and then set RFR_N high. To set RFR to low we just turn |
| * back auto ready for receiving and it should lower RFR signal |
| * when hardware is ready |
| */ |
| void msm_hs_set_mctrl_locked(struct uart_port *uport, |
| unsigned int mctrl) |
| { |
| unsigned int set_rts; |
| unsigned int data; |
| |
| /* RTS is active low */ |
| set_rts = TIOCM_RTS & mctrl ? 0 : 1; |
| |
| data = msm_hs_read(uport, UART_DM_MR1); |
| if (set_rts) { |
| /*disable auto ready-for-receiving */ |
| data &= ~UARTDM_MR1_RX_RDY_CTL_BMSK; |
| msm_hs_write(uport, UART_DM_MR1, data); |
| /* set RFR_N to high */ |
| msm_hs_write(uport, UART_DM_CR, RFR_HIGH); |
| } else { |
| /* Enable auto ready-for-receiving */ |
| data |= UARTDM_MR1_RX_RDY_CTL_BMSK; |
| msm_hs_write(uport, UART_DM_MR1, data); |
| } |
| mb(); |
| } |
| |
| void msm_hs_set_mctrl(struct uart_port *uport, |
| unsigned int mctrl) |
| { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| msm_hs_clock_vote(msm_uport); |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_hs_set_mctrl_locked(uport, mctrl); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| msm_hs_clock_unvote(msm_uport); |
| } |
| EXPORT_SYMBOL(msm_hs_set_mctrl); |
| |
| /* Standard API, Enable modem status (CTS) interrupt */ |
| static void msm_hs_enable_ms_locked(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| /* Enable DELTA_CTS Interrupt */ |
| msm_uport->imr_reg |= UARTDM_ISR_DELTA_CTS_BMSK; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| mb(); |
| |
| } |
| |
| static void msm_hs_flush_buffer(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| if (msm_uport->tx.dma_in_flight) |
| msm_uport->tty_flush_receive = true; |
| } |
| |
| /* |
| * Standard API, Break Signal |
| * |
| * Control the transmission of a break signal. ctl eq 0 => break |
| * signal terminate ctl ne 0 => start break signal |
| */ |
| static void msm_hs_break_ctl(struct uart_port *uport, int ctl) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| msm_hs_write(uport, UART_DM_CR, ctl ? START_BREAK : STOP_BREAK); |
| mb(); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| |
| static void msm_hs_config_port(struct uart_port *uport, int cfg_flags) |
| { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| if (cfg_flags & UART_CONFIG_TYPE) { |
| uport->type = PORT_MSM; |
| msm_hs_request_port(uport); |
| } |
| |
| if (is_gsbi_uart(msm_uport)) { |
| if (msm_uport->pclk) |
| clk_prepare_enable(msm_uport->pclk); |
| spin_lock_irqsave(&uport->lock, flags); |
| iowrite32(GSBI_PROTOCOL_UART, msm_uport->mapped_gsbi + |
| GSBI_CONTROL_ADDR); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| if (msm_uport->pclk) |
| clk_disable_unprepare(msm_uport->pclk); |
| } |
| } |
| |
| /* Handle CTS changes (Called from interrupt handler) */ |
| static void msm_hs_handle_delta_cts_locked(struct uart_port *uport) |
| { |
| /* clear interrupt */ |
| msm_hs_write(uport, UART_DM_CR, RESET_CTS); |
| /* Calling CLOCK API. Hence mb() requires here. */ |
| mb(); |
| uport->icount.cts++; |
| |
| /* clear the IOCTL TIOCMIWAIT if called */ |
| wake_up_interruptible(&uport->state->port.delta_msr_wait); |
| } |
| |
| /* check if the TX path is flushed, and if so clock off |
| * returns 0 did not clock off, need to retry (still sending final byte) |
| * -1 did not clock off, do not retry |
| * 1 if we clocked off |
| */ |
| static int msm_hs_check_clock_off(struct uart_port *uport) |
| { |
| unsigned long sr_status; |
| unsigned long flags; |
| int ret; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| |
| mutex_lock(&msm_uport->clk_mutex); |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| /* Cancel if tx tty buffer is not empty, dma is in flight, |
| * or tx fifo is not empty */ |
| if (msm_uport->clk_state != MSM_HS_CLK_REQUEST_OFF || |
| !uart_circ_empty(tx_buf) || msm_uport->tx.dma_in_flight || |
| msm_uport->imr_reg & UARTDM_ISR_TXLEV_BMSK) { |
| spin_unlock_irqrestore(&uport->lock, flags); |
| mutex_unlock(&msm_uport->clk_mutex); |
| return -1; |
| } |
| |
| /* Make sure the uart is finished with the last byte */ |
| sr_status = msm_hs_read(uport, UARTDM_SR); |
| if (!(sr_status & UARTDM_SR_TXEMT_BMSK)) { |
| spin_unlock_irqrestore(&uport->lock, flags); |
| mutex_unlock(&msm_uport->clk_mutex); |
| return 0; /* retry */ |
| } |
| |
| /* Make sure forced RXSTALE flush complete */ |
| switch (msm_uport->clk_req_off_state) { |
| case CLK_REQ_OFF_START: |
| msm_uport->clk_req_off_state = CLK_REQ_OFF_RXSTALE_ISSUED; |
| |
| if (!is_blsp_uart(msm_uport)) { |
| msm_hs_write(uport, UART_DM_CR, FORCE_STALE_EVENT); |
| /* |
| * Before returning make sure that device writel |
| * completed. Hence mb() requires here. |
| */ |
| mb(); |
| } |
| spin_unlock_irqrestore(&uport->lock, flags); |
| mutex_unlock(&msm_uport->clk_mutex); |
| return 0; /* RXSTALE flush not complete - retry */ |
| case CLK_REQ_OFF_RXSTALE_ISSUED: |
| case CLK_REQ_OFF_FLUSH_ISSUED: |
| spin_unlock_irqrestore(&uport->lock, flags); |
| if (is_blsp_uart(msm_uport)) { |
| msm_uport->clk_req_off_state = |
| CLK_REQ_OFF_RXSTALE_FLUSHED; |
| } |
| mutex_unlock(&msm_uport->clk_mutex); |
| return 0; /* RXSTALE flush not complete - retry */ |
| case CLK_REQ_OFF_RXSTALE_FLUSHED: |
| break; /* continue */ |
| } |
| |
| if (msm_uport->rx.flush != FLUSH_SHUTDOWN) { |
| if (msm_uport->rx.flush == FLUSH_NONE) { |
| msm_hs_stop_rx_locked(uport); |
| if (!is_blsp_uart(msm_uport)) |
| msm_uport->rx_discard_flush_issued = true; |
| } |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| if (msm_uport->rx_discard_flush_issued) { |
| pr_debug("%s(): wainting for flush completion.\n", |
| __func__); |
| ret = wait_event_timeout(msm_uport->rx.wait, |
| msm_uport->rx_discard_flush_issued == false, |
| RX_FLUSH_COMPLETE_TIMEOUT); |
| if (!ret) |
| pr_err("%s(): Flush complete pending.\n", |
| __func__); |
| } |
| |
| mutex_unlock(&msm_uport->clk_mutex); |
| return 0; /* come back later to really clock off */ |
| } |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| /* we really want to clock off */ |
| msm_hs_clock_unvote(msm_uport); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| if (use_low_power_wakeup(msm_uport)) { |
| msm_uport->wakeup.ignore = 1; |
| enable_irq(msm_uport->wakeup.irq); |
| } |
| wake_unlock(&msm_uport->dma_wake_lock); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| /* Reset PNOC Bus Scaling */ |
| msm_hs_bus_voting(msm_uport, BUS_RESET); |
| mutex_unlock(&msm_uport->clk_mutex); |
| |
| return 1; |
| } |
| |
| static void hsuart_clock_off_work(struct work_struct *w) |
| { |
| struct msm_hs_port *msm_uport = container_of(w, struct msm_hs_port, |
| clock_off_w); |
| struct uart_port *uport = &msm_uport->uport; |
| |
| if (!msm_hs_check_clock_off(uport)) { |
| hrtimer_start(&msm_uport->clk_off_timer, |
| msm_uport->clk_off_delay, |
| HRTIMER_MODE_REL); |
| } |
| } |
| |
| static enum hrtimer_restart msm_hs_clk_off_retry(struct hrtimer *timer) |
| { |
| struct msm_hs_port *msm_uport = container_of(timer, struct msm_hs_port, |
| clk_off_timer); |
| |
| queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w); |
| return HRTIMER_NORESTART; |
| } |
| |
| static irqreturn_t msm_hs_isr(int irq, void *dev) |
| { |
| unsigned long flags; |
| unsigned long isr_status; |
| struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev; |
| struct uart_port *uport = &msm_uport->uport; |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| isr_status = msm_hs_read(uport, UART_DM_MISR); |
| |
| /* Uart RX starting */ |
| if (isr_status & UARTDM_ISR_RXLEV_BMSK) { |
| wake_lock(&rx->wake_lock); /* hold wakelock while rx dma */ |
| msm_uport->imr_reg &= ~UARTDM_ISR_RXLEV_BMSK; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| /* Complete device write for IMR. Hence mb() requires. */ |
| mb(); |
| } |
| /* Stale rx interrupt */ |
| if (isr_status & UARTDM_ISR_RXSTALE_BMSK) { |
| msm_hs_write(uport, UART_DM_CR, STALE_EVENT_DISABLE); |
| msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT); |
| /* |
| * Complete device write before calling DMOV API. Hence |
| * mb() requires here. |
| */ |
| mb(); |
| |
| if (msm_uport->clk_req_off_state == |
| CLK_REQ_OFF_RXSTALE_ISSUED) |
| msm_uport->clk_req_off_state = |
| CLK_REQ_OFF_FLUSH_ISSUED; |
| |
| if (!is_blsp_uart(msm_uport) && (rx->flush == FLUSH_NONE)) { |
| rx->flush = FLUSH_DATA_READY; |
| msm_dmov_flush(msm_uport->dma_rx_channel, 1); |
| } |
| } |
| /* tx ready interrupt */ |
| if (isr_status & UARTDM_ISR_TX_READY_BMSK) { |
| /* Clear TX Ready */ |
| msm_hs_write(uport, UART_DM_CR, CLEAR_TX_READY); |
| |
| if (msm_uport->clk_state == MSM_HS_CLK_REQUEST_OFF) { |
| msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| } |
| /* |
| * Complete both writes before starting new TX. |
| * Hence mb() requires here. |
| */ |
| mb(); |
| /* Complete DMA TX transactions and submit new transactions */ |
| |
| /* Do not update tx_buf.tail if uart_flush_buffer already |
| called in serial core */ |
| if (!msm_uport->tty_flush_receive) |
| tx_buf->tail = (tx_buf->tail + |
| tx->tx_count) & ~UART_XMIT_SIZE; |
| else |
| msm_uport->tty_flush_receive = false; |
| |
| tx->dma_in_flight = 0; |
| |
| uport->icount.tx += tx->tx_count; |
| if (tx->tx_ready_int_en) |
| msm_hs_submit_tx_locked(uport); |
| |
| if (uart_circ_chars_pending(tx_buf) < WAKEUP_CHARS) |
| uart_write_wakeup(uport); |
| } |
| if (isr_status & UARTDM_ISR_TXLEV_BMSK) { |
| /* TX FIFO is empty */ |
| msm_uport->imr_reg &= ~UARTDM_ISR_TXLEV_BMSK; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| /* |
| * Complete device write before starting clock_off request. |
| * Hence mb() requires here. |
| */ |
| mb(); |
| queue_work(msm_uport->hsuart_wq, &msm_uport->clock_off_w); |
| } |
| |
| /* Change in CTS interrupt */ |
| if (isr_status & UARTDM_ISR_DELTA_CTS_BMSK) |
| msm_hs_handle_delta_cts_locked(uport); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* |
| * Find UART device port using its port index value. |
| */ |
| struct uart_port *msm_hs_get_uart_port(int port_index) |
| { |
| int i; |
| |
| for (i = 0; i < UARTDM_NR; i++) { |
| if (q_uart_port[i].uport.line == port_index) |
| return &q_uart_port[i].uport; |
| } |
| |
| return NULL; |
| } |
| EXPORT_SYMBOL(msm_hs_get_uart_port); |
| |
| /* request to turn off uart clock once pending TX is flushed */ |
| void msm_hs_request_clock_off(struct uart_port *uport) { |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| if (msm_uport->clk_state == MSM_HS_CLK_ON) { |
| msm_uport->clk_state = MSM_HS_CLK_REQUEST_OFF; |
| msm_uport->clk_req_off_state = CLK_REQ_OFF_START; |
| msm_uport->imr_reg |= UARTDM_ISR_TXLEV_BMSK; |
| msm_hs_write(uport, UARTDM_IMR, msm_uport->imr_reg); |
| /* |
| * Complete device write before retuning back. |
| * Hence mb() requires here. |
| */ |
| mb(); |
| } |
| spin_unlock_irqrestore(&uport->lock, flags); |
| } |
| EXPORT_SYMBOL(msm_hs_request_clock_off); |
| |
| void msm_hs_request_clock_on(struct uart_port *uport) |
| { |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| unsigned long flags; |
| unsigned int data; |
| int ret = 0; |
| |
| mutex_lock(&msm_uport->clk_mutex); |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| switch (msm_uport->clk_state) { |
| case MSM_HS_CLK_OFF: |
| wake_lock(&msm_uport->dma_wake_lock); |
| if (use_low_power_wakeup(msm_uport)) |
| disable_irq_nosync(msm_uport->wakeup.irq); |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| ret = msm_hs_clock_vote(msm_uport); |
| if (ret) { |
| dev_err(uport->dev, "Clock ON Failure" |
| "For UART CLK Stalling HSUART\n"); |
| break; |
| } |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| /* else fall-through */ |
| case MSM_HS_CLK_REQUEST_OFF: |
| if (msm_uport->rx.flush == FLUSH_STOP || |
| msm_uport->rx.flush == FLUSH_SHUTDOWN) { |
| msm_hs_write(uport, UART_DM_CR, RESET_RX); |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| if (is_blsp_uart(msm_uport)) |
| data |= UARTDM_RX_BAM_ENABLE_BMSK; |
| else |
| data |= UARTDM_RX_DM_EN_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| /* Complete above device write. Hence mb() here. */ |
| mb(); |
| } |
| hrtimer_try_to_cancel(&msm_uport->clk_off_timer); |
| if (msm_uport->rx.flush == FLUSH_SHUTDOWN) { |
| if (is_blsp_uart(msm_uport)) { |
| spin_unlock_irqrestore(&uport->lock, flags); |
| msm_hs_spsconnect_rx(uport); |
| spin_lock_irqsave(&uport->lock, flags); |
| } |
| msm_hs_start_rx_locked(uport); |
| } |
| if (msm_uport->rx.flush == FLUSH_STOP) |
| msm_uport->rx.flush = FLUSH_IGNORE; |
| msm_uport->clk_state = MSM_HS_CLK_ON; |
| break; |
| case MSM_HS_CLK_ON: |
| break; |
| case MSM_HS_CLK_PORT_OFF: |
| break; |
| } |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| mutex_unlock(&msm_uport->clk_mutex); |
| } |
| EXPORT_SYMBOL(msm_hs_request_clock_on); |
| |
| static irqreturn_t msm_hs_wakeup_isr(int irq, void *dev) |
| { |
| unsigned int wakeup = 0; |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = (struct msm_hs_port *)dev; |
| struct uart_port *uport = &msm_uport->uport; |
| struct tty_struct *tty = NULL; |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| if (msm_uport->clk_state == MSM_HS_CLK_OFF) { |
| /* ignore the first irq - it is a pending irq that occured |
| * before enable_irq() */ |
| if (msm_uport->wakeup.ignore) |
| msm_uport->wakeup.ignore = 0; |
| else |
| wakeup = 1; |
| } |
| |
| if (wakeup) { |
| /* the uart was clocked off during an rx, wake up and |
| * optionally inject char into tty rx */ |
| spin_unlock_irqrestore(&uport->lock, flags); |
| msm_hs_request_clock_on(uport); |
| spin_lock_irqsave(&uport->lock, flags); |
| if (msm_uport->wakeup.inject_rx) { |
| tty = uport->state->port.tty; |
| tty_insert_flip_char(tty, |
| msm_uport->wakeup.rx_to_inject, |
| TTY_NORMAL); |
| } |
| } |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| if (wakeup && msm_uport->wakeup.inject_rx) |
| tty_flip_buffer_push(tty); |
| return IRQ_HANDLED; |
| } |
| |
| static const char *msm_hs_type(struct uart_port *port) |
| { |
| return ("MSM HS UART"); |
| } |
| |
| /** |
| * msm_hs_unconfig_uart_gpios: Unconfigures UART GPIOs |
| * @uport: uart port |
| */ |
| static void msm_hs_unconfig_uart_gpios(struct uart_port *uport) |
| { |
| struct platform_device *pdev = to_platform_device(uport->dev); |
| const struct msm_serial_hs_platform_data *pdata = |
| pdev->dev.platform_data; |
| |
| if (pdata) { |
| if (gpio_is_valid(pdata->uart_tx_gpio)) |
| gpio_free(pdata->uart_tx_gpio); |
| if (gpio_is_valid(pdata->uart_rx_gpio)) |
| gpio_free(pdata->uart_rx_gpio); |
| if (gpio_is_valid(pdata->uart_cts_gpio)) |
| gpio_free(pdata->uart_cts_gpio); |
| if (gpio_is_valid(pdata->uart_rfr_gpio)) |
| gpio_free(pdata->uart_rfr_gpio); |
| } else { |
| pr_err("Error:Pdata is NULL.\n"); |
| } |
| } |
| |
| /** |
| * msm_hs_config_uart_gpios - Configures UART GPIOs |
| * @uport: uart port |
| */ |
| static int msm_hs_config_uart_gpios(struct uart_port *uport) |
| { |
| struct platform_device *pdev = to_platform_device(uport->dev); |
| const struct msm_serial_hs_platform_data *pdata = |
| pdev->dev.platform_data; |
| int ret = 0; |
| |
| if (pdata) { |
| if (gpio_is_valid(pdata->uart_tx_gpio)) { |
| ret = gpio_request(pdata->uart_tx_gpio, |
| "UART_TX_GPIO"); |
| if (unlikely(ret)) { |
| pr_err("gpio request failed for:%d\n", |
| pdata->uart_tx_gpio); |
| goto exit_uart_config; |
| } |
| } |
| |
| if (gpio_is_valid(pdata->uart_rx_gpio)) { |
| ret = gpio_request(pdata->uart_rx_gpio, |
| "UART_RX_GPIO"); |
| if (unlikely(ret)) { |
| pr_err("gpio request failed for:%d\n", |
| pdata->uart_rx_gpio); |
| goto uart_tx_unconfig; |
| } |
| } |
| |
| if (gpio_is_valid(pdata->uart_cts_gpio)) { |
| ret = gpio_request(pdata->uart_cts_gpio, |
| "UART_CTS_GPIO"); |
| if (unlikely(ret)) { |
| pr_err("gpio request failed for:%d\n", |
| pdata->uart_cts_gpio); |
| goto uart_rx_unconfig; |
| } |
| } |
| |
| if (gpio_is_valid(pdata->uart_rfr_gpio)) { |
| ret = gpio_request(pdata->uart_rfr_gpio, |
| "UART_RFR_GPIO"); |
| if (unlikely(ret)) { |
| pr_err("gpio request failed for:%d\n", |
| pdata->uart_rfr_gpio); |
| goto uart_cts_unconfig; |
| } |
| } |
| } else { |
| pr_err("Pdata is NULL.\n"); |
| ret = -EINVAL; |
| } |
| return ret; |
| |
| uart_cts_unconfig: |
| if (gpio_is_valid(pdata->uart_cts_gpio)) |
| gpio_free(pdata->uart_cts_gpio); |
| uart_rx_unconfig: |
| if (gpio_is_valid(pdata->uart_rx_gpio)) |
| gpio_free(pdata->uart_rx_gpio); |
| uart_tx_unconfig: |
| if (gpio_is_valid(pdata->uart_tx_gpio)) |
| gpio_free(pdata->uart_tx_gpio); |
| exit_uart_config: |
| return ret; |
| } |
| |
| /* Called when port is opened */ |
| static int msm_hs_startup(struct uart_port *uport) |
| { |
| int ret; |
| int rfr_level; |
| unsigned long flags; |
| unsigned int data; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct platform_device *pdev = to_platform_device(uport->dev); |
| const struct msm_serial_hs_platform_data *pdata = |
| pdev->dev.platform_data; |
| struct circ_buf *tx_buf = &uport->state->xmit; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| struct sps_pipe *sps_pipe_handle_tx = tx->cons.pipe_handle; |
| struct sps_pipe *sps_pipe_handle_rx = rx->prod.pipe_handle; |
| |
| rfr_level = uport->fifosize; |
| if (rfr_level > 16) |
| rfr_level -= 16; |
| |
| tx->dma_base = dma_map_single(uport->dev, tx_buf->buf, UART_XMIT_SIZE, |
| DMA_TO_DEVICE); |
| |
| wake_lock(&msm_uport->dma_wake_lock); |
| /* turn on uart clk */ |
| ret = msm_hs_init_clk(uport); |
| if (unlikely(ret)) { |
| pr_err("Turning ON uartclk error\n"); |
| wake_unlock(&msm_uport->dma_wake_lock); |
| return ret; |
| } |
| |
| if (is_blsp_uart(msm_uport)) { |
| ret = msm_hs_config_uart_gpios(uport); |
| if (ret) { |
| pr_err("Uart GPIO request failed\n"); |
| goto deinit_uart_clk; |
| } |
| } else { |
| if (pdata && pdata->gpio_config) |
| if (unlikely(pdata->gpio_config(1))) |
| dev_err(uport->dev, "Cannot configure gpios\n"); |
| } |
| |
| /* SPS Connect for BAM endpoints */ |
| if (is_blsp_uart(msm_uport)) { |
| /* SPS connect for TX */ |
| ret = msm_hs_spsconnect_tx(uport); |
| if (ret) { |
| pr_err("msm_serial_hs: SPS connect failed for TX"); |
| goto unconfig_uart_gpios; |
| } |
| |
| /* SPS connect for RX */ |
| ret = msm_hs_spsconnect_rx(uport); |
| if (ret) { |
| pr_err("msm_serial_hs: SPS connect failed for RX"); |
| goto sps_disconnect_tx; |
| } |
| } |
| |
| /* Set auto RFR Level */ |
| data = msm_hs_read(uport, UART_DM_MR1); |
| data &= ~UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK; |
| data &= ~UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK; |
| data |= (UARTDM_MR1_AUTO_RFR_LEVEL1_BMSK & (rfr_level << 2)); |
| data |= (UARTDM_MR1_AUTO_RFR_LEVEL0_BMSK & rfr_level); |
| msm_hs_write(uport, UART_DM_MR1, data); |
| |
| /* Make sure RXSTALE count is non-zero */ |
| data = msm_hs_read(uport, UART_DM_IPR); |
| if (!data) { |
| data |= 0x1f & UARTDM_IPR_STALE_LSB_BMSK; |
| msm_hs_write(uport, UART_DM_IPR, data); |
| } |
| |
| if (is_blsp_uart(msm_uport)) { |
| /* Enable BAM mode */ |
| data = UARTDM_TX_BAM_ENABLE_BMSK | UARTDM_RX_BAM_ENABLE_BMSK; |
| } else { |
| /* Enable Data Mover Mode */ |
| data = UARTDM_TX_DM_EN_BMSK | UARTDM_RX_DM_EN_BMSK; |
| } |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| |
| /* Reset TX */ |
| msm_hs_write(uport, UART_DM_CR, RESET_TX); |
| msm_hs_write(uport, UART_DM_CR, RESET_RX); |
| msm_hs_write(uport, UART_DM_CR, RESET_ERROR_STATUS); |
| msm_hs_write(uport, UART_DM_CR, RESET_BREAK_INT); |
| msm_hs_write(uport, UART_DM_CR, RESET_STALE_INT); |
| msm_hs_write(uport, UART_DM_CR, RESET_CTS); |
| msm_hs_write(uport, UART_DM_CR, RFR_LOW); |
| /* Turn on Uart Receiver */ |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_EN_BMSK); |
| |
| /* Turn on Uart Transmitter */ |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_EN_BMSK); |
| |
| /* Initialize the tx */ |
| tx->tx_ready_int_en = 0; |
| tx->dma_in_flight = 0; |
| |
| if (!is_blsp_uart(msm_uport)) { |
| tx->xfer.complete_func = msm_hs_dmov_tx_callback; |
| |
| tx->command_ptr->cmd = CMD_LC | |
| CMD_DST_CRCI(msm_uport->dma_tx_crci) | CMD_MODE_BOX; |
| |
| tx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16) |
| | (MSM_UARTDM_BURST_SIZE); |
| |
| tx->command_ptr->row_offset = (MSM_UARTDM_BURST_SIZE << 16); |
| |
| tx->command_ptr->dst_row_addr = |
| msm_uport->uport.mapbase + UARTDM_TF_ADDR; |
| |
| msm_uport->imr_reg |= UARTDM_ISR_RXSTALE_BMSK; |
| } |
| |
| /* Enable reading the current CTS, no harm even if CTS is ignored */ |
| msm_uport->imr_reg |= UARTDM_ISR_CURRENT_CTS_BMSK; |
| |
| /* TXLEV on empty TX fifo */ |
| msm_hs_write(uport, UART_DM_TFWR, 0); |
| /* |
| * Complete all device write related configuration before |
| * queuing RX request. Hence mb() requires here. |
| */ |
| mb(); |
| |
| if (use_low_power_wakeup(msm_uport)) { |
| ret = irq_set_irq_wake(msm_uport->wakeup.irq, 1); |
| if (unlikely(ret)) { |
| pr_err("%s():Err setting wakeup irq\n", __func__); |
| goto sps_disconnect_rx; |
| } |
| } |
| |
| ret = request_irq(uport->irq, msm_hs_isr, IRQF_TRIGGER_HIGH, |
| "msm_hs_uart", msm_uport); |
| if (unlikely(ret)) { |
| pr_err("%s():Error getting uart irq\n", __func__); |
| goto free_wake_irq; |
| } |
| if (use_low_power_wakeup(msm_uport)) { |
| |
| ret = request_threaded_irq(msm_uport->wakeup.irq, NULL, |
| msm_hs_wakeup_isr, |
| IRQF_TRIGGER_FALLING, |
| "msm_hs_wakeup", msm_uport); |
| |
| if (unlikely(ret)) { |
| pr_err("%s():Err getting uart wakeup_irq\n", __func__); |
| goto free_uart_irq; |
| } |
| disable_irq(msm_uport->wakeup.irq); |
| } |
| |
| msm_hs_clock_vote(msm_uport); |
| |
| spin_lock_irqsave(&uport->lock, flags); |
| |
| msm_hs_start_rx_locked(uport); |
| |
| spin_unlock_irqrestore(&uport->lock, flags); |
| |
| msm_hs_clock_unvote(msm_uport); |
| |
| pm_runtime_enable(uport->dev); |
| |
| return 0; |
| |
| free_uart_irq: |
| free_irq(uport->irq, msm_uport); |
| free_wake_irq: |
| if (use_low_power_wakeup(msm_uport)) |
| irq_set_irq_wake(msm_uport->wakeup.irq, 0); |
| sps_disconnect_rx: |
| if (is_blsp_uart(msm_uport)) |
| sps_disconnect(sps_pipe_handle_rx); |
| sps_disconnect_tx: |
| if (is_blsp_uart(msm_uport)) |
| sps_disconnect(sps_pipe_handle_tx); |
| unconfig_uart_gpios: |
| if (is_blsp_uart(msm_uport)) |
| msm_hs_unconfig_uart_gpios(uport); |
| deinit_uart_clk: |
| msm_hs_clock_unvote(msm_uport); |
| wake_unlock(&msm_uport->dma_wake_lock); |
| |
| return ret; |
| } |
| |
| /* Initialize tx and rx data structures */ |
| static int uartdm_init_port(struct uart_port *uport) |
| { |
| int ret = 0; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct msm_hs_rx *rx = &msm_uport->rx; |
| |
| init_waitqueue_head(&rx->wait); |
| init_waitqueue_head(&tx->wait); |
| wake_lock_init(&rx->wake_lock, WAKE_LOCK_SUSPEND, "msm_serial_hs_rx"); |
| wake_lock_init(&msm_uport->dma_wake_lock, WAKE_LOCK_SUSPEND, |
| "msm_serial_hs_dma"); |
| |
| tasklet_init(&rx->tlet, msm_serial_hs_rx_tlet, |
| (unsigned long) &rx->tlet); |
| tasklet_init(&tx->tlet, msm_serial_hs_tx_tlet, |
| (unsigned long) &tx->tlet); |
| |
| rx->pool = dma_pool_create("rx_buffer_pool", uport->dev, |
| UARTDM_RX_BUF_SIZE, 16, 0); |
| if (!rx->pool) { |
| pr_err("%s(): cannot allocate rx_buffer_pool", __func__); |
| ret = -ENOMEM; |
| goto exit_tasket_init; |
| } |
| |
| rx->buffer = dma_pool_alloc(rx->pool, GFP_KERNEL, &rx->rbuffer); |
| if (!rx->buffer) { |
| pr_err("%s(): cannot allocate rx->buffer", __func__); |
| ret = -ENOMEM; |
| goto free_pool; |
| } |
| |
| /* Set up Uart Receive */ |
| if (is_blsp_uart(msm_uport)) |
| msm_hs_write(uport, UART_DM_RFWR, 32); |
| else |
| msm_hs_write(uport, UART_DM_RFWR, 0); |
| |
| INIT_DELAYED_WORK(&rx->flip_insert_work, flip_insert_work); |
| |
| if (is_blsp_uart(msm_uport)) |
| return ret; |
| |
| /* Allocate the command pointer. Needs to be 64 bit aligned */ |
| tx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA); |
| if (!tx->command_ptr) { |
| return -ENOMEM; |
| goto free_rx_buffer; |
| } |
| |
| tx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA); |
| if (!tx->command_ptr_ptr) { |
| ret = -ENOMEM; |
| goto free_tx_command_ptr; |
| } |
| |
| tx->mapped_cmd_ptr = dma_map_single(uport->dev, tx->command_ptr, |
| sizeof(dmov_box), DMA_TO_DEVICE); |
| tx->mapped_cmd_ptr_ptr = dma_map_single(uport->dev, |
| tx->command_ptr_ptr, |
| sizeof(u32), DMA_TO_DEVICE); |
| tx->xfer.cmdptr = DMOV_CMD_ADDR(tx->mapped_cmd_ptr_ptr); |
| |
| /* Allocate the command pointer. Needs to be 64 bit aligned */ |
| rx->command_ptr = kmalloc(sizeof(dmov_box), GFP_KERNEL | __GFP_DMA); |
| if (!rx->command_ptr) { |
| pr_err("%s(): cannot allocate rx->command_ptr", __func__); |
| ret = -ENOMEM; |
| goto free_tx_command_ptr_ptr; |
| } |
| |
| rx->command_ptr_ptr = kmalloc(sizeof(u32), GFP_KERNEL | __GFP_DMA); |
| if (!rx->command_ptr_ptr) { |
| pr_err("%s(): cannot allocate rx->command_ptr_ptr", __func__); |
| ret = -ENOMEM; |
| goto free_rx_command_ptr; |
| } |
| |
| rx->command_ptr->num_rows = ((UARTDM_RX_BUF_SIZE >> 4) << 16) | |
| (UARTDM_RX_BUF_SIZE >> 4); |
| |
| rx->command_ptr->dst_row_addr = rx->rbuffer; |
| |
| rx->xfer.complete_func = msm_hs_dmov_rx_callback; |
| |
| rx->command_ptr->cmd = CMD_LC | |
| CMD_SRC_CRCI(msm_uport->dma_rx_crci) | CMD_MODE_BOX; |
| |
| rx->command_ptr->src_dst_len = (MSM_UARTDM_BURST_SIZE << 16) |
| | (MSM_UARTDM_BURST_SIZE); |
| rx->command_ptr->row_offset = MSM_UARTDM_BURST_SIZE; |
| rx->command_ptr->src_row_addr = uport->mapbase + UARTDM_RF_ADDR; |
| |
| rx->mapped_cmd_ptr = dma_map_single(uport->dev, rx->command_ptr, |
| sizeof(dmov_box), DMA_TO_DEVICE); |
| |
| *rx->command_ptr_ptr = CMD_PTR_LP | DMOV_CMD_ADDR(rx->mapped_cmd_ptr); |
| |
| rx->cmdptr_dmaaddr = dma_map_single(uport->dev, rx->command_ptr_ptr, |
| sizeof(u32), DMA_TO_DEVICE); |
| rx->xfer.cmdptr = DMOV_CMD_ADDR(rx->cmdptr_dmaaddr); |
| |
| return ret; |
| |
| free_rx_command_ptr: |
| kfree(rx->command_ptr); |
| |
| free_tx_command_ptr_ptr: |
| kfree(msm_uport->tx.command_ptr_ptr); |
| dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr_ptr, |
| sizeof(u32), DMA_TO_DEVICE); |
| dma_unmap_single(uport->dev, msm_uport->tx.mapped_cmd_ptr, |
| sizeof(dmov_box), DMA_TO_DEVICE); |
| |
| free_tx_command_ptr: |
| kfree(msm_uport->tx.command_ptr); |
| |
| free_rx_buffer: |
| dma_pool_free(msm_uport->rx.pool, msm_uport->rx.buffer, |
| msm_uport->rx.rbuffer); |
| |
| free_pool: |
| dma_pool_destroy(msm_uport->rx.pool); |
| |
| exit_tasket_init: |
| wake_lock_destroy(&msm_uport->rx.wake_lock); |
| wake_lock_destroy(&msm_uport->dma_wake_lock); |
| tasklet_kill(&msm_uport->tx.tlet); |
| tasklet_kill(&msm_uport->rx.tlet); |
| return ret; |
| } |
| |
| struct msm_serial_hs_platform_data |
| *msm_hs_dt_to_pdata(struct platform_device *pdev) |
| { |
| struct device_node *node = pdev->dev.of_node; |
| struct msm_serial_hs_platform_data *pdata; |
| int rx_to_inject, ret; |
| |
| pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); |
| if (!pdata) { |
| pr_err("unable to allocate memory for platform data\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* UART TX GPIO */ |
| pdata->uart_tx_gpio = of_get_named_gpio(node, |
| "qcom,tx-gpio", 0); |
| if (pdata->uart_tx_gpio < 0) |
| pr_debug("uart_tx_gpio is not available\n"); |
| |
| /* UART RX GPIO */ |
| pdata->uart_rx_gpio = of_get_named_gpio(node, |
| "qcom,rx-gpio", 0); |
| if (pdata->uart_rx_gpio < 0) |
| pr_debug("uart_rx_gpio is not available\n"); |
| |
| /* UART CTS GPIO */ |
| pdata->uart_cts_gpio = of_get_named_gpio(node, |
| "qcom,cts-gpio", 0); |
| if (pdata->uart_cts_gpio < 0) |
| pr_debug("uart_cts_gpio is not available\n"); |
| |
| /* UART RFR GPIO */ |
| pdata->uart_rfr_gpio = of_get_named_gpio(node, |
| "qcom,rfr-gpio", 0); |
| if (pdata->uart_rfr_gpio < 0) |
| pr_debug("uart_rfr_gpio is not available\n"); |
| |
| pdata->inject_rx_on_wakeup = of_property_read_bool(node, |
| "qcom,inject-rx-on-wakeup"); |
| |
| if (pdata->inject_rx_on_wakeup) { |
| ret = of_property_read_u32(node, "qcom,rx-char-to-inject", |
| &rx_to_inject); |
| if (ret < 0) { |
| pr_err("Error: Rx_char_to_inject not specified.\n"); |
| return ERR_PTR(ret); |
| } |
| pdata->rx_to_inject = (char)rx_to_inject; |
| } |
| |
| ret = of_property_read_u32(node, "qcom,bam-tx-ep-pipe-index", |
| &pdata->bam_tx_ep_pipe_index); |
| if (ret < 0) { |
| pr_err("Error: Getting UART BAM TX EP Pipe Index.\n"); |
| return ERR_PTR(ret); |
| } |
| |
| if (!(pdata->bam_tx_ep_pipe_index >= BAM_PIPE_MIN && |
| pdata->bam_tx_ep_pipe_index <= BAM_PIPE_MAX)) { |
| pr_err("Error: Invalid UART BAM TX EP Pipe Index.\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| ret = of_property_read_u32(node, "qcom,bam-rx-ep-pipe-index", |
| &pdata->bam_rx_ep_pipe_index); |
| if (ret < 0) { |
| pr_err("Error: Getting UART BAM RX EP Pipe Index.\n"); |
| return ERR_PTR(ret); |
| } |
| |
| if (!(pdata->bam_rx_ep_pipe_index >= BAM_PIPE_MIN && |
| pdata->bam_rx_ep_pipe_index <= BAM_PIPE_MAX)) { |
| pr_err("Error: Invalid UART BAM RX EP Pipe Index.\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| pr_debug("tx_ep_pipe_index:%d rx_ep_pipe_index:%d\n" |
| "tx_gpio:%d rx_gpio:%d rfr_gpio:%d cts_gpio:%d", |
| pdata->bam_tx_ep_pipe_index, pdata->bam_rx_ep_pipe_index, |
| pdata->uart_tx_gpio, pdata->uart_rx_gpio, pdata->uart_cts_gpio, |
| pdata->uart_rfr_gpio); |
| |
| return pdata; |
| } |
| |
| |
| /** |
| * Deallocate UART peripheral's SPS endpoint |
| * @msm_uport - Pointer to msm_hs_port structure |
| * @ep - Pointer to sps endpoint data structure |
| */ |
| |
| static void msm_hs_exit_ep_conn(struct msm_hs_port *msm_uport, |
| struct msm_hs_sps_ep_conn_data *ep) |
| { |
| struct sps_pipe *sps_pipe_handle = ep->pipe_handle; |
| struct sps_connect *sps_config = &ep->config; |
| |
| dma_free_coherent(msm_uport->uport.dev, |
| sps_config->desc.size, |
| &sps_config->desc.phys_base, |
| GFP_KERNEL); |
| sps_free_endpoint(sps_pipe_handle); |
| } |
| |
| |
| /** |
| * Allocate UART peripheral's SPS endpoint |
| * |
| * This function allocates endpoint context |
| * by calling appropriate SPS driver APIs. |
| * |
| * @msm_uport - Pointer to msm_hs_port structure |
| * @ep - Pointer to sps endpoint data structure |
| * @is_produce - 1 means Producer endpoint |
| * - 0 means Consumer endpoint |
| * |
| * @return - 0 if successful else negative value |
| */ |
| |
| static int msm_hs_sps_init_ep_conn(struct msm_hs_port *msm_uport, |
| struct msm_hs_sps_ep_conn_data *ep, |
| bool is_producer) |
| { |
| int rc = 0; |
| struct sps_pipe *sps_pipe_handle; |
| struct sps_connect *sps_config = &ep->config; |
| struct sps_register_event *sps_event = &ep->event; |
| |
| /* Allocate endpoint context */ |
| sps_pipe_handle = sps_alloc_endpoint(); |
| if (!sps_pipe_handle) { |
| pr_err("msm_serial_hs: sps_alloc_endpoint() failed!!\n" |
| "is_producer=%d", is_producer); |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| /* Get default connection configuration for an endpoint */ |
| rc = sps_get_config(sps_pipe_handle, sps_config); |
| if (rc) { |
| pr_err("msm_serial_hs: sps_get_config() failed!!\n" |
| "pipe_handle=0x%x rc=%d", (u32)sps_pipe_handle, rc); |
| goto get_config_err; |
| } |
| |
| /* Modify the default connection configuration */ |
| if (is_producer) { |
| /* For UART producer transfer, source is UART peripheral |
| where as destination is system memory */ |
| sps_config->source = msm_uport->bam_handle; |
| sps_config->destination = SPS_DEV_HANDLE_MEM; |
| sps_config->mode = SPS_MODE_SRC; |
| sps_config->src_pipe_index = msm_uport->bam_rx_ep_pipe_index; |
| sps_config->dest_pipe_index = 0; |
| sps_config->options = SPS_O_DESC_DONE; |
| } else { |
| /* For UART consumer transfer, source is system memory |
| where as destination is UART peripheral */ |
| sps_config->source = SPS_DEV_HANDLE_MEM; |
| sps_config->destination = msm_uport->bam_handle; |
| sps_config->mode = SPS_MODE_DEST; |
| sps_config->src_pipe_index = 0; |
| sps_config->dest_pipe_index = msm_uport->bam_tx_ep_pipe_index; |
| sps_config->options = SPS_O_EOT; |
| } |
| |
| sps_config->event_thresh = 0x10; |
| |
| /* Allocate maximum descriptor fifo size */ |
| sps_config->desc.size = 65532; |
| sps_config->desc.base = dma_alloc_coherent(msm_uport->uport.dev, |
| sps_config->desc.size, |
| &sps_config->desc.phys_base, |
| GFP_KERNEL); |
| if (!sps_config->desc.base) { |
| rc = -ENOMEM; |
| pr_err("msm_serial_hs: dma_alloc_coherent() failed!!\n"); |
| goto get_config_err; |
| } |
| memset(sps_config->desc.base, 0x00, sps_config->desc.size); |
| |
| sps_event->mode = SPS_TRIGGER_CALLBACK; |
| |
| if (is_producer) { |
| sps_event->callback = msm_hs_sps_rx_callback; |
| sps_event->options = SPS_O_DESC_DONE; |
| } else { |
| sps_event->callback = msm_hs_sps_tx_callback; |
| sps_event->options = SPS_O_EOT; |
| } |
| |
| sps_event->user = (void *)msm_uport; |
| |
| /* Now save the sps pipe handle */ |
| ep->pipe_handle = sps_pipe_handle; |
| pr_debug("msm_serial_hs: success !! %s: pipe_handle=0x%x\n" |
| "desc_fifo.phys_base=0x%llx\n", |
| is_producer ? "READ" : "WRITE", |
| (u32) sps_pipe_handle, (u64) sps_config->desc.phys_base); |
| return 0; |
| |
| get_config_err: |
| sps_free_endpoint(sps_pipe_handle); |
| out: |
| return rc; |
| } |
| |
| /** |
| * Initialize SPS HW connected with UART core |
| * |
| * This function register BAM HW resources with |
| * SPS driver and then initialize 2 SPS endpoints |
| * |
| * msm_uport - Pointer to msm_hs_port structure |
| * |
| * @return - 0 if successful else negative value |
| */ |
| |
| static int msm_hs_sps_init(struct msm_hs_port *msm_uport) |
| { |
| int rc = 0; |
| struct sps_bam_props bam = {0}; |
| u32 bam_handle; |
| |
| rc = sps_phy2h(msm_uport->bam_mem, &bam_handle); |
| if (rc || !bam_handle) { |
| bam.phys_addr = msm_uport->bam_mem; |
| bam.virt_addr = msm_uport->bam_base; |
| /* |
| * This event thresold value is only significant for BAM-to-BAM |
| * transfer. It's ignored for BAM-to-System mode transfer. |
| */ |
| bam.event_threshold = 0x10; /* Pipe event threshold */ |
| bam.summing_threshold = 1; /* BAM event threshold */ |
| |
| /* SPS driver wll handle the UART BAM IRQ */ |
| bam.irq = (u32)msm_uport->bam_irq; |
| bam.manage = SPS_BAM_MGR_DEVICE_REMOTE; |
| |
| pr_debug("msm_serial_hs: bam physical base=0x%x\n", |
| (u32)bam.phys_addr); |
| pr_debug("msm_serial_hs: bam virtual base=0x%x\n", |
| (u32)bam.virt_addr); |
| |
| /* Register UART Peripheral BAM device to SPS driver */ |
| rc = sps_register_bam_device(&bam, &bam_handle); |
| if (rc) { |
| pr_err("msm_serial_hs: BAM device register failed\n"); |
| return rc; |
| } |
| pr_info("msm_serial_hs: BAM device registered. bam_handle=0x%x", |
| msm_uport->bam_handle); |
| } |
| msm_uport->bam_handle = bam_handle; |
| |
| rc = msm_hs_sps_init_ep_conn(msm_uport, &msm_uport->rx.prod, |
| UART_SPS_PROD_PERIPHERAL); |
| if (rc) { |
| pr_err("%s: Failed to Init Producer BAM-pipe", __func__); |
| goto deregister_bam; |
| } |
| |
| rc = msm_hs_sps_init_ep_conn(msm_uport, &msm_uport->tx.cons, |
| UART_SPS_CONS_PERIPHERAL); |
| if (rc) { |
| pr_err("%s: Failed to Init Consumer BAM-pipe", __func__); |
| goto deinit_ep_conn_prod; |
| } |
| return 0; |
| |
| deinit_ep_conn_prod: |
| msm_hs_exit_ep_conn(msm_uport, &msm_uport->rx.prod); |
| deregister_bam: |
| sps_deregister_bam_device(msm_uport->bam_handle); |
| return rc; |
| } |
| |
| #define BLSP_UART_NR 12 |
| static int deviceid[BLSP_UART_NR] = {0}; |
| static atomic_t msm_serial_hs_next_id = ATOMIC_INIT(0); |
| |
| static int __devinit msm_hs_probe(struct platform_device *pdev) |
| { |
| int ret = 0, alias_num = -1; |
| struct uart_port *uport; |
| struct msm_hs_port *msm_uport; |
| struct resource *core_resource; |
| struct resource *bam_resource; |
| struct resource *resource; |
| int core_irqres, bam_irqres, wakeup_irqres; |
| struct msm_serial_hs_platform_data *pdata = pdev->dev.platform_data; |
| const struct of_device_id *match; |
| |
| if (pdev->dev.of_node) { |
| dev_dbg(&pdev->dev, "device tree enabled\n"); |
| pdata = msm_hs_dt_to_pdata(pdev); |
| if (IS_ERR(pdata)) |
| return PTR_ERR(pdata); |
| |
| if (pdev->id == -1) { |
| pdev->id = atomic_inc_return(&msm_serial_hs_next_id)-1; |
| deviceid[pdev->id] = 1; |
| } |
| |
| /* Use alias from device tree if present |
| * Alias is used as an optional property |
| */ |
| alias_num = of_alias_get_id(pdev->dev.of_node, "uart"); |
| if (alias_num >= 0) { |
| /* If alias_num is between 0 and 11, check that it not |
| * equal to previous incremented pdev-ids. If it is |
| * equal to previous pdev.ids , fail deviceprobe. |
| */ |
| if (alias_num < BLSP_UART_NR) { |
| if (deviceid[alias_num] == 0) { |
| pdev->id = alias_num; |
| } else { |
| pr_err("alias_num=%d already used\n", |
| alias_num); |
| return -EINVAL; |
| } |
| } else { |
| pdev->id = alias_num; |
| } |
| } |
| |
| pdev->dev.platform_data = pdata; |
| } |
| |
| if (pdev->id < 0 || pdev->id >= UARTDM_NR) { |
| pr_err("Invalid plaform device ID = %d\n", pdev->id); |
| return -EINVAL; |
| } |
| |
| msm_uport = &q_uart_port[pdev->id]; |
| uport = &msm_uport->uport; |
| uport->dev = &pdev->dev; |
| |
| match = of_match_device(msm_hs_match_table, &pdev->dev); |
| if (match) |
| msm_uport->reg_ptr = (unsigned int *)match->data; |
| else if (is_gsbi_uart(msm_uport)) |
| msm_uport->reg_ptr = regmap_nonblsp; |
| |
| if (pdev->dev.of_node) |
| msm_uport->uart_type = BLSP_HSUART; |
| |
| /* Get required resources for BAM HSUART */ |
| if (is_blsp_uart(msm_uport)) { |
| core_resource = platform_get_resource_byname(pdev, |
| IORESOURCE_MEM, "core_mem"); |
| bam_resource = platform_get_resource_byname(pdev, |
| IORESOURCE_MEM, "bam_mem"); |
| core_irqres = platform_get_irq_byname(pdev, "core_irq"); |
| bam_irqres = platform_get_irq_byname(pdev, "bam_irq"); |
| wakeup_irqres = platform_get_irq_byname(pdev, "wakeup_irq"); |
| |
| if (!core_resource) { |
| pr_err("Invalid core HSUART Resources.\n"); |
| return -ENXIO; |
| } |
| |
| if (!bam_resource) { |
| pr_err("Invalid BAM HSUART Resources.\n"); |
| return -ENXIO; |
| } |
| |
| if (!core_irqres) { |
| pr_err("Invalid core irqres Resources.\n"); |
| return -ENXIO; |
| } |
| if (!bam_irqres) { |
| pr_err("Invalid bam irqres Resources.\n"); |
| return -ENXIO; |
| } |
| if (!wakeup_irqres) |
| pr_debug("Wakeup irq not specified.\n"); |
| |
| uport->mapbase = core_resource->start; |
| |
| uport->membase = ioremap(uport->mapbase, |
| resource_size(core_resource)); |
| if (unlikely(!uport->membase)) { |
| pr_err("UART Resource ioremap Failed.\n"); |
| return -ENOMEM; |
| } |
| msm_uport->bam_mem = bam_resource->start; |
| msm_uport->bam_base = ioremap(msm_uport->bam_mem, |
| resource_size(bam_resource)); |
| if (unlikely(!msm_uport->bam_base)) { |
| pr_err("UART BAM Resource ioremap Failed.\n"); |
| iounmap(uport->membase); |
| return -ENOMEM; |
| } |
| |
| uport->irq = core_irqres; |
| msm_uport->bam_irq = bam_irqres; |
| pdata->wakeup_irq = wakeup_irqres; |
| |
| msm_uport->bus_scale_table = msm_bus_cl_get_pdata(pdev); |
| if (!msm_uport->bus_scale_table) { |
| pr_err("BLSP UART: Bus scaling is disabled.\n"); |
| } else { |
| msm_uport->bus_perf_client = |
| msm_bus_scale_register_client |
| (msm_uport->bus_scale_table); |
| if (IS_ERR(&msm_uport->bus_perf_client)) { |
| pr_err("%s(): Bus client register failed.\n", |
| __func__); |
| ret = -EINVAL; |
| goto unmap_memory; |
| } |
| } |
| } else { |
| |
| resource = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (unlikely(!resource)) |
| return -ENXIO; |
| uport->mapbase = resource->start; |
| uport->membase = ioremap(uport->mapbase, |
| resource_size(resource)); |
| if (unlikely(!uport->membase)) |
| return -ENOMEM; |
| |
| uport->irq = platform_get_irq(pdev, 0); |
| if (unlikely((int)uport->irq < 0)) { |
| pr_err("UART IRQ Failed.\n"); |
| iounmap(uport->membase); |
| return -ENXIO; |
| } |
| } |
| |
| if (pdata == NULL) |
| msm_uport->wakeup.irq = -1; |
| else { |
| msm_uport->wakeup.irq = pdata->wakeup_irq; |
| msm_uport->wakeup.ignore = 1; |
| msm_uport->wakeup.inject_rx = pdata->inject_rx_on_wakeup; |
| msm_uport->wakeup.rx_to_inject = pdata->rx_to_inject; |
| |
| if (unlikely(msm_uport->wakeup.irq < 0)) { |
| ret = -ENXIO; |
| goto deregister_bus_client; |
| } |
| |
| if (is_blsp_uart(msm_uport)) { |
| msm_uport->bam_tx_ep_pipe_index = |
| pdata->bam_tx_ep_pipe_index; |
| msm_uport->bam_rx_ep_pipe_index = |
| pdata->bam_rx_ep_pipe_index; |
| } |
| } |
| |
| if (!is_blsp_uart(msm_uport)) { |
| |
| resource = platform_get_resource_byname(pdev, |
| IORESOURCE_DMA, "uartdm_channels"); |
| if (unlikely(!resource)) { |
| ret = -ENXIO; |
| goto deregister_bus_client; |
| } |
| |
| msm_uport->dma_tx_channel = resource->start; |
| msm_uport->dma_rx_channel = resource->end; |
| |
| resource = platform_get_resource_byname(pdev, |
| IORESOURCE_DMA, "uartdm_crci"); |
| if (unlikely(!resource)) { |
| ret = -ENXIO; |
| goto deregister_bus_client; |
| } |
| |
| msm_uport->dma_tx_crci = resource->start; |
| msm_uport->dma_rx_crci = resource->end; |
| } |
| |
| uport->iotype = UPIO_MEM; |
| uport->fifosize = 64; |
| uport->ops = &msm_hs_ops; |
| uport->flags = UPF_BOOT_AUTOCONF; |
| uport->uartclk = 7372800; |
| msm_uport->imr_reg = 0x0; |
| |
| msm_uport->clk = clk_get(&pdev->dev, "core_clk"); |
| if (IS_ERR(msm_uport->clk)) { |
| ret = PTR_ERR(msm_uport->clk); |
| goto deregister_bus_client; |
| } |
| |
| msm_uport->pclk = clk_get(&pdev->dev, "iface_clk"); |
| /* |
| * Some configurations do not require explicit pclk control so |
| * do not flag error on pclk get failure. |
| */ |
| if (IS_ERR(msm_uport->pclk)) |
| msm_uport->pclk = NULL; |
| |
| ret = clk_set_rate(msm_uport->clk, uport->uartclk); |
| if (ret) { |
| printk(KERN_WARNING "Error setting clock rate on UART\n"); |
| goto put_clk; |
| } |
| |
| msm_uport->hsuart_wq = alloc_workqueue("k_hsuart", |
| WQ_UNBOUND | WQ_MEM_RECLAIM, 1); |
| if (!msm_uport->hsuart_wq) { |
| pr_err("%s(): Unable to create workqueue hsuart_wq\n", |
| __func__); |
| ret = -ENOMEM; |
| goto put_clk; |
| } |
| |
| INIT_WORK(&msm_uport->clock_off_w, hsuart_clock_off_work); |
| |
| /* Init work for sps_disconnect in stop_rx_locked */ |
| INIT_WORK(&msm_uport->disconnect_rx_endpoint, |
| hsuart_disconnect_rx_endpoint_work); |
| mutex_init(&msm_uport->clk_mutex); |
| atomic_set(&msm_uport->clk_count, 0); |
| |
| |
| /* Initialize SPS HW connected with UART core */ |
| if (is_blsp_uart(msm_uport)) { |
| ret = msm_hs_sps_init(msm_uport); |
| if (unlikely(ret)) { |
| pr_err("SPS Initialization failed ! err=%d", ret); |
| goto destroy_mutex; |
| } |
| } |
| |
| msm_hs_clock_vote(msm_uport); |
| |
| ret = uartdm_init_port(uport); |
| if (unlikely(ret)) { |
| goto err_clock; |
| } |
| |
| /* configure the CR Protection to Enable */ |
| msm_hs_write(uport, UART_DM_CR, CR_PROTECTION_EN); |
| |
| /* |
| * Enable Command register protection before going ahead as this hw |
| * configuration makes sure that issued cmd to CR register gets complete |
| * before next issued cmd start. Hence mb() requires here. |
| */ |
| mb(); |
| |
| msm_uport->clk_state = MSM_HS_CLK_PORT_OFF; |
| hrtimer_init(&msm_uport->clk_off_timer, CLOCK_MONOTONIC, |
| HRTIMER_MODE_REL); |
| msm_uport->clk_off_timer.function = msm_hs_clk_off_retry; |
| msm_uport->clk_off_delay = ktime_set(0, 1000000); /* 1ms */ |
| |
| ret = sysfs_create_file(&pdev->dev.kobj, &dev_attr_clock.attr); |
| if (unlikely(ret)) |
| goto err_clock; |
| |
| msm_serial_debugfs_init(msm_uport, pdev->id); |
| |
| uport->line = pdev->id; |
| if (pdata != NULL && pdata->userid && pdata->userid <= UARTDM_NR) |
| uport->line = pdata->userid; |
| ret = uart_add_one_port(&msm_hs_driver, uport); |
| if (!ret) { |
| msm_hs_clock_unvote(msm_uport); |
| return ret; |
| } |
| |
| err_clock: |
| msm_hs_clock_unvote(msm_uport); |
| |
| destroy_mutex: |
| mutex_destroy(&msm_uport->clk_mutex); |
| destroy_workqueue(msm_uport->hsuart_wq); |
| |
| put_clk: |
| if (msm_uport->pclk) |
| clk_put(msm_uport->pclk); |
| |
| if (msm_uport->clk) |
| clk_put(msm_uport->clk); |
| |
| deregister_bus_client: |
| if (is_blsp_uart(msm_uport)) |
| msm_bus_scale_unregister_client(msm_uport->bus_perf_client); |
| unmap_memory: |
| iounmap(uport->membase); |
| if (is_blsp_uart(msm_uport)) |
| iounmap(msm_uport->bam_base); |
| |
| return ret; |
| } |
| |
| static int __init msm_serial_hs_init(void) |
| { |
| int ret; |
| int i; |
| |
| /* Init all UARTS as non-configured */ |
| for (i = 0; i < UARTDM_NR; i++) |
| q_uart_port[i].uport.type = PORT_UNKNOWN; |
| |
| ret = uart_register_driver(&msm_hs_driver); |
| if (unlikely(ret)) { |
| printk(KERN_ERR "%s failed to load\n", __FUNCTION__); |
| return ret; |
| } |
| debug_base = debugfs_create_dir("msm_serial_hs", NULL); |
| if (IS_ERR_OR_NULL(debug_base)) |
| pr_info("msm_serial_hs: Cannot create debugfs dir\n"); |
| |
| ret = platform_driver_register(&msm_serial_hs_platform_driver); |
| if (ret) { |
| printk(KERN_ERR "%s failed to load\n", __FUNCTION__); |
| debugfs_remove_recursive(debug_base); |
| uart_unregister_driver(&msm_hs_driver); |
| return ret; |
| } |
| |
| printk(KERN_INFO "msm_serial_hs module loaded\n"); |
| return ret; |
| } |
| |
| /* |
| * Called by the upper layer when port is closed. |
| * - Disables the port |
| * - Unhook the ISR |
| */ |
| static void msm_hs_shutdown(struct uart_port *uport) |
| { |
| int ret; |
| unsigned int data; |
| unsigned long flags; |
| struct msm_hs_port *msm_uport = UARTDM_TO_MSM(uport); |
| struct platform_device *pdev = to_platform_device(uport->dev); |
| const struct msm_serial_hs_platform_data *pdata = |
| pdev->dev.platform_data; |
| struct msm_hs_tx *tx = &msm_uport->tx; |
| struct sps_pipe *sps_pipe_handle = tx->cons.pipe_handle; |
| |
| msm_hs_clock_vote(msm_uport); |
| if (msm_uport->tx.dma_in_flight) { |
| if (!is_blsp_uart(msm_uport)) { |
| spin_lock_irqsave(&uport->lock, flags); |
| /* disable UART TX interface to DM */ |
| data = msm_hs_read(uport, UART_DM_DMEN); |
| data &= ~UARTDM_TX_DM_EN_BMSK; |
| msm_hs_write(uport, UART_DM_DMEN, data); |
| /* turn OFF UART Transmitter */ |
| msm_hs_write(uport, UART_DM_CR, |
| UARTDM_CR_TX_DISABLE_BMSK); |
| /* reset UART TX */ |
| msm_hs_write(uport, UART_DM_CR, RESET_TX); |
| /* reset UART TX Error */ |
| msm_hs_write(uport, UART_DM_CR, RESET_TX_ERROR); |
| msm_uport->tx.flush = FLUSH_STOP; |
| spin_unlock_irqrestore(&uport->lock, flags); |
| /* discard flush */ |
| msm_dmov_flush(msm_uport->dma_tx_channel, 0); |
| ret = wait_event_timeout(msm_uport->tx.wait, |
| msm_uport->tx.flush == FLUSH_SHUTDOWN, 100); |
| if (!ret) |
| pr_err("%s():HSUART TX Stalls.\n", __func__); |
| } else { |
| /* BAM Disconnect for TX */ |
| ret = sps_disconnect(sps_pipe_handle); |
| if (ret) |
| pr_err("%s(): sps_disconnect failed\n", |
| __func__); |
| } |
| } |
| tasklet_kill(&msm_uport->tx.tlet); |
| BUG_ON(msm_uport->rx.flush < FLUSH_STOP); |
| wait_event(msm_uport->rx.wait, msm_uport->rx.flush == FLUSH_SHUTDOWN); |
| tasklet_kill(&msm_uport->rx.tlet); |
| cancel_delayed_work_sync(&msm_uport->rx.flip_insert_work); |
| flush_workqueue(msm_uport->hsuart_wq); |
| pm_runtime_disable(uport->dev); |
| |
| /* Disable the transmitter */ |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_TX_DISABLE_BMSK); |
| /* Disable the receiver */ |
| msm_hs_write(uport, UART_DM_CR, UARTDM_CR_RX_DISABLE_BMSK); |
| |
| msm_uport->imr_reg = 0; |
| msm_hs_write(uport, UART_DM_IMR, msm_uport->imr_reg); |
| /* |
| * Complete all device write before actually disabling uartclk. |
| * Hence mb() requires here. |
| */ |
| mb(); |
| |
| if (msm_uport->clk_state != MSM_HS_CLK_OFF) { |
| /* to balance clk_state */ |
| msm_hs_clock_unvote(msm_uport); |
| wake_unlock(&msm_uport->dma_wake_lock); |
| } |
| msm_hs_clock_unvote(msm_uport); |
| |
| msm_uport->clk_state = MSM_HS_CLK_PORT_OFF; |
| dma_unmap_single(uport->dev, msm_uport->tx.dma_base, |
| UART_XMIT_SIZE, DMA_TO_DEVICE); |
| |
| if (use_low_power_wakeup(msm_uport)) |
| irq_set_irq_wake(msm_uport->wakeup.irq, 0); |
| |
| /* Free the interrupt */ |
| free_irq(uport->irq, msm_uport); |
| if (use_low_power_wakeup(msm_uport)) |
| free_irq(msm_uport->wakeup.irq, msm_uport); |
| |
| if (is_blsp_uart(msm_uport)) { |
| msm_hs_unconfig_uart_gpios(uport); |
| } else { |
| if (pdata && pdata->gpio_config) |
| if (pdata->gpio_config(0)) |
| dev_err(uport->dev, "GPIO config error\n"); |
| } |
| } |
| |
| static void __exit msm_serial_hs_exit(void) |
| { |
| printk(KERN_INFO "msm_serial_hs module removed\n"); |
| debugfs_remove_recursive(debug_base); |
| platform_driver_unregister(&msm_serial_hs_platform_driver); |
| uart_unregister_driver(&msm_hs_driver); |
| } |
| |
| static int msm_hs_runtime_idle(struct device *dev) |
| { |
| /* |
| * returning success from idle results in runtime suspend to be |
| * called |
| */ |
| return 0; |
| } |
| |
| static int msm_hs_runtime_resume(struct device *dev) |
| { |
| struct platform_device *pdev = container_of(dev, struct |
| platform_device, dev); |
| struct msm_hs_port *msm_uport = &q_uart_port[pdev->id]; |
| msm_hs_request_clock_on(&msm_uport->uport); |
| return 0; |
| } |
| |
| static int msm_hs_runtime_suspend(struct device *dev) |
| { |
| struct platform_device *pdev = container_of(dev, struct |
| platform_device, dev); |
| struct msm_hs_port *msm_uport = &q_uart_port[pdev->id]; |
| msm_hs_request_clock_off(&msm_uport->uport); |
| return 0; |
| } |
| |
| static const struct dev_pm_ops msm_hs_dev_pm_ops = { |
| .runtime_suspend = msm_hs_runtime_suspend, |
| .runtime_resume = msm_hs_runtime_resume, |
| .runtime_idle = msm_hs_runtime_idle, |
| }; |
| |
| |
| static struct platform_driver msm_serial_hs_platform_driver = { |
| .probe = msm_hs_probe, |
| .remove = __devexit_p(msm_hs_remove), |
| .driver = { |
| .name = "msm_serial_hs", |
| .pm = &msm_hs_dev_pm_ops, |
| .of_match_table = msm_hs_match_table, |
| }, |
| }; |
| |
| static struct uart_driver msm_hs_driver = { |
| .owner = THIS_MODULE, |
| .driver_name = "msm_serial_hs", |
| .dev_name = "ttyHS", |
| .nr = UARTDM_NR, |
| .cons = 0, |
| }; |
| |
| static struct uart_ops msm_hs_ops = { |
| .tx_empty = msm_hs_tx_empty, |
| .set_mctrl = msm_hs_set_mctrl_locked, |
| .get_mctrl = msm_hs_get_mctrl_locked, |
| .stop_tx = msm_hs_stop_tx_locked, |
| .start_tx = msm_hs_start_tx_locked, |
| .stop_rx = msm_hs_stop_rx_locked, |
| .enable_ms = msm_hs_enable_ms_locked, |
| .break_ctl = msm_hs_break_ctl, |
| .startup = msm_hs_startup, |
| .shutdown = msm_hs_shutdown, |
| .set_termios = msm_hs_set_termios, |
| .type = msm_hs_type, |
| .config_port = msm_hs_config_port, |
| .release_port = msm_hs_release_port, |
| .request_port = msm_hs_request_port, |
| .flush_buffer = msm_hs_flush_buffer, |
| .ioctl = msm_hs_ioctl, |
| }; |
| |
| module_init(msm_serial_hs_init); |
| module_exit(msm_serial_hs_exit); |
| MODULE_DESCRIPTION("High Speed UART Driver for the MSM chipset"); |
| MODULE_VERSION("1.2"); |
| MODULE_LICENSE("GPL v2"); |