| /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */ |
| /* |
| Written/copyright 1999-2001 by Donald Becker. |
| Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com) |
| Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com) |
| Portions copyright 2004 Harald Welte <laforge@gnumonks.org> |
| |
| This software may be used and distributed according to the terms of |
| the GNU General Public License (GPL), incorporated herein by reference. |
| Drivers based on or derived from this code fall under the GPL and must |
| retain the authorship, copyright and license notice. This file is not |
| a complete program and may only be used when the entire operating |
| system is licensed under the GPL. License for under other terms may be |
| available. Contact the original author for details. |
| |
| The original author may be reached as becker@scyld.com, or at |
| Scyld Computing Corporation |
| 410 Severn Ave., Suite 210 |
| Annapolis MD 21403 |
| |
| Support information and updates available at |
| http://www.scyld.com/network/netsemi.html |
| [link no longer provides useful info -jgarzik] |
| |
| |
| TODO: |
| * big endian support with CFG:BEM instead of cpu_to_le32 |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/string.h> |
| #include <linux/timer.h> |
| #include <linux/errno.h> |
| #include <linux/ioport.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/pci.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/ethtool.h> |
| #include <linux/delay.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/mii.h> |
| #include <linux/crc32.h> |
| #include <linux/bitops.h> |
| #include <linux/prefetch.h> |
| #include <asm/processor.h> /* Processor type for cache alignment. */ |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| |
| #define DRV_NAME "natsemi" |
| #define DRV_VERSION "2.1" |
| #define DRV_RELDATE "Sept 11, 2006" |
| |
| #define RX_OFFSET 2 |
| |
| /* Updated to recommendations in pci-skeleton v2.03. */ |
| |
| /* The user-configurable values. |
| These may be modified when a driver module is loaded.*/ |
| |
| #define NATSEMI_DEF_MSG (NETIF_MSG_DRV | \ |
| NETIF_MSG_LINK | \ |
| NETIF_MSG_WOL | \ |
| NETIF_MSG_RX_ERR | \ |
| NETIF_MSG_TX_ERR) |
| static int debug = -1; |
| |
| static int mtu; |
| |
| /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). |
| This chip uses a 512 element hash table based on the Ethernet CRC. */ |
| static const int multicast_filter_limit = 100; |
| |
| /* Set the copy breakpoint for the copy-only-tiny-frames scheme. |
| Setting to > 1518 effectively disables this feature. */ |
| static int rx_copybreak; |
| |
| static int dspcfg_workaround = 1; |
| |
| /* Used to pass the media type, etc. |
| Both 'options[]' and 'full_duplex[]' should exist for driver |
| interoperability. |
| The media type is usually passed in 'options[]'. |
| */ |
| #define MAX_UNITS 8 /* More are supported, limit only on options */ |
| static int options[MAX_UNITS]; |
| static int full_duplex[MAX_UNITS]; |
| |
| /* Operational parameters that are set at compile time. */ |
| |
| /* Keep the ring sizes a power of two for compile efficiency. |
| The compiler will convert <unsigned>'%'<2^N> into a bit mask. |
| Making the Tx ring too large decreases the effectiveness of channel |
| bonding and packet priority. |
| There are no ill effects from too-large receive rings. */ |
| #define TX_RING_SIZE 16 |
| #define TX_QUEUE_LEN 10 /* Limit ring entries actually used, min 4. */ |
| #define RX_RING_SIZE 32 |
| |
| /* Operational parameters that usually are not changed. */ |
| /* Time in jiffies before concluding the transmitter is hung. */ |
| #define TX_TIMEOUT (2*HZ) |
| |
| #define NATSEMI_HW_TIMEOUT 400 |
| #define NATSEMI_TIMER_FREQ 3*HZ |
| #define NATSEMI_PG0_NREGS 64 |
| #define NATSEMI_RFDR_NREGS 8 |
| #define NATSEMI_PG1_NREGS 4 |
| #define NATSEMI_NREGS (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \ |
| NATSEMI_PG1_NREGS) |
| #define NATSEMI_REGS_VER 1 /* v1 added RFDR registers */ |
| #define NATSEMI_REGS_SIZE (NATSEMI_NREGS * sizeof(u32)) |
| |
| /* Buffer sizes: |
| * The nic writes 32-bit values, even if the upper bytes of |
| * a 32-bit value are beyond the end of the buffer. |
| */ |
| #define NATSEMI_HEADERS 22 /* 2*mac,type,vlan,crc */ |
| #define NATSEMI_PADDING 16 /* 2 bytes should be sufficient */ |
| #define NATSEMI_LONGPKT 1518 /* limit for normal packets */ |
| #define NATSEMI_RX_LIMIT 2046 /* maximum supported by hardware */ |
| |
| /* These identify the driver base version and may not be removed. */ |
| static const char version[] __devinitdata = |
| KERN_INFO DRV_NAME " dp8381x driver, version " |
| DRV_VERSION ", " DRV_RELDATE "\n" |
| KERN_INFO " originally by Donald Becker <becker@scyld.com>\n" |
| KERN_INFO " 2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n"; |
| |
| MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); |
| MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver"); |
| MODULE_LICENSE("GPL"); |
| |
| module_param(mtu, int, 0); |
| module_param(debug, int, 0); |
| module_param(rx_copybreak, int, 0); |
| module_param(dspcfg_workaround, int, 1); |
| module_param_array(options, int, NULL, 0); |
| module_param_array(full_duplex, int, NULL, 0); |
| MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)"); |
| MODULE_PARM_DESC(debug, "DP8381x default debug level"); |
| MODULE_PARM_DESC(rx_copybreak, |
| "DP8381x copy breakpoint for copy-only-tiny-frames"); |
| MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround"); |
| MODULE_PARM_DESC(options, |
| "DP8381x: Bits 0-3: media type, bit 17: full duplex"); |
| MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)"); |
| |
| /* |
| Theory of Operation |
| |
| I. Board Compatibility |
| |
| This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC. |
| It also works with other chips in in the DP83810 series. |
| |
| II. Board-specific settings |
| |
| This driver requires the PCI interrupt line to be valid. |
| It honors the EEPROM-set values. |
| |
| III. Driver operation |
| |
| IIIa. Ring buffers |
| |
| This driver uses two statically allocated fixed-size descriptor lists |
| formed into rings by a branch from the final descriptor to the beginning of |
| the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. |
| The NatSemi design uses a 'next descriptor' pointer that the driver forms |
| into a list. |
| |
| IIIb/c. Transmit/Receive Structure |
| |
| This driver uses a zero-copy receive and transmit scheme. |
| The driver allocates full frame size skbuffs for the Rx ring buffers at |
| open() time and passes the skb->data field to the chip as receive data |
| buffers. When an incoming frame is less than RX_COPYBREAK bytes long, |
| a fresh skbuff is allocated and the frame is copied to the new skbuff. |
| When the incoming frame is larger, the skbuff is passed directly up the |
| protocol stack. Buffers consumed this way are replaced by newly allocated |
| skbuffs in a later phase of receives. |
| |
| The RX_COPYBREAK value is chosen to trade-off the memory wasted by |
| using a full-sized skbuff for small frames vs. the copying costs of larger |
| frames. New boards are typically used in generously configured machines |
| and the underfilled buffers have negligible impact compared to the benefit of |
| a single allocation size, so the default value of zero results in never |
| copying packets. When copying is done, the cost is usually mitigated by using |
| a combined copy/checksum routine. Copying also preloads the cache, which is |
| most useful with small frames. |
| |
| A subtle aspect of the operation is that unaligned buffers are not permitted |
| by the hardware. Thus the IP header at offset 14 in an ethernet frame isn't |
| longword aligned for further processing. On copies frames are put into the |
| skbuff at an offset of "+2", 16-byte aligning the IP header. |
| |
| IIId. Synchronization |
| |
| Most operations are synchronized on the np->lock irq spinlock, except the |
| performance critical codepaths: |
| |
| The rx process only runs in the interrupt handler. Access from outside |
| the interrupt handler is only permitted after disable_irq(). |
| |
| The rx process usually runs under the netif_tx_lock. If np->intr_tx_reap |
| is set, then access is permitted under spin_lock_irq(&np->lock). |
| |
| Thus configuration functions that want to access everything must call |
| disable_irq(dev->irq); |
| netif_tx_lock_bh(dev); |
| spin_lock_irq(&np->lock); |
| |
| IV. Notes |
| |
| NatSemi PCI network controllers are very uncommon. |
| |
| IVb. References |
| |
| http://www.scyld.com/expert/100mbps.html |
| http://www.scyld.com/expert/NWay.html |
| Datasheet is available from: |
| http://www.national.com/pf/DP/DP83815.html |
| |
| IVc. Errata |
| |
| None characterised. |
| */ |
| |
| |
| |
| /* |
| * Support for fibre connections on Am79C874: |
| * This phy needs a special setup when connected to a fibre cable. |
| * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf |
| */ |
| #define PHYID_AM79C874 0x0022561b |
| |
| enum { |
| MII_MCTRL = 0x15, /* mode control register */ |
| MII_FX_SEL = 0x0001, /* 100BASE-FX (fiber) */ |
| MII_EN_SCRM = 0x0004, /* enable scrambler (tp) */ |
| }; |
| |
| enum { |
| NATSEMI_FLAG_IGNORE_PHY = 0x1, |
| }; |
| |
| /* array of board data directly indexed by pci_tbl[x].driver_data */ |
| static const struct { |
| const char *name; |
| unsigned long flags; |
| unsigned int eeprom_size; |
| } natsemi_pci_info[] __devinitdata = { |
| { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 }, |
| { "NatSemi DP8381[56]", 0, 24 }, |
| }; |
| |
| static const struct pci_device_id natsemi_pci_tbl[] __devinitdata = { |
| { PCI_VENDOR_ID_NS, 0x0020, 0x12d9, 0x000c, 0, 0, 0 }, |
| { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, |
| { } /* terminate list */ |
| }; |
| MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl); |
| |
| /* Offsets to the device registers. |
| Unlike software-only systems, device drivers interact with complex hardware. |
| It's not useful to define symbolic names for every register bit in the |
| device. |
| */ |
| enum register_offsets { |
| ChipCmd = 0x00, |
| ChipConfig = 0x04, |
| EECtrl = 0x08, |
| PCIBusCfg = 0x0C, |
| IntrStatus = 0x10, |
| IntrMask = 0x14, |
| IntrEnable = 0x18, |
| IntrHoldoff = 0x1C, /* DP83816 only */ |
| TxRingPtr = 0x20, |
| TxConfig = 0x24, |
| RxRingPtr = 0x30, |
| RxConfig = 0x34, |
| ClkRun = 0x3C, |
| WOLCmd = 0x40, |
| PauseCmd = 0x44, |
| RxFilterAddr = 0x48, |
| RxFilterData = 0x4C, |
| BootRomAddr = 0x50, |
| BootRomData = 0x54, |
| SiliconRev = 0x58, |
| StatsCtrl = 0x5C, |
| StatsData = 0x60, |
| RxPktErrs = 0x60, |
| RxMissed = 0x68, |
| RxCRCErrs = 0x64, |
| BasicControl = 0x80, |
| BasicStatus = 0x84, |
| AnegAdv = 0x90, |
| AnegPeer = 0x94, |
| PhyStatus = 0xC0, |
| MIntrCtrl = 0xC4, |
| MIntrStatus = 0xC8, |
| PhyCtrl = 0xE4, |
| |
| /* These are from the spec, around page 78... on a separate table. |
| * The meaning of these registers depend on the value of PGSEL. */ |
| PGSEL = 0xCC, |
| PMDCSR = 0xE4, |
| TSTDAT = 0xFC, |
| DSPCFG = 0xF4, |
| SDCFG = 0xF8 |
| }; |
| /* the values for the 'magic' registers above (PGSEL=1) */ |
| #define PMDCSR_VAL 0x189c /* enable preferred adaptation circuitry */ |
| #define TSTDAT_VAL 0x0 |
| #define DSPCFG_VAL 0x5040 |
| #define SDCFG_VAL 0x008c /* set voltage thresholds for Signal Detect */ |
| #define DSPCFG_LOCK 0x20 /* coefficient lock bit in DSPCFG */ |
| #define DSPCFG_COEF 0x1000 /* see coefficient (in TSTDAT) bit in DSPCFG */ |
| #define TSTDAT_FIXED 0xe8 /* magic number for bad coefficients */ |
| |
| /* misc PCI space registers */ |
| enum pci_register_offsets { |
| PCIPM = 0x44, |
| }; |
| |
| enum ChipCmd_bits { |
| ChipReset = 0x100, |
| RxReset = 0x20, |
| TxReset = 0x10, |
| RxOff = 0x08, |
| RxOn = 0x04, |
| TxOff = 0x02, |
| TxOn = 0x01, |
| }; |
| |
| enum ChipConfig_bits { |
| CfgPhyDis = 0x200, |
| CfgPhyRst = 0x400, |
| CfgExtPhy = 0x1000, |
| CfgAnegEnable = 0x2000, |
| CfgAneg100 = 0x4000, |
| CfgAnegFull = 0x8000, |
| CfgAnegDone = 0x8000000, |
| CfgFullDuplex = 0x20000000, |
| CfgSpeed100 = 0x40000000, |
| CfgLink = 0x80000000, |
| }; |
| |
| enum EECtrl_bits { |
| EE_ShiftClk = 0x04, |
| EE_DataIn = 0x01, |
| EE_ChipSelect = 0x08, |
| EE_DataOut = 0x02, |
| MII_Data = 0x10, |
| MII_Write = 0x20, |
| MII_ShiftClk = 0x40, |
| }; |
| |
| enum PCIBusCfg_bits { |
| EepromReload = 0x4, |
| }; |
| |
| /* Bits in the interrupt status/mask registers. */ |
| enum IntrStatus_bits { |
| IntrRxDone = 0x0001, |
| IntrRxIntr = 0x0002, |
| IntrRxErr = 0x0004, |
| IntrRxEarly = 0x0008, |
| IntrRxIdle = 0x0010, |
| IntrRxOverrun = 0x0020, |
| IntrTxDone = 0x0040, |
| IntrTxIntr = 0x0080, |
| IntrTxErr = 0x0100, |
| IntrTxIdle = 0x0200, |
| IntrTxUnderrun = 0x0400, |
| StatsMax = 0x0800, |
| SWInt = 0x1000, |
| WOLPkt = 0x2000, |
| LinkChange = 0x4000, |
| IntrHighBits = 0x8000, |
| RxStatusFIFOOver = 0x10000, |
| IntrPCIErr = 0xf00000, |
| RxResetDone = 0x1000000, |
| TxResetDone = 0x2000000, |
| IntrAbnormalSummary = 0xCD20, |
| }; |
| |
| /* |
| * Default Interrupts: |
| * Rx OK, Rx Packet Error, Rx Overrun, |
| * Tx OK, Tx Packet Error, Tx Underrun, |
| * MIB Service, Phy Interrupt, High Bits, |
| * Rx Status FIFO overrun, |
| * Received Target Abort, Received Master Abort, |
| * Signalled System Error, Received Parity Error |
| */ |
| #define DEFAULT_INTR 0x00f1cd65 |
| |
| enum TxConfig_bits { |
| TxDrthMask = 0x3f, |
| TxFlthMask = 0x3f00, |
| TxMxdmaMask = 0x700000, |
| TxMxdma_512 = 0x0, |
| TxMxdma_4 = 0x100000, |
| TxMxdma_8 = 0x200000, |
| TxMxdma_16 = 0x300000, |
| TxMxdma_32 = 0x400000, |
| TxMxdma_64 = 0x500000, |
| TxMxdma_128 = 0x600000, |
| TxMxdma_256 = 0x700000, |
| TxCollRetry = 0x800000, |
| TxAutoPad = 0x10000000, |
| TxMacLoop = 0x20000000, |
| TxHeartIgn = 0x40000000, |
| TxCarrierIgn = 0x80000000 |
| }; |
| |
| /* |
| * Tx Configuration: |
| * - 256 byte DMA burst length |
| * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free) |
| * - 64 bytes initial drain threshold (i.e. begin actual transmission |
| * when 64 byte are in the fifo) |
| * - on tx underruns, increase drain threshold by 64. |
| * - at most use a drain threshold of 1472 bytes: The sum of the fill |
| * threshold and the drain threshold must be less than 2016 bytes. |
| * |
| */ |
| #define TX_FLTH_VAL ((512/32) << 8) |
| #define TX_DRTH_VAL_START (64/32) |
| #define TX_DRTH_VAL_INC 2 |
| #define TX_DRTH_VAL_LIMIT (1472/32) |
| |
| enum RxConfig_bits { |
| RxDrthMask = 0x3e, |
| RxMxdmaMask = 0x700000, |
| RxMxdma_512 = 0x0, |
| RxMxdma_4 = 0x100000, |
| RxMxdma_8 = 0x200000, |
| RxMxdma_16 = 0x300000, |
| RxMxdma_32 = 0x400000, |
| RxMxdma_64 = 0x500000, |
| RxMxdma_128 = 0x600000, |
| RxMxdma_256 = 0x700000, |
| RxAcceptLong = 0x8000000, |
| RxAcceptTx = 0x10000000, |
| RxAcceptRunt = 0x40000000, |
| RxAcceptErr = 0x80000000 |
| }; |
| #define RX_DRTH_VAL (128/8) |
| |
| enum ClkRun_bits { |
| PMEEnable = 0x100, |
| PMEStatus = 0x8000, |
| }; |
| |
| enum WolCmd_bits { |
| WakePhy = 0x1, |
| WakeUnicast = 0x2, |
| WakeMulticast = 0x4, |
| WakeBroadcast = 0x8, |
| WakeArp = 0x10, |
| WakePMatch0 = 0x20, |
| WakePMatch1 = 0x40, |
| WakePMatch2 = 0x80, |
| WakePMatch3 = 0x100, |
| WakeMagic = 0x200, |
| WakeMagicSecure = 0x400, |
| SecureHack = 0x100000, |
| WokePhy = 0x400000, |
| WokeUnicast = 0x800000, |
| WokeMulticast = 0x1000000, |
| WokeBroadcast = 0x2000000, |
| WokeArp = 0x4000000, |
| WokePMatch0 = 0x8000000, |
| WokePMatch1 = 0x10000000, |
| WokePMatch2 = 0x20000000, |
| WokePMatch3 = 0x40000000, |
| WokeMagic = 0x80000000, |
| WakeOptsSummary = 0x7ff |
| }; |
| |
| enum RxFilterAddr_bits { |
| RFCRAddressMask = 0x3ff, |
| AcceptMulticast = 0x00200000, |
| AcceptMyPhys = 0x08000000, |
| AcceptAllPhys = 0x10000000, |
| AcceptAllMulticast = 0x20000000, |
| AcceptBroadcast = 0x40000000, |
| RxFilterEnable = 0x80000000 |
| }; |
| |
| enum StatsCtrl_bits { |
| StatsWarn = 0x1, |
| StatsFreeze = 0x2, |
| StatsClear = 0x4, |
| StatsStrobe = 0x8, |
| }; |
| |
| enum MIntrCtrl_bits { |
| MICRIntEn = 0x2, |
| }; |
| |
| enum PhyCtrl_bits { |
| PhyAddrMask = 0x1f, |
| }; |
| |
| #define PHY_ADDR_NONE 32 |
| #define PHY_ADDR_INTERNAL 1 |
| |
| /* values we might find in the silicon revision register */ |
| #define SRR_DP83815_C 0x0302 |
| #define SRR_DP83815_D 0x0403 |
| #define SRR_DP83816_A4 0x0504 |
| #define SRR_DP83816_A5 0x0505 |
| |
| /* The Rx and Tx buffer descriptors. */ |
| /* Note that using only 32 bit fields simplifies conversion to big-endian |
| architectures. */ |
| struct netdev_desc { |
| u32 next_desc; |
| s32 cmd_status; |
| u32 addr; |
| u32 software_use; |
| }; |
| |
| /* Bits in network_desc.status */ |
| enum desc_status_bits { |
| DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000, |
| DescNoCRC=0x10000000, DescPktOK=0x08000000, |
| DescSizeMask=0xfff, |
| |
| DescTxAbort=0x04000000, DescTxFIFO=0x02000000, |
| DescTxCarrier=0x01000000, DescTxDefer=0x00800000, |
| DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000, |
| DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000, |
| |
| DescRxAbort=0x04000000, DescRxOver=0x02000000, |
| DescRxDest=0x01800000, DescRxLong=0x00400000, |
| DescRxRunt=0x00200000, DescRxInvalid=0x00100000, |
| DescRxCRC=0x00080000, DescRxAlign=0x00040000, |
| DescRxLoop=0x00020000, DesRxColl=0x00010000, |
| }; |
| |
| struct netdev_private { |
| /* Descriptor rings first for alignment */ |
| dma_addr_t ring_dma; |
| struct netdev_desc *rx_ring; |
| struct netdev_desc *tx_ring; |
| /* The addresses of receive-in-place skbuffs */ |
| struct sk_buff *rx_skbuff[RX_RING_SIZE]; |
| dma_addr_t rx_dma[RX_RING_SIZE]; |
| /* address of a sent-in-place packet/buffer, for later free() */ |
| struct sk_buff *tx_skbuff[TX_RING_SIZE]; |
| dma_addr_t tx_dma[TX_RING_SIZE]; |
| struct net_device_stats stats; |
| /* Media monitoring timer */ |
| struct timer_list timer; |
| /* Frequently used values: keep some adjacent for cache effect */ |
| struct pci_dev *pci_dev; |
| struct netdev_desc *rx_head_desc; |
| /* Producer/consumer ring indices */ |
| unsigned int cur_rx, dirty_rx; |
| unsigned int cur_tx, dirty_tx; |
| /* Based on MTU+slack. */ |
| unsigned int rx_buf_sz; |
| int oom; |
| /* Interrupt status */ |
| u32 intr_status; |
| /* Do not touch the nic registers */ |
| int hands_off; |
| /* Don't pay attention to the reported link state. */ |
| int ignore_phy; |
| /* external phy that is used: only valid if dev->if_port != PORT_TP */ |
| int mii; |
| int phy_addr_external; |
| unsigned int full_duplex; |
| /* Rx filter */ |
| u32 cur_rx_mode; |
| u32 rx_filter[16]; |
| /* FIFO and PCI burst thresholds */ |
| u32 tx_config, rx_config; |
| /* original contents of ClkRun register */ |
| u32 SavedClkRun; |
| /* silicon revision */ |
| u32 srr; |
| /* expected DSPCFG value */ |
| u16 dspcfg; |
| int dspcfg_workaround; |
| /* parms saved in ethtool format */ |
| u16 speed; /* The forced speed, 10Mb, 100Mb, gigabit */ |
| u8 duplex; /* Duplex, half or full */ |
| u8 autoneg; /* Autonegotiation enabled */ |
| /* MII transceiver section */ |
| u16 advertising; |
| unsigned int iosize; |
| spinlock_t lock; |
| u32 msg_enable; |
| /* EEPROM data */ |
| int eeprom_size; |
| }; |
| |
| static void move_int_phy(struct net_device *dev, int addr); |
| static int eeprom_read(void __iomem *ioaddr, int location); |
| static int mdio_read(struct net_device *dev, int reg); |
| static void mdio_write(struct net_device *dev, int reg, u16 data); |
| static void init_phy_fixup(struct net_device *dev); |
| static int miiport_read(struct net_device *dev, int phy_id, int reg); |
| static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data); |
| static int find_mii(struct net_device *dev); |
| static void natsemi_reset(struct net_device *dev); |
| static void natsemi_reload_eeprom(struct net_device *dev); |
| static void natsemi_stop_rxtx(struct net_device *dev); |
| static int netdev_open(struct net_device *dev); |
| static void do_cable_magic(struct net_device *dev); |
| static void undo_cable_magic(struct net_device *dev); |
| static void check_link(struct net_device *dev); |
| static void netdev_timer(unsigned long data); |
| static void dump_ring(struct net_device *dev); |
| static void tx_timeout(struct net_device *dev); |
| static int alloc_ring(struct net_device *dev); |
| static void refill_rx(struct net_device *dev); |
| static void init_ring(struct net_device *dev); |
| static void drain_tx(struct net_device *dev); |
| static void drain_ring(struct net_device *dev); |
| static void free_ring(struct net_device *dev); |
| static void reinit_ring(struct net_device *dev); |
| static void init_registers(struct net_device *dev); |
| static int start_tx(struct sk_buff *skb, struct net_device *dev); |
| static irqreturn_t intr_handler(int irq, void *dev_instance); |
| static void netdev_error(struct net_device *dev, int intr_status); |
| static int natsemi_poll(struct net_device *dev, int *budget); |
| static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do); |
| static void netdev_tx_done(struct net_device *dev); |
| static int natsemi_change_mtu(struct net_device *dev, int new_mtu); |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void natsemi_poll_controller(struct net_device *dev); |
| #endif |
| static void __set_rx_mode(struct net_device *dev); |
| static void set_rx_mode(struct net_device *dev); |
| static void __get_stats(struct net_device *dev); |
| static struct net_device_stats *get_stats(struct net_device *dev); |
| static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); |
| static int netdev_set_wol(struct net_device *dev, u32 newval); |
| static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur); |
| static int netdev_set_sopass(struct net_device *dev, u8 *newval); |
| static int netdev_get_sopass(struct net_device *dev, u8 *data); |
| static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd); |
| static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd); |
| static void enable_wol_mode(struct net_device *dev, int enable_intr); |
| static int netdev_close(struct net_device *dev); |
| static int netdev_get_regs(struct net_device *dev, u8 *buf); |
| static int netdev_get_eeprom(struct net_device *dev, u8 *buf); |
| static const struct ethtool_ops ethtool_ops; |
| |
| #define NATSEMI_ATTR(_name) \ |
| static ssize_t natsemi_show_##_name(struct device *dev, \ |
| struct device_attribute *attr, char *buf); \ |
| static ssize_t natsemi_set_##_name(struct device *dev, \ |
| struct device_attribute *attr, \ |
| const char *buf, size_t count); \ |
| static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name) |
| |
| #define NATSEMI_CREATE_FILE(_dev, _name) \ |
| device_create_file(&_dev->dev, &dev_attr_##_name) |
| #define NATSEMI_REMOVE_FILE(_dev, _name) \ |
| device_create_file(&_dev->dev, &dev_attr_##_name) |
| |
| NATSEMI_ATTR(dspcfg_workaround); |
| |
| static ssize_t natsemi_show_dspcfg_workaround(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct netdev_private *np = netdev_priv(to_net_dev(dev)); |
| |
| return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off"); |
| } |
| |
| static ssize_t natsemi_set_dspcfg_workaround(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, size_t count) |
| { |
| struct netdev_private *np = netdev_priv(to_net_dev(dev)); |
| int new_setting; |
| unsigned long flags; |
| |
| /* Find out the new setting */ |
| if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1)) |
| new_setting = 1; |
| else if (!strncmp("off", buf, count - 1) |
| || !strncmp("0", buf, count - 1)) |
| new_setting = 0; |
| else |
| return count; |
| |
| spin_lock_irqsave(&np->lock, flags); |
| |
| np->dspcfg_workaround = new_setting; |
| |
| spin_unlock_irqrestore(&np->lock, flags); |
| |
| return count; |
| } |
| |
| static inline void __iomem *ns_ioaddr(struct net_device *dev) |
| { |
| return (void __iomem *) dev->base_addr; |
| } |
| |
| static inline void natsemi_irq_enable(struct net_device *dev) |
| { |
| writel(1, ns_ioaddr(dev) + IntrEnable); |
| readl(ns_ioaddr(dev) + IntrEnable); |
| } |
| |
| static inline void natsemi_irq_disable(struct net_device *dev) |
| { |
| writel(0, ns_ioaddr(dev) + IntrEnable); |
| readl(ns_ioaddr(dev) + IntrEnable); |
| } |
| |
| static void move_int_phy(struct net_device *dev, int addr) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| int target = 31; |
| |
| /* |
| * The internal phy is visible on the external mii bus. Therefore we must |
| * move it away before we can send commands to an external phy. |
| * There are two addresses we must avoid: |
| * - the address on the external phy that is used for transmission. |
| * - the address that we want to access. User space can access phys |
| * on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the |
| * phy that is used for transmission. |
| */ |
| |
| if (target == addr) |
| target--; |
| if (target == np->phy_addr_external) |
| target--; |
| writew(target, ioaddr + PhyCtrl); |
| readw(ioaddr + PhyCtrl); |
| udelay(1); |
| } |
| |
| static void __devinit natsemi_init_media (struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| u32 tmp; |
| |
| if (np->ignore_phy) |
| netif_carrier_on(dev); |
| else |
| netif_carrier_off(dev); |
| |
| /* get the initial settings from hardware */ |
| tmp = mdio_read(dev, MII_BMCR); |
| np->speed = (tmp & BMCR_SPEED100)? SPEED_100 : SPEED_10; |
| np->duplex = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL : DUPLEX_HALF; |
| np->autoneg = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE; |
| np->advertising= mdio_read(dev, MII_ADVERTISE); |
| |
| if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL |
| && netif_msg_probe(np)) { |
| printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s " |
| "10%s %s duplex.\n", |
| pci_name(np->pci_dev), |
| (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)? |
| "enabled, advertise" : "disabled, force", |
| (np->advertising & |
| (ADVERTISE_100FULL|ADVERTISE_100HALF))? |
| "0" : "", |
| (np->advertising & |
| (ADVERTISE_100FULL|ADVERTISE_10FULL))? |
| "full" : "half"); |
| } |
| if (netif_msg_probe(np)) |
| printk(KERN_INFO |
| "natsemi %s: Transceiver status %#04x advertising %#04x.\n", |
| pci_name(np->pci_dev), mdio_read(dev, MII_BMSR), |
| np->advertising); |
| |
| } |
| |
| static int __devinit natsemi_probe1 (struct pci_dev *pdev, |
| const struct pci_device_id *ent) |
| { |
| struct net_device *dev; |
| struct netdev_private *np; |
| int i, option, irq, chip_idx = ent->driver_data; |
| static int find_cnt = -1; |
| unsigned long iostart, iosize; |
| void __iomem *ioaddr; |
| const int pcibar = 1; /* PCI base address register */ |
| int prev_eedata; |
| u32 tmp; |
| |
| /* when built into the kernel, we only print version if device is found */ |
| #ifndef MODULE |
| static int printed_version; |
| if (!printed_version++) |
| printk(version); |
| #endif |
| |
| i = pci_enable_device(pdev); |
| if (i) return i; |
| |
| /* natsemi has a non-standard PM control register |
| * in PCI config space. Some boards apparently need |
| * to be brought to D0 in this manner. |
| */ |
| pci_read_config_dword(pdev, PCIPM, &tmp); |
| if (tmp & PCI_PM_CTRL_STATE_MASK) { |
| /* D0 state, disable PME assertion */ |
| u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK; |
| pci_write_config_dword(pdev, PCIPM, newtmp); |
| } |
| |
| find_cnt++; |
| iostart = pci_resource_start(pdev, pcibar); |
| iosize = pci_resource_len(pdev, pcibar); |
| irq = pdev->irq; |
| |
| pci_set_master(pdev); |
| |
| dev = alloc_etherdev(sizeof (struct netdev_private)); |
| if (!dev) |
| return -ENOMEM; |
| SET_MODULE_OWNER(dev); |
| SET_NETDEV_DEV(dev, &pdev->dev); |
| |
| i = pci_request_regions(pdev, DRV_NAME); |
| if (i) |
| goto err_pci_request_regions; |
| |
| ioaddr = ioremap(iostart, iosize); |
| if (!ioaddr) { |
| i = -ENOMEM; |
| goto err_ioremap; |
| } |
| |
| /* Work around the dropped serial bit. */ |
| prev_eedata = eeprom_read(ioaddr, 6); |
| for (i = 0; i < 3; i++) { |
| int eedata = eeprom_read(ioaddr, i + 7); |
| dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15); |
| dev->dev_addr[i*2+1] = eedata >> 7; |
| prev_eedata = eedata; |
| } |
| |
| dev->base_addr = (unsigned long __force) ioaddr; |
| dev->irq = irq; |
| |
| np = netdev_priv(dev); |
| |
| np->pci_dev = pdev; |
| pci_set_drvdata(pdev, dev); |
| np->iosize = iosize; |
| spin_lock_init(&np->lock); |
| np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG; |
| np->hands_off = 0; |
| np->intr_status = 0; |
| np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size; |
| if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY) |
| np->ignore_phy = 1; |
| else |
| np->ignore_phy = 0; |
| np->dspcfg_workaround = dspcfg_workaround; |
| |
| /* Initial port: |
| * - If configured to ignore the PHY set up for external. |
| * - If the nic was configured to use an external phy and if find_mii |
| * finds a phy: use external port, first phy that replies. |
| * - Otherwise: internal port. |
| * Note that the phy address for the internal phy doesn't matter: |
| * The address would be used to access a phy over the mii bus, but |
| * the internal phy is accessed through mapped registers. |
| */ |
| if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy) |
| dev->if_port = PORT_MII; |
| else |
| dev->if_port = PORT_TP; |
| /* Reset the chip to erase previous misconfiguration. */ |
| natsemi_reload_eeprom(dev); |
| natsemi_reset(dev); |
| |
| if (dev->if_port != PORT_TP) { |
| np->phy_addr_external = find_mii(dev); |
| /* If we're ignoring the PHY it doesn't matter if we can't |
| * find one. */ |
| if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) { |
| dev->if_port = PORT_TP; |
| np->phy_addr_external = PHY_ADDR_INTERNAL; |
| } |
| } else { |
| np->phy_addr_external = PHY_ADDR_INTERNAL; |
| } |
| |
| option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; |
| if (dev->mem_start) |
| option = dev->mem_start; |
| |
| /* The lower four bits are the media type. */ |
| if (option) { |
| if (option & 0x200) |
| np->full_duplex = 1; |
| if (option & 15) |
| printk(KERN_INFO |
| "natsemi %s: ignoring user supplied media type %d", |
| pci_name(np->pci_dev), option & 15); |
| } |
| if (find_cnt < MAX_UNITS && full_duplex[find_cnt]) |
| np->full_duplex = 1; |
| |
| /* The chip-specific entries in the device structure. */ |
| dev->open = &netdev_open; |
| dev->hard_start_xmit = &start_tx; |
| dev->stop = &netdev_close; |
| dev->get_stats = &get_stats; |
| dev->set_multicast_list = &set_rx_mode; |
| dev->change_mtu = &natsemi_change_mtu; |
| dev->do_ioctl = &netdev_ioctl; |
| dev->tx_timeout = &tx_timeout; |
| dev->watchdog_timeo = TX_TIMEOUT; |
| dev->poll = natsemi_poll; |
| dev->weight = 64; |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| dev->poll_controller = &natsemi_poll_controller; |
| #endif |
| SET_ETHTOOL_OPS(dev, ðtool_ops); |
| |
| if (mtu) |
| dev->mtu = mtu; |
| |
| natsemi_init_media(dev); |
| |
| /* save the silicon revision for later querying */ |
| np->srr = readl(ioaddr + SiliconRev); |
| if (netif_msg_hw(np)) |
| printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n", |
| pci_name(np->pci_dev), np->srr); |
| |
| i = register_netdev(dev); |
| if (i) |
| goto err_register_netdev; |
| |
| if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround)) |
| goto err_create_file; |
| |
| if (netif_msg_drv(np)) { |
| printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ", |
| dev->name, natsemi_pci_info[chip_idx].name, iostart, |
| pci_name(np->pci_dev)); |
| for (i = 0; i < ETH_ALEN-1; i++) |
| printk("%02x:", dev->dev_addr[i]); |
| printk("%02x, IRQ %d", dev->dev_addr[i], irq); |
| if (dev->if_port == PORT_TP) |
| printk(", port TP.\n"); |
| else if (np->ignore_phy) |
| printk(", port MII, ignoring PHY\n"); |
| else |
| printk(", port MII, phy ad %d.\n", np->phy_addr_external); |
| } |
| return 0; |
| |
| err_create_file: |
| unregister_netdev(dev); |
| |
| err_register_netdev: |
| iounmap(ioaddr); |
| |
| err_ioremap: |
| pci_release_regions(pdev); |
| pci_set_drvdata(pdev, NULL); |
| |
| err_pci_request_regions: |
| free_netdev(dev); |
| return i; |
| } |
| |
| |
| /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. |
| The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */ |
| |
| /* Delay between EEPROM clock transitions. |
| No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need |
| a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that |
| made udelay() unreliable. |
| The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is |
| depricated. |
| */ |
| #define eeprom_delay(ee_addr) readl(ee_addr) |
| |
| #define EE_Write0 (EE_ChipSelect) |
| #define EE_Write1 (EE_ChipSelect | EE_DataIn) |
| |
| /* The EEPROM commands include the alway-set leading bit. */ |
| enum EEPROM_Cmds { |
| EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6), |
| }; |
| |
| static int eeprom_read(void __iomem *addr, int location) |
| { |
| int i; |
| int retval = 0; |
| void __iomem *ee_addr = addr + EECtrl; |
| int read_cmd = location | EE_ReadCmd; |
| |
| writel(EE_Write0, ee_addr); |
| |
| /* Shift the read command bits out. */ |
| for (i = 10; i >= 0; i--) { |
| short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0; |
| writel(dataval, ee_addr); |
| eeprom_delay(ee_addr); |
| writel(dataval | EE_ShiftClk, ee_addr); |
| eeprom_delay(ee_addr); |
| } |
| writel(EE_ChipSelect, ee_addr); |
| eeprom_delay(ee_addr); |
| |
| for (i = 0; i < 16; i++) { |
| writel(EE_ChipSelect | EE_ShiftClk, ee_addr); |
| eeprom_delay(ee_addr); |
| retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0; |
| writel(EE_ChipSelect, ee_addr); |
| eeprom_delay(ee_addr); |
| } |
| |
| /* Terminate the EEPROM access. */ |
| writel(EE_Write0, ee_addr); |
| writel(0, ee_addr); |
| return retval; |
| } |
| |
| /* MII transceiver control section. |
| * The 83815 series has an internal transceiver, and we present the |
| * internal management registers as if they were MII connected. |
| * External Phy registers are referenced through the MII interface. |
| */ |
| |
| /* clock transitions >= 20ns (25MHz) |
| * One readl should be good to PCI @ 100MHz |
| */ |
| #define mii_delay(ioaddr) readl(ioaddr + EECtrl) |
| |
| static int mii_getbit (struct net_device *dev) |
| { |
| int data; |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| |
| writel(MII_ShiftClk, ioaddr + EECtrl); |
| data = readl(ioaddr + EECtrl); |
| writel(0, ioaddr + EECtrl); |
| mii_delay(ioaddr); |
| return (data & MII_Data)? 1 : 0; |
| } |
| |
| static void mii_send_bits (struct net_device *dev, u32 data, int len) |
| { |
| u32 i; |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| |
| for (i = (1 << (len-1)); i; i >>= 1) |
| { |
| u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0); |
| writel(mdio_val, ioaddr + EECtrl); |
| mii_delay(ioaddr); |
| writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl); |
| mii_delay(ioaddr); |
| } |
| writel(0, ioaddr + EECtrl); |
| mii_delay(ioaddr); |
| } |
| |
| static int miiport_read(struct net_device *dev, int phy_id, int reg) |
| { |
| u32 cmd; |
| int i; |
| u32 retval = 0; |
| |
| /* Ensure sync */ |
| mii_send_bits (dev, 0xffffffff, 32); |
| /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ |
| /* ST,OP = 0110'b for read operation */ |
| cmd = (0x06 << 10) | (phy_id << 5) | reg; |
| mii_send_bits (dev, cmd, 14); |
| /* Turnaround */ |
| if (mii_getbit (dev)) |
| return 0; |
| /* Read data */ |
| for (i = 0; i < 16; i++) { |
| retval <<= 1; |
| retval |= mii_getbit (dev); |
| } |
| /* End cycle */ |
| mii_getbit (dev); |
| return retval; |
| } |
| |
| static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data) |
| { |
| u32 cmd; |
| |
| /* Ensure sync */ |
| mii_send_bits (dev, 0xffffffff, 32); |
| /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ |
| /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ |
| cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data; |
| mii_send_bits (dev, cmd, 32); |
| /* End cycle */ |
| mii_getbit (dev); |
| } |
| |
| static int mdio_read(struct net_device *dev, int reg) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| |
| /* The 83815 series has two ports: |
| * - an internal transceiver |
| * - an external mii bus |
| */ |
| if (dev->if_port == PORT_TP) |
| return readw(ioaddr+BasicControl+(reg<<2)); |
| else |
| return miiport_read(dev, np->phy_addr_external, reg); |
| } |
| |
| static void mdio_write(struct net_device *dev, int reg, u16 data) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| |
| /* The 83815 series has an internal transceiver; handle separately */ |
| if (dev->if_port == PORT_TP) |
| writew(data, ioaddr+BasicControl+(reg<<2)); |
| else |
| miiport_write(dev, np->phy_addr_external, reg, data); |
| } |
| |
| static void init_phy_fixup(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| int i; |
| u32 cfg; |
| u16 tmp; |
| |
| /* restore stuff lost when power was out */ |
| tmp = mdio_read(dev, MII_BMCR); |
| if (np->autoneg == AUTONEG_ENABLE) { |
| /* renegotiate if something changed */ |
| if ((tmp & BMCR_ANENABLE) == 0 |
| || np->advertising != mdio_read(dev, MII_ADVERTISE)) |
| { |
| /* turn on autonegotiation and force negotiation */ |
| tmp |= (BMCR_ANENABLE | BMCR_ANRESTART); |
| mdio_write(dev, MII_ADVERTISE, np->advertising); |
| } |
| } else { |
| /* turn off auto negotiation, set speed and duplexity */ |
| tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX); |
| if (np->speed == SPEED_100) |
| tmp |= BMCR_SPEED100; |
| if (np->duplex == DUPLEX_FULL) |
| tmp |= BMCR_FULLDPLX; |
| /* |
| * Note: there is no good way to inform the link partner |
| * that our capabilities changed. The user has to unplug |
| * and replug the network cable after some changes, e.g. |
| * after switching from 10HD, autoneg off to 100 HD, |
| * autoneg off. |
| */ |
| } |
| mdio_write(dev, MII_BMCR, tmp); |
| readl(ioaddr + ChipConfig); |
| udelay(1); |
| |
| /* find out what phy this is */ |
| np->mii = (mdio_read(dev, MII_PHYSID1) << 16) |
| + mdio_read(dev, MII_PHYSID2); |
| |
| /* handle external phys here */ |
| switch (np->mii) { |
| case PHYID_AM79C874: |
| /* phy specific configuration for fibre/tp operation */ |
| tmp = mdio_read(dev, MII_MCTRL); |
| tmp &= ~(MII_FX_SEL | MII_EN_SCRM); |
| if (dev->if_port == PORT_FIBRE) |
| tmp |= MII_FX_SEL; |
| else |
| tmp |= MII_EN_SCRM; |
| mdio_write(dev, MII_MCTRL, tmp); |
| break; |
| default: |
| break; |
| } |
| cfg = readl(ioaddr + ChipConfig); |
| if (cfg & CfgExtPhy) |
| return; |
| |
| /* On page 78 of the spec, they recommend some settings for "optimum |
| performance" to be done in sequence. These settings optimize some |
| of the 100Mbit autodetection circuitry. They say we only want to |
| do this for rev C of the chip, but engineers at NSC (Bradley |
| Kennedy) recommends always setting them. If you don't, you get |
| errors on some autonegotiations that make the device unusable. |
| |
| It seems that the DSP needs a few usec to reinitialize after |
| the start of the phy. Just retry writing these values until they |
| stick. |
| */ |
| for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { |
| |
| int dspcfg; |
| writew(1, ioaddr + PGSEL); |
| writew(PMDCSR_VAL, ioaddr + PMDCSR); |
| writew(TSTDAT_VAL, ioaddr + TSTDAT); |
| np->dspcfg = (np->srr <= SRR_DP83815_C)? |
| DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG)); |
| writew(np->dspcfg, ioaddr + DSPCFG); |
| writew(SDCFG_VAL, ioaddr + SDCFG); |
| writew(0, ioaddr + PGSEL); |
| readl(ioaddr + ChipConfig); |
| udelay(10); |
| |
| writew(1, ioaddr + PGSEL); |
| dspcfg = readw(ioaddr + DSPCFG); |
| writew(0, ioaddr + PGSEL); |
| if (np->dspcfg == dspcfg) |
| break; |
| } |
| |
| if (netif_msg_link(np)) { |
| if (i==NATSEMI_HW_TIMEOUT) { |
| printk(KERN_INFO |
| "%s: DSPCFG mismatch after retrying for %d usec.\n", |
| dev->name, i*10); |
| } else { |
| printk(KERN_INFO |
| "%s: DSPCFG accepted after %d usec.\n", |
| dev->name, i*10); |
| } |
| } |
| /* |
| * Enable PHY Specific event based interrupts. Link state change |
| * and Auto-Negotiation Completion are among the affected. |
| * Read the intr status to clear it (needed for wake events). |
| */ |
| readw(ioaddr + MIntrStatus); |
| writew(MICRIntEn, ioaddr + MIntrCtrl); |
| } |
| |
| static int switch_port_external(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| u32 cfg; |
| |
| cfg = readl(ioaddr + ChipConfig); |
| if (cfg & CfgExtPhy) |
| return 0; |
| |
| if (netif_msg_link(np)) { |
| printk(KERN_INFO "%s: switching to external transceiver.\n", |
| dev->name); |
| } |
| |
| /* 1) switch back to external phy */ |
| writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig); |
| readl(ioaddr + ChipConfig); |
| udelay(1); |
| |
| /* 2) reset the external phy: */ |
| /* resetting the external PHY has been known to cause a hub supplying |
| * power over Ethernet to kill the power. We don't want to kill |
| * power to this computer, so we avoid resetting the phy. |
| */ |
| |
| /* 3) reinit the phy fixup, it got lost during power down. */ |
| move_int_phy(dev, np->phy_addr_external); |
| init_phy_fixup(dev); |
| |
| return 1; |
| } |
| |
| static int switch_port_internal(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| int i; |
| u32 cfg; |
| u16 bmcr; |
| |
| cfg = readl(ioaddr + ChipConfig); |
| if (!(cfg &CfgExtPhy)) |
| return 0; |
| |
| if (netif_msg_link(np)) { |
| printk(KERN_INFO "%s: switching to internal transceiver.\n", |
| dev->name); |
| } |
| /* 1) switch back to internal phy: */ |
| cfg = cfg & ~(CfgExtPhy | CfgPhyDis); |
| writel(cfg, ioaddr + ChipConfig); |
| readl(ioaddr + ChipConfig); |
| udelay(1); |
| |
| /* 2) reset the internal phy: */ |
| bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); |
| writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2)); |
| readl(ioaddr + ChipConfig); |
| udelay(10); |
| for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { |
| bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); |
| if (!(bmcr & BMCR_RESET)) |
| break; |
| udelay(10); |
| } |
| if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) { |
| printk(KERN_INFO |
| "%s: phy reset did not complete in %d usec.\n", |
| dev->name, i*10); |
| } |
| /* 3) reinit the phy fixup, it got lost during power down. */ |
| init_phy_fixup(dev); |
| |
| return 1; |
| } |
| |
| /* Scan for a PHY on the external mii bus. |
| * There are two tricky points: |
| * - Do not scan while the internal phy is enabled. The internal phy will |
| * crash: e.g. reads from the DSPCFG register will return odd values and |
| * the nasty random phy reset code will reset the nic every few seconds. |
| * - The internal phy must be moved around, an external phy could |
| * have the same address as the internal phy. |
| */ |
| static int find_mii(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int tmp; |
| int i; |
| int did_switch; |
| |
| /* Switch to external phy */ |
| did_switch = switch_port_external(dev); |
| |
| /* Scan the possible phy addresses: |
| * |
| * PHY address 0 means that the phy is in isolate mode. Not yet |
| * supported due to lack of test hardware. User space should |
| * handle it through ethtool. |
| */ |
| for (i = 1; i <= 31; i++) { |
| move_int_phy(dev, i); |
| tmp = miiport_read(dev, i, MII_BMSR); |
| if (tmp != 0xffff && tmp != 0x0000) { |
| /* found something! */ |
| np->mii = (mdio_read(dev, MII_PHYSID1) << 16) |
| + mdio_read(dev, MII_PHYSID2); |
| if (netif_msg_probe(np)) { |
| printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n", |
| pci_name(np->pci_dev), np->mii, i); |
| } |
| break; |
| } |
| } |
| /* And switch back to internal phy: */ |
| if (did_switch) |
| switch_port_internal(dev); |
| return i; |
| } |
| |
| /* CFG bits [13:16] [18:23] */ |
| #define CFG_RESET_SAVE 0xfde000 |
| /* WCSR bits [0:4] [9:10] */ |
| #define WCSR_RESET_SAVE 0x61f |
| /* RFCR bits [20] [22] [27:31] */ |
| #define RFCR_RESET_SAVE 0xf8500000; |
| |
| static void natsemi_reset(struct net_device *dev) |
| { |
| int i; |
| u32 cfg; |
| u32 wcsr; |
| u32 rfcr; |
| u16 pmatch[3]; |
| u16 sopass[3]; |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| |
| /* |
| * Resetting the chip causes some registers to be lost. |
| * Natsemi suggests NOT reloading the EEPROM while live, so instead |
| * we save the state that would have been loaded from EEPROM |
| * on a normal power-up (see the spec EEPROM map). This assumes |
| * whoever calls this will follow up with init_registers() eventually. |
| */ |
| |
| /* CFG */ |
| cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE; |
| /* WCSR */ |
| wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE; |
| /* RFCR */ |
| rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE; |
| /* PMATCH */ |
| for (i = 0; i < 3; i++) { |
| writel(i*2, ioaddr + RxFilterAddr); |
| pmatch[i] = readw(ioaddr + RxFilterData); |
| } |
| /* SOPAS */ |
| for (i = 0; i < 3; i++) { |
| writel(0xa+(i*2), ioaddr + RxFilterAddr); |
| sopass[i] = readw(ioaddr + RxFilterData); |
| } |
| |
| /* now whack the chip */ |
| writel(ChipReset, ioaddr + ChipCmd); |
| for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { |
| if (!(readl(ioaddr + ChipCmd) & ChipReset)) |
| break; |
| udelay(5); |
| } |
| if (i==NATSEMI_HW_TIMEOUT) { |
| printk(KERN_WARNING "%s: reset did not complete in %d usec.\n", |
| dev->name, i*5); |
| } else if (netif_msg_hw(np)) { |
| printk(KERN_DEBUG "%s: reset completed in %d usec.\n", |
| dev->name, i*5); |
| } |
| |
| /* restore CFG */ |
| cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE; |
| /* turn on external phy if it was selected */ |
| if (dev->if_port == PORT_TP) |
| cfg &= ~(CfgExtPhy | CfgPhyDis); |
| else |
| cfg |= (CfgExtPhy | CfgPhyDis); |
| writel(cfg, ioaddr + ChipConfig); |
| /* restore WCSR */ |
| wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE; |
| writel(wcsr, ioaddr + WOLCmd); |
| /* read RFCR */ |
| rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE; |
| /* restore PMATCH */ |
| for (i = 0; i < 3; i++) { |
| writel(i*2, ioaddr + RxFilterAddr); |
| writew(pmatch[i], ioaddr + RxFilterData); |
| } |
| for (i = 0; i < 3; i++) { |
| writel(0xa+(i*2), ioaddr + RxFilterAddr); |
| writew(sopass[i], ioaddr + RxFilterData); |
| } |
| /* restore RFCR */ |
| writel(rfcr, ioaddr + RxFilterAddr); |
| } |
| |
| static void reset_rx(struct net_device *dev) |
| { |
| int i; |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| |
| np->intr_status &= ~RxResetDone; |
| |
| writel(RxReset, ioaddr + ChipCmd); |
| |
| for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { |
| np->intr_status |= readl(ioaddr + IntrStatus); |
| if (np->intr_status & RxResetDone) |
| break; |
| udelay(15); |
| } |
| if (i==NATSEMI_HW_TIMEOUT) { |
| printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n", |
| dev->name, i*15); |
| } else if (netif_msg_hw(np)) { |
| printk(KERN_WARNING "%s: RX reset took %d usec.\n", |
| dev->name, i*15); |
| } |
| } |
| |
| static void natsemi_reload_eeprom(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| int i; |
| |
| writel(EepromReload, ioaddr + PCIBusCfg); |
| for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { |
| udelay(50); |
| if (!(readl(ioaddr + PCIBusCfg) & EepromReload)) |
| break; |
| } |
| if (i==NATSEMI_HW_TIMEOUT) { |
| printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n", |
| pci_name(np->pci_dev), i*50); |
| } else if (netif_msg_hw(np)) { |
| printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n", |
| pci_name(np->pci_dev), i*50); |
| } |
| } |
| |
| static void natsemi_stop_rxtx(struct net_device *dev) |
| { |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| struct netdev_private *np = netdev_priv(dev); |
| int i; |
| |
| writel(RxOff | TxOff, ioaddr + ChipCmd); |
| for(i=0;i< NATSEMI_HW_TIMEOUT;i++) { |
| if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0) |
| break; |
| udelay(5); |
| } |
| if (i==NATSEMI_HW_TIMEOUT) { |
| printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n", |
| dev->name, i*5); |
| } else if (netif_msg_hw(np)) { |
| printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n", |
| dev->name, i*5); |
| } |
| } |
| |
| static int netdev_open(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| int i; |
| |
| /* Reset the chip, just in case. */ |
| natsemi_reset(dev); |
| |
| i = request_irq(dev->irq, &intr_handler, IRQF_SHARED, dev->name, dev); |
| if (i) return i; |
| |
| if (netif_msg_ifup(np)) |
| printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", |
| dev->name, dev->irq); |
| i = alloc_ring(dev); |
| if (i < 0) { |
| free_irq(dev->irq, dev); |
| return i; |
| } |
| init_ring(dev); |
| spin_lock_irq(&np->lock); |
| init_registers(dev); |
| /* now set the MAC address according to dev->dev_addr */ |
| for (i = 0; i < 3; i++) { |
| u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i]; |
| |
| writel(i*2, ioaddr + RxFilterAddr); |
| writew(mac, ioaddr + RxFilterData); |
| } |
| writel(np->cur_rx_mode, ioaddr + RxFilterAddr); |
| spin_unlock_irq(&np->lock); |
| |
| netif_start_queue(dev); |
| |
| if (netif_msg_ifup(np)) |
| printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n", |
| dev->name, (int)readl(ioaddr + ChipCmd)); |
| |
| /* Set the timer to check for link beat. */ |
| init_timer(&np->timer); |
| np->timer.expires = jiffies + NATSEMI_TIMER_FREQ; |
| np->timer.data = (unsigned long)dev; |
| np->timer.function = &netdev_timer; /* timer handler */ |
| add_timer(&np->timer); |
| |
| return 0; |
| } |
| |
| static void do_cable_magic(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem *ioaddr = ns_ioaddr(dev); |
| |
| if (dev->if_port != PORT_TP) |
| return; |
| |
| if (np->srr >= SRR_DP83816_A5) |
| return; |
| |
| /* |
| * 100 MBit links with short cables can trip an issue with the chip. |
| * The problem manifests as lots of CRC errors and/or flickering |
| * activity LED while idle. This process is based on instructions |
| * from engineers at National. |
| */ |
| if (readl(ioaddr + ChipConfig) & CfgSpeed100) { |
| u16 data; |
| |
| writew(1, ioaddr + PGSEL); |
| /* |
| * coefficient visibility should already be enabled via |
| * DSPCFG | 0x1000 |
| */ |
| data = readw(ioaddr + TSTDAT) & 0xff; |
| /* |
| * the value must be negative, and within certain values |
| * (these values all come from National) |
| */ |
| if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| /* the bug has been triggered - fix the coefficient */ |
| writew(TSTDAT_FIXED, ioaddr + TSTDAT); |
| /* lock the value */ |
| data = readw(ioaddr + DSPCFG); |
| np->dspcfg = data | DSPCFG_LOCK; |
| writew(np->dspcfg, ioaddr + DSPCFG); |
| } |
| writew(0, ioaddr + PGSEL); |
| } |
| } |
| |
| static void undo_cable_magic(struct net_device *dev) |
| { |
| u16 data; |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| if (dev->if_port != PORT_TP) |
| return; |
| |
| if (np->srr >= SRR_DP83816_A5) |
| return; |
| |
| writew(1, ioaddr + PGSEL); |
| /* make sure the lock bit is clear */ |
| data = readw(ioaddr + DSPCFG); |
| np->dspcfg = data & ~DSPCFG_LOCK; |
| writew(np->dspcfg, ioaddr + DSPCFG); |
| writew(0, ioaddr + PGSEL); |
| } |
| |
| static void check_link(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| int duplex = np->duplex; |
| u16 bmsr; |
| |
| /* If we are ignoring the PHY then don't try reading it. */ |
| if (np->ignore_phy) |
| goto propagate_state; |
| |
| /* The link status field is latched: it remains low after a temporary |
| * link failure until it's read. We need the current link status, |
| * thus read twice. |
| */ |
| mdio_read(dev, MII_BMSR); |
| bmsr = mdio_read(dev, MII_BMSR); |
| |
| if (!(bmsr & BMSR_LSTATUS)) { |
| if (netif_carrier_ok(dev)) { |
| if (netif_msg_link(np)) |
| printk(KERN_NOTICE "%s: link down.\n", |
| dev->name); |
| netif_carrier_off(dev); |
| undo_cable_magic(dev); |
| } |
| return; |
| } |
| if (!netif_carrier_ok(dev)) { |
| if (netif_msg_link(np)) |
| printk(KERN_NOTICE "%s: link up.\n", dev->name); |
| netif_carrier_on(dev); |
| do_cable_magic(dev); |
| } |
| |
| duplex = np->full_duplex; |
| if (!duplex) { |
| if (bmsr & BMSR_ANEGCOMPLETE) { |
| int tmp = mii_nway_result( |
| np->advertising & mdio_read(dev, MII_LPA)); |
| if (tmp == LPA_100FULL || tmp == LPA_10FULL) |
| duplex = 1; |
| } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX) |
| duplex = 1; |
| } |
| |
| propagate_state: |
| /* if duplex is set then bit 28 must be set, too */ |
| if (duplex ^ !!(np->rx_config & RxAcceptTx)) { |
| if (netif_msg_link(np)) |
| printk(KERN_INFO |
| "%s: Setting %s-duplex based on negotiated " |
| "link capability.\n", dev->name, |
| duplex ? "full" : "half"); |
| if (duplex) { |
| np->rx_config |= RxAcceptTx; |
| np->tx_config |= TxCarrierIgn | TxHeartIgn; |
| } else { |
| np->rx_config &= ~RxAcceptTx; |
| np->tx_config &= ~(TxCarrierIgn | TxHeartIgn); |
| } |
| writel(np->tx_config, ioaddr + TxConfig); |
| writel(np->rx_config, ioaddr + RxConfig); |
| } |
| } |
| |
| static void init_registers(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| init_phy_fixup(dev); |
| |
| /* clear any interrupts that are pending, such as wake events */ |
| readl(ioaddr + IntrStatus); |
| |
| writel(np->ring_dma, ioaddr + RxRingPtr); |
| writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc), |
| ioaddr + TxRingPtr); |
| |
| /* Initialize other registers. |
| * Configure the PCI bus bursts and FIFO thresholds. |
| * Configure for standard, in-spec Ethernet. |
| * Start with half-duplex. check_link will update |
| * to the correct settings. |
| */ |
| |
| /* DRTH: 2: start tx if 64 bytes are in the fifo |
| * FLTH: 0x10: refill with next packet if 512 bytes are free |
| * MXDMA: 0: up to 256 byte bursts. |
| * MXDMA must be <= FLTH |
| * ECRETRY=1 |
| * ATP=1 |
| */ |
| np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 | |
| TX_FLTH_VAL | TX_DRTH_VAL_START; |
| writel(np->tx_config, ioaddr + TxConfig); |
| |
| /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo |
| * MXDMA 0: up to 256 byte bursts |
| */ |
| np->rx_config = RxMxdma_256 | RX_DRTH_VAL; |
| /* if receive ring now has bigger buffers than normal, enable jumbo */ |
| if (np->rx_buf_sz > NATSEMI_LONGPKT) |
| np->rx_config |= RxAcceptLong; |
| |
| writel(np->rx_config, ioaddr + RxConfig); |
| |
| /* Disable PME: |
| * The PME bit is initialized from the EEPROM contents. |
| * PCI cards probably have PME disabled, but motherboard |
| * implementations may have PME set to enable WakeOnLan. |
| * With PME set the chip will scan incoming packets but |
| * nothing will be written to memory. */ |
| np->SavedClkRun = readl(ioaddr + ClkRun); |
| writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun); |
| if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) { |
| printk(KERN_NOTICE "%s: Wake-up event %#08x\n", |
| dev->name, readl(ioaddr + WOLCmd)); |
| } |
| |
| check_link(dev); |
| __set_rx_mode(dev); |
| |
| /* Enable interrupts by setting the interrupt mask. */ |
| writel(DEFAULT_INTR, ioaddr + IntrMask); |
| natsemi_irq_enable(dev); |
| |
| writel(RxOn | TxOn, ioaddr + ChipCmd); |
| writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */ |
| } |
| |
| /* |
| * netdev_timer: |
| * Purpose: |
| * 1) check for link changes. Usually they are handled by the MII interrupt |
| * but it doesn't hurt to check twice. |
| * 2) check for sudden death of the NIC: |
| * It seems that a reference set for this chip went out with incorrect info, |
| * and there exist boards that aren't quite right. An unexpected voltage |
| * drop can cause the PHY to get itself in a weird state (basically reset). |
| * NOTE: this only seems to affect revC chips. The user can disable |
| * this check via dspcfg_workaround sysfs option. |
| * 3) check of death of the RX path due to OOM |
| */ |
| static void netdev_timer(unsigned long data) |
| { |
| struct net_device *dev = (struct net_device *)data; |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| int next_tick = 5*HZ; |
| |
| if (netif_msg_timer(np)) { |
| /* DO NOT read the IntrStatus register, |
| * a read clears any pending interrupts. |
| */ |
| printk(KERN_DEBUG "%s: Media selection timer tick.\n", |
| dev->name); |
| } |
| |
| if (dev->if_port == PORT_TP) { |
| u16 dspcfg; |
| |
| spin_lock_irq(&np->lock); |
| /* check for a nasty random phy-reset - use dspcfg as a flag */ |
| writew(1, ioaddr+PGSEL); |
| dspcfg = readw(ioaddr+DSPCFG); |
| writew(0, ioaddr+PGSEL); |
| if (np->dspcfg_workaround && dspcfg != np->dspcfg) { |
| if (!netif_queue_stopped(dev)) { |
| spin_unlock_irq(&np->lock); |
| if (netif_msg_drv(np)) |
| printk(KERN_NOTICE "%s: possible phy reset: " |
| "re-initializing\n", dev->name); |
| disable_irq(dev->irq); |
| spin_lock_irq(&np->lock); |
| natsemi_stop_rxtx(dev); |
| dump_ring(dev); |
| reinit_ring(dev); |
| init_registers(dev); |
| spin_unlock_irq(&np->lock); |
| enable_irq(dev->irq); |
| } else { |
| /* hurry back */ |
| next_tick = HZ; |
| spin_unlock_irq(&np->lock); |
| } |
| } else { |
| /* init_registers() calls check_link() for the above case */ |
| check_link(dev); |
| spin_unlock_irq(&np->lock); |
| } |
| } else { |
| spin_lock_irq(&np->lock); |
| check_link(dev); |
| spin_unlock_irq(&np->lock); |
| } |
| if (np->oom) { |
| disable_irq(dev->irq); |
| np->oom = 0; |
| refill_rx(dev); |
| enable_irq(dev->irq); |
| if (!np->oom) { |
| writel(RxOn, ioaddr + ChipCmd); |
| } else { |
| next_tick = 1; |
| } |
| } |
| mod_timer(&np->timer, jiffies + next_tick); |
| } |
| |
| static void dump_ring(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| if (netif_msg_pktdata(np)) { |
| int i; |
| printk(KERN_DEBUG " Tx ring at %p:\n", np->tx_ring); |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", |
| i, np->tx_ring[i].next_desc, |
| np->tx_ring[i].cmd_status, |
| np->tx_ring[i].addr); |
| } |
| printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring); |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", |
| i, np->rx_ring[i].next_desc, |
| np->rx_ring[i].cmd_status, |
| np->rx_ring[i].addr); |
| } |
| } |
| } |
| |
| static void tx_timeout(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| disable_irq(dev->irq); |
| spin_lock_irq(&np->lock); |
| if (!np->hands_off) { |
| if (netif_msg_tx_err(np)) |
| printk(KERN_WARNING |
| "%s: Transmit timed out, status %#08x," |
| " resetting...\n", |
| dev->name, readl(ioaddr + IntrStatus)); |
| dump_ring(dev); |
| |
| natsemi_reset(dev); |
| reinit_ring(dev); |
| init_registers(dev); |
| } else { |
| printk(KERN_WARNING |
| "%s: tx_timeout while in hands_off state?\n", |
| dev->name); |
| } |
| spin_unlock_irq(&np->lock); |
| enable_irq(dev->irq); |
| |
| dev->trans_start = jiffies; |
| np->stats.tx_errors++; |
| netif_wake_queue(dev); |
| } |
| |
| static int alloc_ring(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| np->rx_ring = pci_alloc_consistent(np->pci_dev, |
| sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE), |
| &np->ring_dma); |
| if (!np->rx_ring) |
| return -ENOMEM; |
| np->tx_ring = &np->rx_ring[RX_RING_SIZE]; |
| return 0; |
| } |
| |
| static void refill_rx(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| /* Refill the Rx ring buffers. */ |
| for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { |
| struct sk_buff *skb; |
| int entry = np->dirty_rx % RX_RING_SIZE; |
| if (np->rx_skbuff[entry] == NULL) { |
| unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING; |
| skb = dev_alloc_skb(buflen); |
| np->rx_skbuff[entry] = skb; |
| if (skb == NULL) |
| break; /* Better luck next round. */ |
| skb->dev = dev; /* Mark as being used by this device. */ |
| np->rx_dma[entry] = pci_map_single(np->pci_dev, |
| skb->data, buflen, PCI_DMA_FROMDEVICE); |
| np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]); |
| } |
| np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz); |
| } |
| if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) { |
| if (netif_msg_rx_err(np)) |
| printk(KERN_WARNING "%s: going OOM.\n", dev->name); |
| np->oom = 1; |
| } |
| } |
| |
| static void set_bufsize(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| if (dev->mtu <= ETH_DATA_LEN) |
| np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS; |
| else |
| np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS; |
| } |
| |
| /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ |
| static void init_ring(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int i; |
| |
| /* 1) TX ring */ |
| np->dirty_tx = np->cur_tx = 0; |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| np->tx_skbuff[i] = NULL; |
| np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma |
| +sizeof(struct netdev_desc) |
| *((i+1)%TX_RING_SIZE+RX_RING_SIZE)); |
| np->tx_ring[i].cmd_status = 0; |
| } |
| |
| /* 2) RX ring */ |
| np->dirty_rx = 0; |
| np->cur_rx = RX_RING_SIZE; |
| np->oom = 0; |
| set_bufsize(dev); |
| |
| np->rx_head_desc = &np->rx_ring[0]; |
| |
| /* Please be carefull before changing this loop - at least gcc-2.95.1 |
| * miscompiles it otherwise. |
| */ |
| /* Initialize all Rx descriptors. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma |
| +sizeof(struct netdev_desc) |
| *((i+1)%RX_RING_SIZE)); |
| np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); |
| np->rx_skbuff[i] = NULL; |
| } |
| refill_rx(dev); |
| dump_ring(dev); |
| } |
| |
| static void drain_tx(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int i; |
| |
| for (i = 0; i < TX_RING_SIZE; i++) { |
| if (np->tx_skbuff[i]) { |
| pci_unmap_single(np->pci_dev, |
| np->tx_dma[i], np->tx_skbuff[i]->len, |
| PCI_DMA_TODEVICE); |
| dev_kfree_skb(np->tx_skbuff[i]); |
| np->stats.tx_dropped++; |
| } |
| np->tx_skbuff[i] = NULL; |
| } |
| } |
| |
| static void drain_rx(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| unsigned int buflen = np->rx_buf_sz; |
| int i; |
| |
| /* Free all the skbuffs in the Rx queue. */ |
| for (i = 0; i < RX_RING_SIZE; i++) { |
| np->rx_ring[i].cmd_status = 0; |
| np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */ |
| if (np->rx_skbuff[i]) { |
| pci_unmap_single(np->pci_dev, |
| np->rx_dma[i], buflen, |
| PCI_DMA_FROMDEVICE); |
| dev_kfree_skb(np->rx_skbuff[i]); |
| } |
| np->rx_skbuff[i] = NULL; |
| } |
| } |
| |
| static void drain_ring(struct net_device *dev) |
| { |
| drain_rx(dev); |
| drain_tx(dev); |
| } |
| |
| static void free_ring(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| pci_free_consistent(np->pci_dev, |
| sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE), |
| np->rx_ring, np->ring_dma); |
| } |
| |
| static void reinit_rx(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int i; |
| |
| /* RX Ring */ |
| np->dirty_rx = 0; |
| np->cur_rx = RX_RING_SIZE; |
| np->rx_head_desc = &np->rx_ring[0]; |
| /* Initialize all Rx descriptors. */ |
| for (i = 0; i < RX_RING_SIZE; i++) |
| np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); |
| |
| refill_rx(dev); |
| } |
| |
| static void reinit_ring(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int i; |
| |
| /* drain TX ring */ |
| drain_tx(dev); |
| np->dirty_tx = np->cur_tx = 0; |
| for (i=0;i<TX_RING_SIZE;i++) |
| np->tx_ring[i].cmd_status = 0; |
| |
| reinit_rx(dev); |
| } |
| |
| static int start_tx(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| unsigned entry; |
| unsigned long flags; |
| |
| /* Note: Ordering is important here, set the field with the |
| "ownership" bit last, and only then increment cur_tx. */ |
| |
| /* Calculate the next Tx descriptor entry. */ |
| entry = np->cur_tx % TX_RING_SIZE; |
| |
| np->tx_skbuff[entry] = skb; |
| np->tx_dma[entry] = pci_map_single(np->pci_dev, |
| skb->data,skb->len, PCI_DMA_TODEVICE); |
| |
| np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]); |
| |
| spin_lock_irqsave(&np->lock, flags); |
| |
| if (!np->hands_off) { |
| np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len); |
| /* StrongARM: Explicitly cache flush np->tx_ring and |
| * skb->data,skb->len. */ |
| wmb(); |
| np->cur_tx++; |
| if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) { |
| netdev_tx_done(dev); |
| if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) |
| netif_stop_queue(dev); |
| } |
| /* Wake the potentially-idle transmit channel. */ |
| writel(TxOn, ioaddr + ChipCmd); |
| } else { |
| dev_kfree_skb_irq(skb); |
| np->stats.tx_dropped++; |
| } |
| spin_unlock_irqrestore(&np->lock, flags); |
| |
| dev->trans_start = jiffies; |
| |
| if (netif_msg_tx_queued(np)) { |
| printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", |
| dev->name, np->cur_tx, entry); |
| } |
| return 0; |
| } |
| |
| static void netdev_tx_done(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { |
| int entry = np->dirty_tx % TX_RING_SIZE; |
| if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn)) |
| break; |
| if (netif_msg_tx_done(np)) |
| printk(KERN_DEBUG |
| "%s: tx frame #%d finished, status %#08x.\n", |
| dev->name, np->dirty_tx, |
| le32_to_cpu(np->tx_ring[entry].cmd_status)); |
| if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) { |
| np->stats.tx_packets++; |
| np->stats.tx_bytes += np->tx_skbuff[entry]->len; |
| } else { /* Various Tx errors */ |
| int tx_status = |
| le32_to_cpu(np->tx_ring[entry].cmd_status); |
| if (tx_status & (DescTxAbort|DescTxExcColl)) |
| np->stats.tx_aborted_errors++; |
| if (tx_status & DescTxFIFO) |
| np->stats.tx_fifo_errors++; |
| if (tx_status & DescTxCarrier) |
| np->stats.tx_carrier_errors++; |
| if (tx_status & DescTxOOWCol) |
| np->stats.tx_window_errors++; |
| np->stats.tx_errors++; |
| } |
| pci_unmap_single(np->pci_dev,np->tx_dma[entry], |
| np->tx_skbuff[entry]->len, |
| PCI_DMA_TODEVICE); |
| /* Free the original skb. */ |
| dev_kfree_skb_irq(np->tx_skbuff[entry]); |
| np->tx_skbuff[entry] = NULL; |
| } |
| if (netif_queue_stopped(dev) |
| && np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { |
| /* The ring is no longer full, wake queue. */ |
| netif_wake_queue(dev); |
| } |
| } |
| |
| /* The interrupt handler doesn't actually handle interrupts itself, it |
| * schedules a NAPI poll if there is anything to do. */ |
| static irqreturn_t intr_handler(int irq, void *dev_instance) |
| { |
| struct net_device *dev = dev_instance; |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| /* Reading IntrStatus automatically acknowledges so don't do |
| * that while interrupts are disabled, (for example, while a |
| * poll is scheduled). */ |
| if (np->hands_off || !readl(ioaddr + IntrEnable)) |
| return IRQ_NONE; |
| |
| np->intr_status = readl(ioaddr + IntrStatus); |
| |
| if (!np->intr_status) |
| return IRQ_NONE; |
| |
| if (netif_msg_intr(np)) |
| printk(KERN_DEBUG |
| "%s: Interrupt, status %#08x, mask %#08x.\n", |
| dev->name, np->intr_status, |
| readl(ioaddr + IntrMask)); |
| |
| prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]); |
| |
| if (netif_rx_schedule_prep(dev)) { |
| /* Disable interrupts and register for poll */ |
| natsemi_irq_disable(dev); |
| __netif_rx_schedule(dev); |
| } else |
| printk(KERN_WARNING |
| "%s: Ignoring interrupt, status %#08x, mask %#08x.\n", |
| dev->name, np->intr_status, |
| readl(ioaddr + IntrMask)); |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* This is the NAPI poll routine. As well as the standard RX handling |
| * it also handles all other interrupts that the chip might raise. |
| */ |
| static int natsemi_poll(struct net_device *dev, int *budget) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| int work_to_do = min(*budget, dev->quota); |
| int work_done = 0; |
| |
| do { |
| if (netif_msg_intr(np)) |
| printk(KERN_DEBUG |
| "%s: Poll, status %#08x, mask %#08x.\n", |
| dev->name, np->intr_status, |
| readl(ioaddr + IntrMask)); |
| |
| /* netdev_rx() may read IntrStatus again if the RX state |
| * machine falls over so do it first. */ |
| if (np->intr_status & |
| (IntrRxDone | IntrRxIntr | RxStatusFIFOOver | |
| IntrRxErr | IntrRxOverrun)) { |
| netdev_rx(dev, &work_done, work_to_do); |
| } |
| |
| if (np->intr_status & |
| (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) { |
| spin_lock(&np->lock); |
| netdev_tx_done(dev); |
| spin_unlock(&np->lock); |
| } |
| |
| /* Abnormal error summary/uncommon events handlers. */ |
| if (np->intr_status & IntrAbnormalSummary) |
| netdev_error(dev, np->intr_status); |
| |
| *budget -= work_done; |
| dev->quota -= work_done; |
| |
| if (work_done >= work_to_do) |
| return 1; |
| |
| np->intr_status = readl(ioaddr + IntrStatus); |
| } while (np->intr_status); |
| |
| netif_rx_complete(dev); |
| |
| /* Reenable interrupts providing nothing is trying to shut |
| * the chip down. */ |
| spin_lock(&np->lock); |
| if (!np->hands_off && netif_running(dev)) |
| natsemi_irq_enable(dev); |
| spin_unlock(&np->lock); |
| |
| return 0; |
| } |
| |
| /* This routine is logically part of the interrupt handler, but separated |
| for clarity and better register allocation. */ |
| static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int entry = np->cur_rx % RX_RING_SIZE; |
| int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; |
| s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); |
| unsigned int buflen = np->rx_buf_sz; |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| /* If the driver owns the next entry it's a new packet. Send it up. */ |
| while (desc_status < 0) { /* e.g. & DescOwn */ |
| int pkt_len; |
| if (netif_msg_rx_status(np)) |
| printk(KERN_DEBUG |
| " netdev_rx() entry %d status was %#08x.\n", |
| entry, desc_status); |
| if (--boguscnt < 0) |
| break; |
| |
| if (*work_done >= work_to_do) |
| break; |
| |
| (*work_done)++; |
| |
| pkt_len = (desc_status & DescSizeMask) - 4; |
| if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){ |
| if (desc_status & DescMore) { |
| unsigned long flags; |
| |
| if (netif_msg_rx_err(np)) |
| printk(KERN_WARNING |
| "%s: Oversized(?) Ethernet " |
| "frame spanned multiple " |
| "buffers, entry %#08x " |
| "status %#08x.\n", dev->name, |
| np->cur_rx, desc_status); |
| np->stats.rx_length_errors++; |
| |
| /* The RX state machine has probably |
| * locked up beneath us. Follow the |
| * reset procedure documented in |
| * AN-1287. */ |
| |
| spin_lock_irqsave(&np->lock, flags); |
| reset_rx(dev); |
| reinit_rx(dev); |
| writel(np->ring_dma, ioaddr + RxRingPtr); |
| check_link(dev); |
| spin_unlock_irqrestore(&np->lock, flags); |
| |
| /* We'll enable RX on exit from this |
| * function. */ |
| break; |
| |
| } else { |
| /* There was an error. */ |
| np->stats.rx_errors++; |
| if (desc_status & (DescRxAbort|DescRxOver)) |
| np->stats.rx_over_errors++; |
| if (desc_status & (DescRxLong|DescRxRunt)) |
| np->stats.rx_length_errors++; |
| if (desc_status & (DescRxInvalid|DescRxAlign)) |
| np->stats.rx_frame_errors++; |
| if (desc_status & DescRxCRC) |
| np->stats.rx_crc_errors++; |
| } |
| } else if (pkt_len > np->rx_buf_sz) { |
| /* if this is the tail of a double buffer |
| * packet, we've already counted the error |
| * on the first part. Ignore the second half. |
| */ |
| } else { |
| struct sk_buff *skb; |
| /* Omit CRC size. */ |
| /* Check if the packet is long enough to accept |
| * without copying to a minimally-sized skbuff. */ |
| if (pkt_len < rx_copybreak |
| && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) { |
| /* 16 byte align the IP header */ |
| skb_reserve(skb, RX_OFFSET); |
| pci_dma_sync_single_for_cpu(np->pci_dev, |
| np->rx_dma[entry], |
| buflen, |
| PCI_DMA_FROMDEVICE); |
| skb_copy_to_linear_data(skb, |
| np->rx_skbuff[entry]->data, pkt_len); |
| skb_put(skb, pkt_len); |
| pci_dma_sync_single_for_device(np->pci_dev, |
| np->rx_dma[entry], |
| buflen, |
| PCI_DMA_FROMDEVICE); |
| } else { |
| pci_unmap_single(np->pci_dev, np->rx_dma[entry], |
| buflen, PCI_DMA_FROMDEVICE); |
| skb_put(skb = np->rx_skbuff[entry], pkt_len); |
| np->rx_skbuff[entry] = NULL; |
| } |
| skb->protocol = eth_type_trans(skb, dev); |
| netif_receive_skb(skb); |
| dev->last_rx = jiffies; |
| np->stats.rx_packets++; |
| np->stats.rx_bytes += pkt_len; |
| } |
| entry = (++np->cur_rx) % RX_RING_SIZE; |
| np->rx_head_desc = &np->rx_ring[entry]; |
| desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); |
| } |
| refill_rx(dev); |
| |
| /* Restart Rx engine if stopped. */ |
| if (np->oom) |
| mod_timer(&np->timer, jiffies + 1); |
| else |
| writel(RxOn, ioaddr + ChipCmd); |
| } |
| |
| static void netdev_error(struct net_device *dev, int intr_status) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| spin_lock(&np->lock); |
| if (intr_status & LinkChange) { |
| u16 lpa = mdio_read(dev, MII_LPA); |
| if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE |
| && netif_msg_link(np)) { |
| printk(KERN_INFO |
| "%s: Autonegotiation advertising" |
| " %#04x partner %#04x.\n", dev->name, |
| np->advertising, lpa); |
| } |
| |
| /* read MII int status to clear the flag */ |
| readw(ioaddr + MIntrStatus); |
| check_link(dev); |
| } |
| if (intr_status & StatsMax) { |
| __get_stats(dev); |
| } |
| if (intr_status & IntrTxUnderrun) { |
| if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) { |
| np->tx_config += TX_DRTH_VAL_INC; |
| if (netif_msg_tx_err(np)) |
| printk(KERN_NOTICE |
| "%s: increased tx threshold, txcfg %#08x.\n", |
| dev->name, np->tx_config); |
| } else { |
| if (netif_msg_tx_err(np)) |
| printk(KERN_NOTICE |
| "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n", |
| dev->name, np->tx_config); |
| } |
| writel(np->tx_config, ioaddr + TxConfig); |
| } |
| if (intr_status & WOLPkt && netif_msg_wol(np)) { |
| int wol_status = readl(ioaddr + WOLCmd); |
| printk(KERN_NOTICE "%s: Link wake-up event %#08x\n", |
| dev->name, wol_status); |
| } |
| if (intr_status & RxStatusFIFOOver) { |
| if (netif_msg_rx_err(np) && netif_msg_intr(np)) { |
| printk(KERN_NOTICE "%s: Rx status FIFO overrun\n", |
| dev->name); |
| } |
| np->stats.rx_fifo_errors++; |
| } |
| /* Hmmmmm, it's not clear how to recover from PCI faults. */ |
| if (intr_status & IntrPCIErr) { |
| printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name, |
| intr_status & IntrPCIErr); |
| np->stats.tx_fifo_errors++; |
| np->stats.rx_fifo_errors++; |
| } |
| spin_unlock(&np->lock); |
| } |
| |
| static void __get_stats(struct net_device *dev) |
| { |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| /* The chip only need report frame silently dropped. */ |
| np->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs); |
| np->stats.rx_missed_errors += readl(ioaddr + RxMissed); |
| } |
| |
| static struct net_device_stats *get_stats(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| /* The chip only need report frame silently dropped. */ |
| spin_lock_irq(&np->lock); |
| if (netif_running(dev) && !np->hands_off) |
| __get_stats(dev); |
| spin_unlock_irq(&np->lock); |
| |
| return &np->stats; |
| } |
| |
| #ifdef CONFIG_NET_POLL_CONTROLLER |
| static void natsemi_poll_controller(struct net_device *dev) |
| { |
| disable_irq(dev->irq); |
| intr_handler(dev->irq, dev); |
| enable_irq(dev->irq); |
| } |
| #endif |
| |
| #define HASH_TABLE 0x200 |
| static void __set_rx_mode(struct net_device *dev) |
| { |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| struct netdev_private *np = netdev_priv(dev); |
| u8 mc_filter[64]; /* Multicast hash filter */ |
| u32 rx_mode; |
| |
| if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ |
| rx_mode = RxFilterEnable | AcceptBroadcast |
| | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys; |
| } else if ((dev->mc_count > multicast_filter_limit) |
| || (dev->flags & IFF_ALLMULTI)) { |
| rx_mode = RxFilterEnable | AcceptBroadcast |
| | AcceptAllMulticast | AcceptMyPhys; |
| } else { |
| struct dev_mc_list *mclist; |
| int i; |
| memset(mc_filter, 0, sizeof(mc_filter)); |
| for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; |
| i++, mclist = mclist->next) { |
| int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff; |
| mc_filter[i/8] |= (1 << (i & 0x07)); |
| } |
| rx_mode = RxFilterEnable | AcceptBroadcast |
| | AcceptMulticast | AcceptMyPhys; |
| for (i = 0; i < 64; i += 2) { |
| writel(HASH_TABLE + i, ioaddr + RxFilterAddr); |
| writel((mc_filter[i + 1] << 8) + mc_filter[i], |
| ioaddr + RxFilterData); |
| } |
| } |
| writel(rx_mode, ioaddr + RxFilterAddr); |
| np->cur_rx_mode = rx_mode; |
| } |
| |
| static int natsemi_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS) |
| return -EINVAL; |
| |
| dev->mtu = new_mtu; |
| |
| /* synchronized against open : rtnl_lock() held by caller */ |
| if (netif_running(dev)) { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| disable_irq(dev->irq); |
| spin_lock(&np->lock); |
| /* stop engines */ |
| natsemi_stop_rxtx(dev); |
| /* drain rx queue */ |
| drain_rx(dev); |
| /* change buffers */ |
| set_bufsize(dev); |
| reinit_rx(dev); |
| writel(np->ring_dma, ioaddr + RxRingPtr); |
| /* restart engines */ |
| writel(RxOn | TxOn, ioaddr + ChipCmd); |
| spin_unlock(&np->lock); |
| enable_irq(dev->irq); |
| } |
| return 0; |
| } |
| |
| static void set_rx_mode(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| spin_lock_irq(&np->lock); |
| if (!np->hands_off) |
| __set_rx_mode(dev); |
| spin_unlock_irq(&np->lock); |
| } |
| |
| static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN); |
| strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN); |
| strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN); |
| } |
| |
| static int get_regs_len(struct net_device *dev) |
| { |
| return NATSEMI_REGS_SIZE; |
| } |
| |
| static int get_eeprom_len(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| return np->eeprom_size; |
| } |
| |
| static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| spin_lock_irq(&np->lock); |
| netdev_get_ecmd(dev, ecmd); |
| spin_unlock_irq(&np->lock); |
| return 0; |
| } |
| |
| static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int res; |
| spin_lock_irq(&np->lock); |
| res = netdev_set_ecmd(dev, ecmd); |
| spin_unlock_irq(&np->lock); |
| return res; |
| } |
| |
| static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| spin_lock_irq(&np->lock); |
| netdev_get_wol(dev, &wol->supported, &wol->wolopts); |
| netdev_get_sopass(dev, wol->sopass); |
| spin_unlock_irq(&np->lock); |
| } |
| |
| static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| int res; |
| spin_lock_irq(&np->lock); |
| netdev_set_wol(dev, wol->wolopts); |
| res = netdev_set_sopass(dev, wol->sopass); |
| spin_unlock_irq(&np->lock); |
| return res; |
| } |
| |
| static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| regs->version = NATSEMI_REGS_VER; |
| spin_lock_irq(&np->lock); |
| netdev_get_regs(dev, buf); |
| spin_unlock_irq(&np->lock); |
| } |
| |
| static u32 get_msglevel(struct net_device *dev) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| return np->msg_enable; |
| } |
| |
| static void set_msglevel(struct net_device *dev, u32 val) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| np->msg_enable = val; |
| } |
| |
| static int nway_reset(struct net_device *dev) |
| { |
| int tmp; |
| int r = -EINVAL; |
| /* if autoneg is off, it's an error */ |
| tmp = mdio_read(dev, MII_BMCR); |
| if (tmp & BMCR_ANENABLE) { |
| tmp |= (BMCR_ANRESTART); |
| mdio_write(dev, MII_BMCR, tmp); |
| r = 0; |
| } |
| return r; |
| } |
| |
| static u32 get_link(struct net_device *dev) |
| { |
| /* LSTATUS is latched low until a read - so read twice */ |
| mdio_read(dev, MII_BMSR); |
| return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0; |
| } |
| |
| static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| u8 *eebuf; |
| int res; |
| |
| eebuf = kmalloc(np->eeprom_size, GFP_KERNEL); |
| if (!eebuf) |
| return -ENOMEM; |
| |
| eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16); |
| spin_lock_irq(&np->lock); |
| res = netdev_get_eeprom(dev, eebuf); |
| spin_unlock_irq(&np->lock); |
| if (!res) |
| memcpy(data, eebuf+eeprom->offset, eeprom->len); |
| kfree(eebuf); |
| return res; |
| } |
| |
| static const struct ethtool_ops ethtool_ops = { |
| .get_drvinfo = get_drvinfo, |
| .get_regs_len = get_regs_len, |
| .get_eeprom_len = get_eeprom_len, |
| .get_settings = get_settings, |
| .set_settings = set_settings, |
| .get_wol = get_wol, |
| .set_wol = set_wol, |
| .get_regs = get_regs, |
| .get_msglevel = get_msglevel, |
| .set_msglevel = set_msglevel, |
| .nway_reset = nway_reset, |
| .get_link = get_link, |
| .get_eeprom = get_eeprom, |
| }; |
| |
| static int netdev_set_wol(struct net_device *dev, u32 newval) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary; |
| |
| /* translate to bitmasks this chip understands */ |
| if (newval & WAKE_PHY) |
| data |= WakePhy; |
| if (newval & WAKE_UCAST) |
| data |= WakeUnicast; |
| if (newval & WAKE_MCAST) |
| data |= WakeMulticast; |
| if (newval & WAKE_BCAST) |
| data |= WakeBroadcast; |
| if (newval & WAKE_ARP) |
| data |= WakeArp; |
| if (newval & WAKE_MAGIC) |
| data |= WakeMagic; |
| if (np->srr >= SRR_DP83815_D) { |
| if (newval & WAKE_MAGICSECURE) { |
| data |= WakeMagicSecure; |
| } |
| } |
| |
| writel(data, ioaddr + WOLCmd); |
| |
| return 0; |
| } |
| |
| static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| u32 regval = readl(ioaddr + WOLCmd); |
| |
| *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
| | WAKE_ARP | WAKE_MAGIC); |
| |
| if (np->srr >= SRR_DP83815_D) { |
| /* SOPASS works on revD and higher */ |
| *supported |= WAKE_MAGICSECURE; |
| } |
| *cur = 0; |
| |
| /* translate from chip bitmasks */ |
| if (regval & WakePhy) |
| *cur |= WAKE_PHY; |
| if (regval & WakeUnicast) |
| *cur |= WAKE_UCAST; |
| if (regval & WakeMulticast) |
| *cur |= WAKE_MCAST; |
| if (regval & WakeBroadcast) |
| *cur |= WAKE_BCAST; |
| if (regval & WakeArp) |
| *cur |= WAKE_ARP; |
| if (regval & WakeMagic) |
| *cur |= WAKE_MAGIC; |
| if (regval & WakeMagicSecure) { |
| /* this can be on in revC, but it's broken */ |
| *cur |= WAKE_MAGICSECURE; |
| } |
| |
| return 0; |
| } |
| |
| static int netdev_set_sopass(struct net_device *dev, u8 *newval) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| u16 *sval = (u16 *)newval; |
| u32 addr; |
| |
| if (np->srr < SRR_DP83815_D) { |
| return 0; |
| } |
| |
| /* enable writing to these registers by disabling the RX filter */ |
| addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; |
| addr &= ~RxFilterEnable; |
| writel(addr, ioaddr + RxFilterAddr); |
| |
| /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */ |
| writel(addr | 0xa, ioaddr + RxFilterAddr); |
| writew(sval[0], ioaddr + RxFilterData); |
| |
| writel(addr | 0xc, ioaddr + RxFilterAddr); |
| writew(sval[1], ioaddr + RxFilterData); |
| |
| writel(addr | 0xe, ioaddr + RxFilterAddr); |
| writew(sval[2], ioaddr + RxFilterData); |
| |
| /* re-enable the RX filter */ |
| writel(addr | RxFilterEnable, ioaddr + RxFilterAddr); |
| |
| return 0; |
| } |
| |
| static int netdev_get_sopass(struct net_device *dev, u8 *data) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| u16 *sval = (u16 *)data; |
| u32 addr; |
| |
| if (np->srr < SRR_DP83815_D) { |
| sval[0] = sval[1] = sval[2] = 0; |
| return 0; |
| } |
| |
| /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */ |
| addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; |
| |
| writel(addr | 0xa, ioaddr + RxFilterAddr); |
| sval[0] = readw(ioaddr + RxFilterData); |
| |
| writel(addr | 0xc, ioaddr + RxFilterAddr); |
| sval[1] = readw(ioaddr + RxFilterData); |
| |
| writel(addr | 0xe, ioaddr + RxFilterAddr); |
| sval[2] = readw(ioaddr + RxFilterData); |
| |
| writel(addr, ioaddr + RxFilterAddr); |
| |
| return 0; |
| } |
| |
| static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| u32 tmp; |
| |
| ecmd->port = dev->if_port; |
| ecmd->speed = np->speed; |
| ecmd->duplex = np->duplex; |
| ecmd->autoneg = np->autoneg; |
| ecmd->advertising = 0; |
| if (np->advertising & ADVERTISE_10HALF) |
| ecmd->advertising |= ADVERTISED_10baseT_Half; |
| if (np->advertising & ADVERTISE_10FULL) |
| ecmd->advertising |= ADVERTISED_10baseT_Full; |
| if (np->advertising & ADVERTISE_100HALF) |
| ecmd->advertising |= ADVERTISED_100baseT_Half; |
| if (np->advertising & ADVERTISE_100FULL) |
| ecmd->advertising |= ADVERTISED_100baseT_Full; |
| ecmd->supported = (SUPPORTED_Autoneg | |
| SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | |
| SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | |
| SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE); |
| ecmd->phy_address = np->phy_addr_external; |
| /* |
| * We intentionally report the phy address of the external |
| * phy, even if the internal phy is used. This is necessary |
| * to work around a deficiency of the ethtool interface: |
| * It's only possible to query the settings of the active |
| * port. Therefore |
| * # ethtool -s ethX port mii |
| * actually sends an ioctl to switch to port mii with the |
| * settings that are used for the current active port. |
| * If we would report a different phy address in this |
| * command, then |
| * # ethtool -s ethX port tp;ethtool -s ethX port mii |
| * would unintentionally change the phy address. |
| * |
| * Fortunately the phy address doesn't matter with the |
| * internal phy... |
| */ |
| |
| /* set information based on active port type */ |
| switch (ecmd->port) { |
| default: |
| case PORT_TP: |
| ecmd->advertising |= ADVERTISED_TP; |
| ecmd->transceiver = XCVR_INTERNAL; |
| break; |
| case PORT_MII: |
| ecmd->advertising |= ADVERTISED_MII; |
| ecmd->transceiver = XCVR_EXTERNAL; |
| break; |
| case PORT_FIBRE: |
| ecmd->advertising |= ADVERTISED_FIBRE; |
| ecmd->transceiver = XCVR_EXTERNAL; |
| break; |
| } |
| |
| /* if autonegotiation is on, try to return the active speed/duplex */ |
| if (ecmd->autoneg == AUTONEG_ENABLE) { |
| ecmd->advertising |= ADVERTISED_Autoneg; |
| tmp = mii_nway_result( |
| np->advertising & mdio_read(dev, MII_LPA)); |
| if (tmp == LPA_100FULL || tmp == LPA_100HALF) |
| ecmd->speed = SPEED_100; |
| else |
| ecmd->speed = SPEED_10; |
| if (tmp == LPA_100FULL || tmp == LPA_10FULL) |
| ecmd->duplex = DUPLEX_FULL; |
| else |
| ecmd->duplex = DUPLEX_HALF; |
| } |
| |
| /* ignore maxtxpkt, maxrxpkt for now */ |
| |
| return 0; |
| } |
| |
| static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd) |
| { |
| struct netdev_private *np = netdev_priv(dev); |
| |
| if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE) |
| return -EINVAL; |
| if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL) |
| return -EINVAL; |
| if (ecmd->autoneg == AUTONEG_ENABLE) { |
| if ((ecmd->advertising & (ADVERTISED_10baseT_Half | |
| ADVERTISED_10baseT_Full | |
| ADVERTISED_100baseT_Half | |
| ADVERTISED_100baseT_Full)) == 0) { |
| return -EINVAL; |
| } |
| } else if (ecmd->autoneg == AUTONEG_DISABLE) { |
| if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100) |
| return -EINVAL; |
| if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) |
| return -EINVAL; |
| } else { |
| return -EINVAL; |
| } |
| |
| /* |
| * If we're ignoring the PHY then autoneg and the internal |
| * transciever are really not going to work so don't let the |
| * user select them. |
| */ |
| if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE || |
| ecmd->port == PORT_TP)) |
| return -EINVAL; |
| |
| /* |
| * maxtxpkt, maxrxpkt: ignored for now. |
| * |
| * transceiver: |
| * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always |
| * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and |
| * selects based on ecmd->port. |
| * |
| * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre |
| * phys that are connected to the mii bus. It's used to apply fibre |
| * specific updates. |
| */ |
| |
| /* WHEW! now lets bang some bits */ |
| |
| /* save the parms */ |
| dev->if_port = ecmd->port; |
| np->autoneg = ecmd->autoneg; |
| np->phy_addr_external = ecmd->phy_address & PhyAddrMask; |
| if (np->autoneg == AUTONEG_ENABLE) { |
| /* advertise only what has been requested */ |
| np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); |
| if (ecmd->advertising & ADVERTISED_10baseT_Half) |
| np->advertising |= ADVERTISE_10HALF; |
| if (ecmd->advertising & ADVERTISED_10baseT_Full) |
| np->advertising |= ADVERTISE_10FULL; |
| if (ecmd->advertising & ADVERTISED_100baseT_Half) |
| np->advertising |= ADVERTISE_100HALF; |
| if (ecmd->advertising & ADVERTISED_100baseT_Full) |
| np->advertising |= ADVERTISE_100FULL; |
| } else { |
| np->speed = ecmd->speed; |
| np->duplex = ecmd->duplex; |
| /* user overriding the initial full duplex parm? */ |
| if (np->duplex == DUPLEX_HALF) |
| np->full_duplex = 0; |
| } |
| |
| /* get the right phy enabled */ |
| if (ecmd->port == PORT_TP) |
| switch_port_internal(dev); |
| else |
| switch_port_external(dev); |
| |
| /* set parms and see how this affected our link status */ |
| init_phy_fixup(dev); |
| check_link(dev); |
| return 0; |
| } |
| |
| static int netdev_get_regs(struct net_device *dev, u8 *buf) |
| { |
| int i; |
| int j; |
| u32 rfcr; |
| u32 *rbuf = (u32 *)buf; |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| /* read non-mii page 0 of registers */ |
| for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) { |
| rbuf[i] = readl(ioaddr + i*4); |
| } |
| |
| /* read current mii registers */ |
| for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++) |
| rbuf[i] = mdio_read(dev, i & 0x1f); |
| |
| /* read only the 'magic' registers from page 1 */ |
| writew(1, ioaddr + PGSEL); |
| rbuf[i++] = readw(ioaddr + PMDCSR); |
| rbuf[i++] = readw(ioaddr + TSTDAT); |
| rbuf[i++] = readw(ioaddr + DSPCFG); |
| rbuf[i++] = readw(ioaddr + SDCFG); |
| writew(0, ioaddr + PGSEL); |
| |
| /* read RFCR indexed registers */ |
| rfcr = readl(ioaddr + RxFilterAddr); |
| for (j = 0; j < NATSEMI_RFDR_NREGS; j++) { |
| writel(j*2, ioaddr + RxFilterAddr); |
| rbuf[i++] = readw(ioaddr + RxFilterData); |
| } |
| writel(rfcr, ioaddr + RxFilterAddr); |
| |
| /* the interrupt status is clear-on-read - see if we missed any */ |
| if (rbuf[4] & rbuf[5]) { |
| printk(KERN_WARNING |
| "%s: shoot, we dropped an interrupt (%#08x)\n", |
| dev->name, rbuf[4] & rbuf[5]); |
| } |
| |
| return 0; |
| } |
| |
| #define SWAP_BITS(x) ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \ |
| | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9) \ |
| | (((x) & 0x0010) << 7) | (((x) & 0x0020) << 5) \ |
| | (((x) & 0x0040) << 3) | (((x) & 0x0080) << 1) \ |
| | (((x) & 0x0100) >> 1) | (((x) & 0x0200) >> 3) \ |
| | (((x) & 0x0400) >> 5) | (((x) & 0x0800) >> 7) \ |
| | (((x) & 0x1000) >> 9) | (((x) & 0x2000) >> 11) \ |
| | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) ) |
| |
| static int netdev_get_eeprom(struct net_device *dev, u8 *buf) |
| { |
| int i; |
| u16 *ebuf = (u16 *)buf; |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| /* eeprom_read reads 16 bits, and indexes by 16 bits */ |
| for (i = 0; i < np->eeprom_size/2; i++) { |
| ebuf[i] = eeprom_read(ioaddr, i); |
| /* The EEPROM itself stores data bit-swapped, but eeprom_read |
| * reads it back "sanely". So we swap it back here in order to |
| * present it to userland as it is stored. */ |
| ebuf[i] = SWAP_BITS(ebuf[i]); |
| } |
| return 0; |
| } |
| |
| static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
| { |
| struct mii_ioctl_data *data = if_mii(rq); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| switch(cmd) { |
| case SIOCGMIIPHY: /* Get address of MII PHY in use. */ |
| case SIOCDEVPRIVATE: /* for binary compat, remove in 2.5 */ |
| data->phy_id = np->phy_addr_external; |
| /* Fall Through */ |
| |
| case SIOCGMIIREG: /* Read MII PHY register. */ |
| case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */ |
| /* The phy_id is not enough to uniquely identify |
| * the intended target. Therefore the command is sent to |
| * the given mii on the current port. |
| */ |
| if (dev->if_port == PORT_TP) { |
| if ((data->phy_id & 0x1f) == np->phy_addr_external) |
| data->val_out = mdio_read(dev, |
| data->reg_num & 0x1f); |
| else |
| data->val_out = 0; |
| } else { |
| move_int_phy(dev, data->phy_id & 0x1f); |
| data->val_out = miiport_read(dev, data->phy_id & 0x1f, |
| data->reg_num & 0x1f); |
| } |
| return 0; |
| |
| case SIOCSMIIREG: /* Write MII PHY register. */ |
| case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */ |
| if (!capable(CAP_NET_ADMIN)) |
| return -EPERM; |
| if (dev->if_port == PORT_TP) { |
| if ((data->phy_id & 0x1f) == np->phy_addr_external) { |
| if ((data->reg_num & 0x1f) == MII_ADVERTISE) |
| np->advertising = data->val_in; |
| mdio_write(dev, data->reg_num & 0x1f, |
| data->val_in); |
| } |
| } else { |
| if ((data->phy_id & 0x1f) == np->phy_addr_external) { |
| if ((data->reg_num & 0x1f) == MII_ADVERTISE) |
| np->advertising = data->val_in; |
| } |
| move_int_phy(dev, data->phy_id & 0x1f); |
| miiport_write(dev, data->phy_id & 0x1f, |
| data->reg_num & 0x1f, |
| data->val_in); |
| } |
| return 0; |
| default: |
| return -EOPNOTSUPP; |
| } |
| } |
| |
| static void enable_wol_mode(struct net_device *dev, int enable_intr) |
| { |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| if (netif_msg_wol(np)) |
| printk(KERN_INFO "%s: remaining active for wake-on-lan\n", |
| dev->name); |
| |
| /* For WOL we must restart the rx process in silent mode. |
| * Write NULL to the RxRingPtr. Only possible if |
| * rx process is stopped |
| */ |
| writel(0, ioaddr + RxRingPtr); |
| |
| /* read WoL status to clear */ |
| readl(ioaddr + WOLCmd); |
| |
| /* PME on, clear status */ |
| writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun); |
| |
| /* and restart the rx process */ |
| writel(RxOn, ioaddr + ChipCmd); |
| |
| if (enable_intr) { |
| /* enable the WOL interrupt. |
| * Could be used to send a netlink message. |
| */ |
| writel(WOLPkt | LinkChange, ioaddr + IntrMask); |
| natsemi_irq_enable(dev); |
| } |
| } |
| |
| static int netdev_close(struct net_device *dev) |
| { |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| if (netif_msg_ifdown(np)) |
| printk(KERN_DEBUG |
| "%s: Shutting down ethercard, status was %#04x.\n", |
| dev->name, (int)readl(ioaddr + ChipCmd)); |
| if (netif_msg_pktdata(np)) |
| printk(KERN_DEBUG |
| "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", |
| dev->name, np->cur_tx, np->dirty_tx, |
| np->cur_rx, np->dirty_rx); |
| |
| /* |
| * FIXME: what if someone tries to close a device |
| * that is suspended? |
| * Should we reenable the nic to switch to |
| * the final WOL settings? |
| */ |
| |
| del_timer_sync(&np->timer); |
| disable_irq(dev->irq); |
| spin_lock_irq(&np->lock); |
| natsemi_irq_disable(dev); |
| np->hands_off = 1; |
| spin_unlock_irq(&np->lock); |
| enable_irq(dev->irq); |
| |
| free_irq(dev->irq, dev); |
| |
| /* Interrupt disabled, interrupt handler released, |
| * queue stopped, timer deleted, rtnl_lock held |
| * All async codepaths that access the driver are disabled. |
| */ |
| spin_lock_irq(&np->lock); |
| np->hands_off = 0; |
| readl(ioaddr + IntrMask); |
| readw(ioaddr + MIntrStatus); |
| |
| /* Freeze Stats */ |
| writel(StatsFreeze, ioaddr + StatsCtrl); |
| |
| /* Stop the chip's Tx and Rx processes. */ |
| natsemi_stop_rxtx(dev); |
| |
| __get_stats(dev); |
| spin_unlock_irq(&np->lock); |
| |
| /* clear the carrier last - an interrupt could reenable it otherwise */ |
| netif_carrier_off(dev); |
| netif_stop_queue(dev); |
| |
| dump_ring(dev); |
| drain_ring(dev); |
| free_ring(dev); |
| |
| { |
| u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; |
| if (wol) { |
| /* restart the NIC in WOL mode. |
| * The nic must be stopped for this. |
| */ |
| enable_wol_mode(dev, 0); |
| } else { |
| /* Restore PME enable bit unmolested */ |
| writel(np->SavedClkRun, ioaddr + ClkRun); |
| } |
| } |
| return 0; |
| } |
| |
| |
| static void __devexit natsemi_remove1 (struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata(pdev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround); |
| unregister_netdev (dev); |
| pci_release_regions (pdev); |
| iounmap(ioaddr); |
| free_netdev (dev); |
| pci_set_drvdata(pdev, NULL); |
| } |
| |
| #ifdef CONFIG_PM |
| |
| /* |
| * The ns83815 chip doesn't have explicit RxStop bits. |
| * Kicking the Rx or Tx process for a new packet reenables the Rx process |
| * of the nic, thus this function must be very careful: |
| * |
| * suspend/resume synchronization: |
| * entry points: |
| * netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler, |
| * start_tx, tx_timeout |
| * |
| * No function accesses the hardware without checking np->hands_off. |
| * the check occurs under spin_lock_irq(&np->lock); |
| * exceptions: |
| * * netdev_ioctl: noncritical access. |
| * * netdev_open: cannot happen due to the device_detach |
| * * netdev_close: doesn't hurt. |
| * * netdev_timer: timer stopped by natsemi_suspend. |
| * * intr_handler: doesn't acquire the spinlock. suspend calls |
| * disable_irq() to enforce synchronization. |
| * * natsemi_poll: checks before reenabling interrupts. suspend |
| * sets hands_off, disables interrupts and then waits with |
| * netif_poll_disable(). |
| * |
| * Interrupts must be disabled, otherwise hands_off can cause irq storms. |
| */ |
| |
| static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state) |
| { |
| struct net_device *dev = pci_get_drvdata (pdev); |
| struct netdev_private *np = netdev_priv(dev); |
| void __iomem * ioaddr = ns_ioaddr(dev); |
| |
| rtnl_lock(); |
| if (netif_running (dev)) { |
| del_timer_sync(&np->timer); |
| |
| disable_irq(dev->irq); |
| spin_lock_irq(&np->lock); |
| |
| natsemi_irq_disable(dev); |
| np->hands_off = 1; |
| natsemi_stop_rxtx(dev); |
| netif_stop_queue(dev); |
| |
| spin_unlock_irq(&np->lock); |
| enable_irq(dev->irq); |
| |
| netif_poll_disable(dev); |
| |
| /* Update the error counts. */ |
| __get_stats(dev); |
| |
| /* pci_power_off(pdev, -1); */ |
| drain_ring(dev); |
| { |
| u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; |
| /* Restore PME enable bit */ |
| if (wol) { |
| /* restart the NIC in WOL mode. |
| * The nic must be stopped for this. |
| * FIXME: use the WOL interrupt |
| */ |
| enable_wol_mode(dev, 0); |
| } else { |
| /* Restore PME enable bit unmolested */ |
| writel(np->SavedClkRun, ioaddr + ClkRun); |
| } |
| } |
| } |
| netif_device_detach(dev); |
| rtnl_unlock(); |
| return 0; |
| } |
| |
| |
| static int natsemi_resume (struct pci_dev *pdev) |
| { |
| struct net_device *dev = pci_get_drvdata (pdev); |
| struct netdev_private *np = netdev_priv(dev); |
| |
| rtnl_lock(); |
| if (netif_device_present(dev)) |
| goto out; |
| if (netif_running(dev)) { |
| BUG_ON(!np->hands_off); |
| pci_enable_device(pdev); |
| /* pci_power_on(pdev); */ |
| |
| natsemi_reset(dev); |
| init_ring(dev); |
| disable_irq(dev->irq); |
| spin_lock_irq(&np->lock); |
| np->hands_off = 0; |
| init_registers(dev); |
| netif_device_attach(dev); |
| spin_unlock_irq(&np->lock); |
| enable_irq(dev->irq); |
| |
| mod_timer(&np->timer, jiffies + 1*HZ); |
| } |
| netif_device_attach(dev); |
| netif_poll_enable(dev); |
| out: |
| rtnl_unlock(); |
| return 0; |
| } |
| |
| #endif /* CONFIG_PM */ |
| |
| static struct pci_driver natsemi_driver = { |
| .name = DRV_NAME, |
| .id_table = natsemi_pci_tbl, |
| .probe = natsemi_probe1, |
| .remove = __devexit_p(natsemi_remove1), |
| #ifdef CONFIG_PM |
| .suspend = natsemi_suspend, |
| .resume = natsemi_resume, |
| #endif |
| }; |
| |
| static int __init natsemi_init_mod (void) |
| { |
| /* when a module, this is printed whether or not devices are found in probe */ |
| #ifdef MODULE |
| printk(version); |
| #endif |
| |
| return pci_register_driver(&natsemi_driver); |
| } |
| |
| static void __exit natsemi_exit_mod (void) |
| { |
| pci_unregister_driver (&natsemi_driver); |
| } |
| |
| module_init(natsemi_init_mod); |
| module_exit(natsemi_exit_mod); |
| |