blob: b61604a08eeb5407ca26a50c28649a9616259652 [file] [log] [blame]
/*
* Copyright (C) 2007 Google, Inc.
* Copyright (c) 2009-2012, Code Aurora Forum. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/init.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/percpu.h>
#include <asm/localtimer.h>
#include <asm/mach/time.h>
#include <asm/hardware/gic.h>
#include <asm/sched_clock.h>
#include <asm/smp_plat.h>
#include <mach/msm_iomap.h>
#include <mach/irqs.h>
#include <mach/socinfo.h>
#if defined(CONFIG_MSM_SMD)
#include "smd_private.h"
#endif
#include "timer.h"
enum {
MSM_TIMER_DEBUG_SYNC = 1U << 0,
};
static int msm_timer_debug_mask;
module_param_named(debug_mask, msm_timer_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP);
#ifdef CONFIG_MSM7X00A_USE_GP_TIMER
#define DG_TIMER_RATING 100
#else
#define DG_TIMER_RATING 300
#endif
#ifndef MSM_TMR0_BASE
#define MSM_TMR0_BASE MSM_TMR_BASE
#endif
#define MSM_DGT_SHIFT (5)
#define TIMER_MATCH_VAL 0x0000
#define TIMER_COUNT_VAL 0x0004
#define TIMER_ENABLE 0x0008
#define TIMER_CLEAR 0x000C
#define DGT_CLK_CTL 0x0034
enum {
DGT_CLK_CTL_DIV_1 = 0,
DGT_CLK_CTL_DIV_2 = 1,
DGT_CLK_CTL_DIV_3 = 2,
DGT_CLK_CTL_DIV_4 = 3,
};
#define TIMER_STATUS 0x0088
#define TIMER_ENABLE_EN 1
#define TIMER_ENABLE_CLR_ON_MATCH_EN 2
#define LOCAL_TIMER 0
#define GLOBAL_TIMER 1
/*
* global_timer_offset is added to the regbase of a timer to force the memory
* access to come from the CPU0 region.
*/
static int global_timer_offset;
static int msm_global_timer;
#define NR_TIMERS ARRAY_SIZE(msm_clocks)
unsigned int gpt_hz = 32768;
unsigned int sclk_hz = 32768;
static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt);
static irqreturn_t msm_timer_interrupt(int irq, void *dev_id);
static cycle_t msm_gpt_read(struct clocksource *cs);
static cycle_t msm_dgt_read(struct clocksource *cs);
static void msm_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt);
static int msm_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt);
enum {
MSM_CLOCK_FLAGS_UNSTABLE_COUNT = 1U << 0,
MSM_CLOCK_FLAGS_ODD_MATCH_WRITE = 1U << 1,
MSM_CLOCK_FLAGS_DELAYED_WRITE_POST = 1U << 2,
};
struct msm_clock {
struct clock_event_device clockevent;
struct clocksource clocksource;
unsigned int irq;
void __iomem *regbase;
uint32_t freq;
uint32_t shift;
uint32_t flags;
uint32_t write_delay;
uint32_t rollover_offset;
uint32_t index;
void __iomem *global_counter;
void __iomem *local_counter;
uint32_t status_mask;
union {
struct clock_event_device *evt;
struct clock_event_device __percpu **percpu_evt;
};
};
enum {
MSM_CLOCK_GPT,
MSM_CLOCK_DGT,
};
struct msm_clock_percpu_data {
uint32_t last_set;
uint32_t sleep_offset;
uint32_t alarm_vtime;
uint32_t alarm;
uint32_t non_sleep_offset;
uint32_t in_sync;
cycle_t stopped_tick;
int stopped;
uint32_t last_sync_gpt;
u64 last_sync_jiffies;
};
struct msm_timer_sync_data_t {
struct msm_clock *clock;
uint32_t timeout;
int exit_sleep;
};
static struct msm_clock msm_clocks[] = {
[MSM_CLOCK_GPT] = {
.clockevent = {
.name = "gp_timer",
.features = CLOCK_EVT_FEAT_ONESHOT,
.shift = 32,
.rating = 200,
.set_next_event = msm_timer_set_next_event,
.set_mode = msm_timer_set_mode,
},
.clocksource = {
.name = "gp_timer",
.rating = 200,
.read = msm_gpt_read,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
},
.irq = INT_GP_TIMER_EXP,
.regbase = MSM_TMR_BASE + 0x4,
.freq = 32768,
.index = MSM_CLOCK_GPT,
.write_delay = 9,
},
[MSM_CLOCK_DGT] = {
.clockevent = {
.name = "dg_timer",
.features = CLOCK_EVT_FEAT_ONESHOT,
.shift = 32,
.rating = DG_TIMER_RATING,
.set_next_event = msm_timer_set_next_event,
.set_mode = msm_timer_set_mode,
},
.clocksource = {
.name = "dg_timer",
.rating = DG_TIMER_RATING,
.read = msm_dgt_read,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
},
.irq = INT_DEBUG_TIMER_EXP,
.regbase = MSM_TMR_BASE + 0x24,
.index = MSM_CLOCK_DGT,
.write_delay = 9,
}
};
static DEFINE_PER_CPU(struct msm_clock_percpu_data[NR_TIMERS],
msm_clocks_percpu);
static DEFINE_PER_CPU(struct msm_clock *, msm_active_clock);
static irqreturn_t msm_timer_interrupt(int irq, void *dev_id)
{
struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
if (evt->event_handler == NULL)
return IRQ_HANDLED;
evt->event_handler(evt);
return IRQ_HANDLED;
}
static uint32_t msm_read_timer_count(struct msm_clock *clock, int global)
{
uint32_t t1, t2, t3;
int loop_count = 0;
void __iomem *addr = clock->regbase + TIMER_COUNT_VAL +
global*global_timer_offset;
if (!(clock->flags & MSM_CLOCK_FLAGS_UNSTABLE_COUNT))
return __raw_readl_no_log(addr);
t1 = __raw_readl_no_log(addr);
t2 = __raw_readl_no_log(addr);
if ((t2-t1) <= 1)
return t2;
while (1) {
t1 = __raw_readl_no_log(addr);
t2 = __raw_readl_no_log(addr);
t3 = __raw_readl_no_log(addr);
cpu_relax();
if ((t3-t2) <= 1)
return t3;
if ((t2-t1) <= 1)
return t2;
if ((t2 >= t1) && (t3 >= t2))
return t2;
if (++loop_count == 5) {
pr_err("msm_read_timer_count timer %s did not "
"stabilize: %u -> %u -> %u\n",
clock->clockevent.name, t1, t2, t3);
return t3;
}
}
}
static cycle_t msm_gpt_read(struct clocksource *cs)
{
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_GPT];
struct msm_clock_percpu_data *clock_state =
&per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_GPT];
if (clock_state->stopped)
return clock_state->stopped_tick;
return msm_read_timer_count(clock, GLOBAL_TIMER) +
clock_state->sleep_offset;
}
static cycle_t msm_dgt_read(struct clocksource *cs)
{
struct msm_clock *clock = &msm_clocks[MSM_CLOCK_DGT];
struct msm_clock_percpu_data *clock_state =
&per_cpu(msm_clocks_percpu, 0)[MSM_CLOCK_DGT];
if (clock_state->stopped)
return clock_state->stopped_tick >> clock->shift;
return (msm_read_timer_count(clock, GLOBAL_TIMER) +
clock_state->sleep_offset) >> clock->shift;
}
static struct msm_clock *clockevent_to_clock(struct clock_event_device *evt)
{
int i;
if (!is_smp())
return container_of(evt, struct msm_clock, clockevent);
for (i = 0; i < NR_TIMERS; i++)
if (evt == &(msm_clocks[i].clockevent))
return &msm_clocks[i];
return &msm_clocks[msm_global_timer];
}
static int msm_timer_set_next_event(unsigned long cycles,
struct clock_event_device *evt)
{
int i;
struct msm_clock *clock;
struct msm_clock_percpu_data *clock_state;
uint32_t now;
uint32_t alarm;
int late;
clock = clockevent_to_clock(evt);
clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index];
if (clock_state->stopped)
return 0;
now = msm_read_timer_count(clock, LOCAL_TIMER);
alarm = now + (cycles << clock->shift);
if (clock->flags & MSM_CLOCK_FLAGS_ODD_MATCH_WRITE)
while (now == clock_state->last_set)
now = msm_read_timer_count(clock, LOCAL_TIMER);
clock_state->alarm = alarm;
__raw_writel(alarm, clock->regbase + TIMER_MATCH_VAL);
if (clock->flags & MSM_CLOCK_FLAGS_DELAYED_WRITE_POST) {
/* read the counter four extra times to make sure write posts
before reading the time */
for (i = 0; i < 4; i++)
__raw_readl_no_log(clock->regbase + TIMER_COUNT_VAL);
}
now = msm_read_timer_count(clock, LOCAL_TIMER);
clock_state->last_set = now;
clock_state->alarm_vtime = alarm + clock_state->sleep_offset;
late = now - alarm;
if (late >= (int)(-clock->write_delay << clock->shift) &&
late < clock->freq*5)
return -ETIME;
return 0;
}
static void msm_timer_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt)
{
struct msm_clock *clock;
struct msm_clock **cur_clock;
struct msm_clock_percpu_data *clock_state, *gpt_state;
unsigned long irq_flags;
struct irq_chip *chip;
clock = clockevent_to_clock(evt);
clock_state = &__get_cpu_var(msm_clocks_percpu)[clock->index];
gpt_state = &__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
local_irq_save(irq_flags);
switch (mode) {
case CLOCK_EVT_MODE_RESUME:
case CLOCK_EVT_MODE_PERIODIC:
break;
case CLOCK_EVT_MODE_ONESHOT:
clock_state->stopped = 0;
clock_state->sleep_offset =
-msm_read_timer_count(clock, LOCAL_TIMER) +
clock_state->stopped_tick;
get_cpu_var(msm_active_clock) = clock;
put_cpu_var(msm_active_clock);
__raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
chip = irq_get_chip(clock->irq);
if (chip && chip->irq_unmask)
chip->irq_unmask(irq_get_irq_data(clock->irq));
if (clock != &msm_clocks[MSM_CLOCK_GPT])
__raw_writel(TIMER_ENABLE_EN,
msm_clocks[MSM_CLOCK_GPT].regbase +
TIMER_ENABLE);
break;
case CLOCK_EVT_MODE_UNUSED:
case CLOCK_EVT_MODE_SHUTDOWN:
cur_clock = &get_cpu_var(msm_active_clock);
if (*cur_clock == clock)
*cur_clock = NULL;
put_cpu_var(msm_active_clock);
clock_state->in_sync = 0;
clock_state->stopped = 1;
clock_state->stopped_tick =
msm_read_timer_count(clock, LOCAL_TIMER) +
clock_state->sleep_offset;
__raw_writel(0, clock->regbase + TIMER_MATCH_VAL);
chip = irq_get_chip(clock->irq);
if (chip && chip->irq_mask)
chip->irq_mask(irq_get_irq_data(clock->irq));
if (!is_smp() || clock != &msm_clocks[MSM_CLOCK_DGT]
|| smp_processor_id())
__raw_writel(0, clock->regbase + TIMER_ENABLE);
if (msm_global_timer == MSM_CLOCK_DGT &&
clock != &msm_clocks[MSM_CLOCK_GPT]) {
gpt_state->in_sync = 0;
__raw_writel(0, msm_clocks[MSM_CLOCK_GPT].regbase +
TIMER_ENABLE);
}
break;
}
wmb();
local_irq_restore(irq_flags);
}
void __iomem *msm_timer_get_timer0_base(void)
{
return MSM_TMR_BASE + global_timer_offset;
}
#define MPM_SCLK_COUNT_VAL 0x0024
#ifdef CONFIG_PM
/*
* Retrieve the cycle count from sclk and optionally synchronize local clock
* with the sclk value.
*
* time_start and time_expired are callbacks that must be specified. The
* protocol uses them to detect timeout. The update callback is optional.
* If not NULL, update will be called so that it can update local clock.
*
* The function does not use the argument data directly; it passes data to
* the callbacks.
*
* Return value:
* 0: the operation failed
* >0: the slow clock value after time-sync
*/
static void (*msm_timer_sync_timeout)(void);
#if defined(CONFIG_MSM_DIRECT_SCLK_ACCESS)
uint32_t msm_timer_get_sclk_ticks(void)
{
uint32_t t1, t2;
int loop_count = 10;
int loop_zero_count = 3;
int tmp = USEC_PER_SEC;
do_div(tmp, sclk_hz);
tmp /= (loop_zero_count-1);
while (loop_zero_count--) {
t1 = __raw_readl_no_log(MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL);
do {
udelay(1);
t2 = t1;
t1 = __raw_readl_no_log(
MSM_RPM_MPM_BASE + MPM_SCLK_COUNT_VAL);
} while ((t2 != t1) && --loop_count);
if (!loop_count) {
printk(KERN_EMERG "SCLK did not stabilize\n");
return 0;
}
if (t1)
break;
udelay(tmp);
}
if (!loop_zero_count) {
printk(KERN_EMERG "SCLK reads zero\n");
return 0;
}
return t1;
}
static uint32_t msm_timer_do_sync_to_sclk(
void (*time_start)(struct msm_timer_sync_data_t *data),
bool (*time_expired)(struct msm_timer_sync_data_t *data),
void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
struct msm_timer_sync_data_t *data)
{
unsigned t1 = msm_timer_get_sclk_ticks();
if (t1 && update != NULL)
update(data, t1, sclk_hz);
return t1;
}
#elif defined(CONFIG_MSM_N_WAY_SMSM)
/* Time Master State Bits */
#define MASTER_BITS_PER_CPU 1
#define MASTER_TIME_PENDING \
(0x01UL << (MASTER_BITS_PER_CPU * SMSM_APPS_STATE))
/* Time Slave State Bits */
#define SLAVE_TIME_REQUEST 0x0400
#define SLAVE_TIME_POLL 0x0800
#define SLAVE_TIME_INIT 0x1000
static uint32_t msm_timer_do_sync_to_sclk(
void (*time_start)(struct msm_timer_sync_data_t *data),
bool (*time_expired)(struct msm_timer_sync_data_t *data),
void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
struct msm_timer_sync_data_t *data)
{
uint32_t *smem_clock;
uint32_t smem_clock_val;
uint32_t state;
smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE, sizeof(uint32_t));
if (smem_clock == NULL) {
printk(KERN_ERR "no smem clock\n");
return 0;
}
state = smsm_get_state(SMSM_MODEM_STATE);
if ((state & SMSM_INIT) == 0) {
printk(KERN_ERR "smsm not initialized\n");
return 0;
}
time_start(data);
while ((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) &
MASTER_TIME_PENDING) {
if (time_expired(data)) {
printk(KERN_EMERG "get_smem_clock: timeout 1 still "
"invalid state %x\n", state);
msm_timer_sync_timeout();
}
}
smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_POLL | SLAVE_TIME_INIT,
SLAVE_TIME_REQUEST);
time_start(data);
while (!((state = smsm_get_state(SMSM_TIME_MASTER_DEM)) &
MASTER_TIME_PENDING)) {
if (time_expired(data)) {
printk(KERN_EMERG "get_smem_clock: timeout 2 still "
"invalid state %x\n", state);
msm_timer_sync_timeout();
}
}
smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST, SLAVE_TIME_POLL);
time_start(data);
do {
smem_clock_val = *smem_clock;
} while (smem_clock_val == 0 && !time_expired(data));
state = smsm_get_state(SMSM_TIME_MASTER_DEM);
if (smem_clock_val) {
if (update != NULL)
update(data, smem_clock_val, sclk_hz);
if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
printk(KERN_INFO
"get_smem_clock: state %x clock %u\n",
state, smem_clock_val);
} else {
printk(KERN_EMERG
"get_smem_clock: timeout state %x clock %u\n",
state, smem_clock_val);
msm_timer_sync_timeout();
}
smsm_change_state(SMSM_APPS_DEM, SLAVE_TIME_REQUEST | SLAVE_TIME_POLL,
SLAVE_TIME_INIT);
return smem_clock_val;
}
#else /* CONFIG_MSM_N_WAY_SMSM */
static uint32_t msm_timer_do_sync_to_sclk(
void (*time_start)(struct msm_timer_sync_data_t *data),
bool (*time_expired)(struct msm_timer_sync_data_t *data),
void (*update)(struct msm_timer_sync_data_t *, uint32_t, uint32_t),
struct msm_timer_sync_data_t *data)
{
uint32_t *smem_clock;
uint32_t smem_clock_val;
uint32_t last_state;
uint32_t state;
smem_clock = smem_alloc(SMEM_SMEM_SLOW_CLOCK_VALUE,
sizeof(uint32_t));
if (smem_clock == NULL) {
printk(KERN_ERR "no smem clock\n");
return 0;
}
last_state = state = smsm_get_state(SMSM_MODEM_STATE);
smem_clock_val = *smem_clock;
if (smem_clock_val) {
printk(KERN_INFO "get_smem_clock: invalid start state %x "
"clock %u\n", state, smem_clock_val);
smsm_change_state(SMSM_APPS_STATE,
SMSM_TIMEWAIT, SMSM_TIMEINIT);
time_start(data);
while (*smem_clock != 0 && !time_expired(data))
;
smem_clock_val = *smem_clock;
if (smem_clock_val) {
printk(KERN_EMERG "get_smem_clock: timeout still "
"invalid state %x clock %u\n",
state, smem_clock_val);
msm_timer_sync_timeout();
}
}
time_start(data);
smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEINIT, SMSM_TIMEWAIT);
do {
smem_clock_val = *smem_clock;
state = smsm_get_state(SMSM_MODEM_STATE);
if (state != last_state) {
last_state = state;
if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
printk(KERN_INFO
"get_smem_clock: state %x clock %u\n",
state, smem_clock_val);
}
} while (smem_clock_val == 0 && !time_expired(data));
if (smem_clock_val) {
if (update != NULL)
update(data, smem_clock_val, sclk_hz);
} else {
printk(KERN_EMERG
"get_smem_clock: timeout state %x clock %u\n",
state, smem_clock_val);
msm_timer_sync_timeout();
}
smsm_change_state(SMSM_APPS_STATE, SMSM_TIMEWAIT, SMSM_TIMEINIT);
return smem_clock_val;
}
#endif /* CONFIG_MSM_N_WAY_SMSM */
/*
* Callback function that initializes the timeout value.
*/
static void msm_timer_sync_to_sclk_time_start(
struct msm_timer_sync_data_t *data)
{
/* approx 2 seconds */
uint32_t delta = data->clock->freq << data->clock->shift << 1;
data->timeout = msm_read_timer_count(data->clock, LOCAL_TIMER) + delta;
}
/*
* Callback function that checks the timeout.
*/
static bool msm_timer_sync_to_sclk_time_expired(
struct msm_timer_sync_data_t *data)
{
uint32_t delta = msm_read_timer_count(data->clock, LOCAL_TIMER) -
data->timeout;
return ((int32_t) delta) > 0;
}
/*
* Callback function that updates local clock from the specified source clock
* value and frequency.
*/
static void msm_timer_sync_update(struct msm_timer_sync_data_t *data,
uint32_t src_clk_val, uint32_t src_clk_freq)
{
struct msm_clock *dst_clk = data->clock;
struct msm_clock_percpu_data *dst_clk_state =
&__get_cpu_var(msm_clocks_percpu)[dst_clk->index];
uint32_t dst_clk_val = msm_read_timer_count(dst_clk, LOCAL_TIMER);
uint32_t new_offset;
if ((dst_clk->freq << dst_clk->shift) == src_clk_freq) {
new_offset = src_clk_val - dst_clk_val;
} else {
uint64_t temp;
/* separate multiplication and division steps to reduce
rounding error */
temp = src_clk_val;
temp *= dst_clk->freq << dst_clk->shift;
do_div(temp, src_clk_freq);
new_offset = (uint32_t)(temp) - dst_clk_val;
}
if (dst_clk_state->sleep_offset + dst_clk_state->non_sleep_offset !=
new_offset) {
if (data->exit_sleep)
dst_clk_state->sleep_offset =
new_offset - dst_clk_state->non_sleep_offset;
else
dst_clk_state->non_sleep_offset =
new_offset - dst_clk_state->sleep_offset;
if (msm_timer_debug_mask & MSM_TIMER_DEBUG_SYNC)
printk(KERN_INFO "sync clock %s: "
"src %u, new offset %u + %u\n",
dst_clk->clocksource.name, src_clk_val,
dst_clk_state->sleep_offset,
dst_clk_state->non_sleep_offset);
}
}
/*
* Synchronize GPT clock with sclk.
*/
static void msm_timer_sync_gpt_to_sclk(int exit_sleep)
{
struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
struct msm_clock_percpu_data *gpt_clk_state =
&__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
struct msm_timer_sync_data_t data;
uint32_t ret;
if (gpt_clk_state->in_sync)
return;
data.clock = gpt_clk;
data.timeout = 0;
data.exit_sleep = exit_sleep;
ret = msm_timer_do_sync_to_sclk(
msm_timer_sync_to_sclk_time_start,
msm_timer_sync_to_sclk_time_expired,
msm_timer_sync_update,
&data);
if (ret)
gpt_clk_state->in_sync = 1;
}
/*
* Synchronize clock with GPT clock.
*/
static void msm_timer_sync_to_gpt(struct msm_clock *clock, int exit_sleep)
{
struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
struct msm_clock_percpu_data *gpt_clk_state =
&__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
struct msm_clock_percpu_data *clock_state =
&__get_cpu_var(msm_clocks_percpu)[clock->index];
struct msm_timer_sync_data_t data;
uint32_t gpt_clk_val;
u64 gpt_period = (1ULL << 32) * HZ;
u64 now = get_jiffies_64();
do_div(gpt_period, gpt_hz);
BUG_ON(clock == gpt_clk);
if (clock_state->in_sync &&
(now - clock_state->last_sync_jiffies < (gpt_period >> 1)))
return;
gpt_clk_val = msm_read_timer_count(gpt_clk, LOCAL_TIMER)
+ gpt_clk_state->sleep_offset + gpt_clk_state->non_sleep_offset;
if (exit_sleep && gpt_clk_val < clock_state->last_sync_gpt)
clock_state->non_sleep_offset -= clock->rollover_offset;
data.clock = clock;
data.timeout = 0;
data.exit_sleep = exit_sleep;
msm_timer_sync_update(&data, gpt_clk_val, gpt_hz);
clock_state->in_sync = 1;
clock_state->last_sync_gpt = gpt_clk_val;
clock_state->last_sync_jiffies = now;
}
static void msm_timer_reactivate_alarm(struct msm_clock *clock)
{
struct msm_clock_percpu_data *clock_state =
&__get_cpu_var(msm_clocks_percpu)[clock->index];
long alarm_delta = clock_state->alarm_vtime -
clock_state->sleep_offset -
msm_read_timer_count(clock, LOCAL_TIMER);
alarm_delta >>= clock->shift;
if (alarm_delta < (long)clock->write_delay + 4)
alarm_delta = clock->write_delay + 4;
while (msm_timer_set_next_event(alarm_delta, &clock->clockevent))
;
}
int64_t msm_timer_enter_idle(void)
{
struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
struct msm_clock *clock = __get_cpu_var(msm_active_clock);
struct msm_clock_percpu_data *clock_state =
&__get_cpu_var(msm_clocks_percpu)[clock->index];
uint32_t alarm;
uint32_t count;
int32_t delta;
BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] &&
clock != &msm_clocks[MSM_CLOCK_DGT]);
msm_timer_sync_gpt_to_sclk(0);
if (clock != gpt_clk)
msm_timer_sync_to_gpt(clock, 0);
count = msm_read_timer_count(clock, LOCAL_TIMER);
if (clock_state->stopped++ == 0)
clock_state->stopped_tick = count + clock_state->sleep_offset;
alarm = clock_state->alarm;
delta = alarm - count;
if (delta <= -(int32_t)((clock->freq << clock->shift) >> 10)) {
/* timer should have triggered 1ms ago */
printk(KERN_ERR "msm_timer_enter_idle: timer late %d, "
"reprogram it\n", delta);
msm_timer_reactivate_alarm(clock);
}
if (delta <= 0)
return 0;
return clocksource_cyc2ns((alarm - count) >> clock->shift,
clock->clocksource.mult,
clock->clocksource.shift);
}
void msm_timer_exit_idle(int low_power)
{
struct msm_clock *gpt_clk = &msm_clocks[MSM_CLOCK_GPT];
struct msm_clock *clock = __get_cpu_var(msm_active_clock);
struct msm_clock_percpu_data *gpt_clk_state =
&__get_cpu_var(msm_clocks_percpu)[MSM_CLOCK_GPT];
struct msm_clock_percpu_data *clock_state =
&__get_cpu_var(msm_clocks_percpu)[clock->index];
uint32_t enabled;
BUG_ON(clock != &msm_clocks[MSM_CLOCK_GPT] &&
clock != &msm_clocks[MSM_CLOCK_DGT]);
if (!low_power)
goto exit_idle_exit;
enabled = __raw_readl(gpt_clk->regbase + TIMER_ENABLE) &
TIMER_ENABLE_EN;
if (!enabled)
__raw_writel(TIMER_ENABLE_EN, gpt_clk->regbase + TIMER_ENABLE);
#if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT)
gpt_clk_state->in_sync = 0;
#else
gpt_clk_state->in_sync = gpt_clk_state->in_sync && enabled;
#endif
/* Make sure timer is actually enabled before we sync it */
wmb();
msm_timer_sync_gpt_to_sclk(1);
if (clock == gpt_clk)
goto exit_idle_alarm;
enabled = __raw_readl(clock->regbase + TIMER_ENABLE) & TIMER_ENABLE_EN;
if (!enabled)
__raw_writel(TIMER_ENABLE_EN, clock->regbase + TIMER_ENABLE);
#if defined(CONFIG_ARCH_MSM_SCORPION) || defined(CONFIG_ARCH_MSM_KRAIT)
clock_state->in_sync = 0;
#else
clock_state->in_sync = clock_state->in_sync && enabled;
#endif
/* Make sure timer is actually enabled before we sync it */
wmb();
msm_timer_sync_to_gpt(clock, 1);
exit_idle_alarm:
msm_timer_reactivate_alarm(clock);
exit_idle_exit:
clock_state->stopped--;
}
/*
* Callback function that initializes the timeout value.
*/
static void msm_timer_get_sclk_time_start(
struct msm_timer_sync_data_t *data)
{
data->timeout = 200000;
}
/*
* Callback function that checks the timeout.
*/
static bool msm_timer_get_sclk_time_expired(
struct msm_timer_sync_data_t *data)
{
udelay(10);
return --data->timeout <= 0;
}
/*
* Retrieve the cycle count from the sclk and convert it into
* nanoseconds.
*
* On exit, if period is not NULL, it contains the period of the
* sclk in nanoseconds, i.e. how long the cycle count wraps around.
*
* Return value:
* 0: the operation failed; period is not set either
* >0: time in nanoseconds
*/
int64_t msm_timer_get_sclk_time(int64_t *period)
{
struct msm_timer_sync_data_t data;
uint32_t clock_value;
int64_t tmp;
memset(&data, 0, sizeof(data));
clock_value = msm_timer_do_sync_to_sclk(
msm_timer_get_sclk_time_start,
msm_timer_get_sclk_time_expired,
NULL,
&data);
if (!clock_value)
return 0;
if (period) {
tmp = 1LL << 32;
tmp *= NSEC_PER_SEC;
do_div(tmp, sclk_hz);
*period = tmp;
}
tmp = (int64_t)clock_value;
tmp *= NSEC_PER_SEC;
do_div(tmp, sclk_hz);
return tmp;
}
int __init msm_timer_init_time_sync(void (*timeout)(void))
{
#if defined(CONFIG_MSM_N_WAY_SMSM) && !defined(CONFIG_MSM_DIRECT_SCLK_ACCESS)
int ret = smsm_change_intr_mask(SMSM_TIME_MASTER_DEM, 0xFFFFFFFF, 0);
if (ret) {
printk(KERN_ERR "%s: failed to clear interrupt mask, %d\n",
__func__, ret);
return ret;
}
smsm_change_state(SMSM_APPS_DEM,
SLAVE_TIME_REQUEST | SLAVE_TIME_POLL, SLAVE_TIME_INIT);
#endif
BUG_ON(timeout == NULL);
msm_timer_sync_timeout = timeout;
return 0;
}
#endif
static u32 notrace msm_read_sched_clock(void)
{
struct msm_clock *clock = &msm_clocks[msm_global_timer];
struct clocksource *cs = &clock->clocksource;
return cs->read(NULL);
}
int read_current_timer(unsigned long *timer_val)
{
struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT];
*timer_val = msm_read_timer_count(dgt, GLOBAL_TIMER);
return 0;
}
static void __init msm_sched_clock_init(void)
{
struct msm_clock *clock = &msm_clocks[msm_global_timer];
setup_sched_clock(msm_read_sched_clock, 32 - clock->shift, clock->freq);
}
#ifdef CONFIG_LOCAL_TIMERS
int __cpuinit local_timer_setup(struct clock_event_device *evt)
{
static DEFINE_PER_CPU(bool, first_boot) = true;
struct msm_clock *clock = &msm_clocks[msm_global_timer];
/* Use existing clock_event for cpu 0 */
if (!smp_processor_id())
return 0;
if (cpu_is_msm8x60() || soc_class_is_msm8960() ||
soc_class_is_apq8064() || soc_class_is_msm8930())
__raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
if (__get_cpu_var(first_boot)) {
__raw_writel(0, clock->regbase + TIMER_ENABLE);
__raw_writel(0, clock->regbase + TIMER_CLEAR);
__raw_writel(~0, clock->regbase + TIMER_MATCH_VAL);
__get_cpu_var(first_boot) = false;
if (clock->status_mask)
while (__raw_readl(MSM_TMR_BASE + TIMER_STATUS) &
clock->status_mask)
;
}
evt->irq = clock->irq;
evt->name = "local_timer";
evt->features = CLOCK_EVT_FEAT_ONESHOT;
evt->rating = clock->clockevent.rating;
evt->set_mode = msm_timer_set_mode;
evt->set_next_event = msm_timer_set_next_event;
evt->shift = clock->clockevent.shift;
evt->mult = div_sc(clock->freq, NSEC_PER_SEC, evt->shift);
evt->max_delta_ns =
clockevent_delta2ns(0xf0000000 >> clock->shift, evt);
evt->min_delta_ns = clockevent_delta2ns(4, evt);
*__this_cpu_ptr(clock->percpu_evt) = evt;
clockevents_register_device(evt);
enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING);
return 0;
}
void local_timer_stop(struct clock_event_device *evt)
{
evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
disable_percpu_irq(evt->irq);
}
static struct local_timer_ops msm_lt_ops = {
local_timer_setup,
local_timer_stop,
};
#endif /* CONFIG_LOCAL_TIMERS */
static void __init msm_timer_init(void)
{
int i;
int res;
struct irq_chip *chip;
struct msm_clock *dgt = &msm_clocks[MSM_CLOCK_DGT];
struct msm_clock *gpt = &msm_clocks[MSM_CLOCK_GPT];
if (cpu_is_msm7x01() || cpu_is_msm7x25() || cpu_is_msm7x27() ||
cpu_is_msm7x25a() || cpu_is_msm7x27a() || cpu_is_msm7x25aa() ||
cpu_is_msm7x27aa() || cpu_is_msm8625() || cpu_is_msm7x25ab()) {
dgt->shift = MSM_DGT_SHIFT;
dgt->freq = 19200000 >> MSM_DGT_SHIFT;
dgt->clockevent.shift = 32 + MSM_DGT_SHIFT;
dgt->clocksource.mask = CLOCKSOURCE_MASK(32 - MSM_DGT_SHIFT);
gpt->regbase = MSM_TMR_BASE;
dgt->regbase = MSM_TMR_BASE + 0x10;
gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT
| MSM_CLOCK_FLAGS_ODD_MATCH_WRITE
| MSM_CLOCK_FLAGS_DELAYED_WRITE_POST;
if (cpu_is_msm8625()) {
dgt->irq = MSM8625_INT_DEBUG_TIMER_EXP;
gpt->irq = MSM8625_INT_GP_TIMER_EXP;
global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE;
}
} else if (cpu_is_qsd8x50()) {
dgt->freq = 4800000;
gpt->regbase = MSM_TMR_BASE;
dgt->regbase = MSM_TMR_BASE + 0x10;
} else if (cpu_is_fsm9xxx())
dgt->freq = 4800000;
else if (cpu_is_msm7x30() || cpu_is_msm8x55()) {
gpt->status_mask = BIT(10);
dgt->status_mask = BIT(2);
dgt->freq = 6144000;
} else if (cpu_is_msm8x60()) {
global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE;
gpt->status_mask = BIT(10);
dgt->status_mask = BIT(2);
dgt->freq = 6750000;
__raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
} else if (cpu_is_msm9615()) {
dgt->freq = 6750000;
__raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
gpt->status_mask = BIT(10);
dgt->status_mask = BIT(2);
gpt->freq = 32765;
gpt_hz = 32765;
sclk_hz = 32765;
gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT;
dgt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT;
} else if (soc_class_is_msm8960() || soc_class_is_apq8064() ||
soc_class_is_msm8930()) {
global_timer_offset = MSM_TMR0_BASE - MSM_TMR_BASE;
dgt->freq = 6750000;
__raw_writel(DGT_CLK_CTL_DIV_4, MSM_TMR_BASE + DGT_CLK_CTL);
gpt->status_mask = BIT(10);
dgt->status_mask = BIT(2);
gpt->freq = 32765;
gpt_hz = 32765;
sclk_hz = 32765;
if (!soc_class_is_msm8930() && !cpu_is_msm8960ab()) {
gpt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT;
dgt->flags |= MSM_CLOCK_FLAGS_UNSTABLE_COUNT;
}
} else {
WARN(1, "Timer running on unknown hardware. Configure this! "
"Assuming default configuration.\n");
dgt->freq = 6750000;
}
if (msm_clocks[MSM_CLOCK_GPT].clocksource.rating > DG_TIMER_RATING)
msm_global_timer = MSM_CLOCK_GPT;
else
msm_global_timer = MSM_CLOCK_DGT;
for (i = 0; i < ARRAY_SIZE(msm_clocks); i++) {
struct msm_clock *clock = &msm_clocks[i];
struct clock_event_device *ce = &clock->clockevent;
struct clocksource *cs = &clock->clocksource;
__raw_writel(0, clock->regbase + TIMER_ENABLE);
__raw_writel(0, clock->regbase + TIMER_CLEAR);
__raw_writel(~0, clock->regbase + TIMER_MATCH_VAL);
if ((clock->freq << clock->shift) == gpt_hz) {
clock->rollover_offset = 0;
} else {
uint64_t temp;
temp = clock->freq << clock->shift;
temp <<= 32;
do_div(temp, gpt_hz);
clock->rollover_offset = (uint32_t) temp;
}
ce->mult = div_sc(clock->freq, NSEC_PER_SEC, ce->shift);
/* allow at least 10 seconds to notice that the timer wrapped */
ce->max_delta_ns =
clockevent_delta2ns(0xf0000000 >> clock->shift, ce);
/* ticks gets rounded down by one */
ce->min_delta_ns =
clockevent_delta2ns(clock->write_delay + 4, ce);
ce->cpumask = cpumask_of(0);
res = clocksource_register_hz(cs, clock->freq);
if (res)
printk(KERN_ERR "msm_timer_init: clocksource_register "
"failed for %s\n", cs->name);
ce->irq = clock->irq;
if (cpu_is_msm8x60() || cpu_is_msm9615() || cpu_is_msm8625() ||
soc_class_is_msm8960() || soc_class_is_apq8064() ||
soc_class_is_msm8930()) {
clock->percpu_evt = alloc_percpu(struct clock_event_device *);
if (!clock->percpu_evt) {
pr_err("msm_timer_init: memory allocation "
"failed for %s\n", ce->name);
continue;
}
*__this_cpu_ptr(clock->percpu_evt) = ce;
res = request_percpu_irq(ce->irq, msm_timer_interrupt,
ce->name, clock->percpu_evt);
if (!res)
enable_percpu_irq(ce->irq,
IRQ_TYPE_EDGE_RISING);
} else {
clock->evt = ce;
res = request_irq(ce->irq, msm_timer_interrupt,
IRQF_TIMER | IRQF_NOBALANCING | IRQF_TRIGGER_RISING,
ce->name, &clock->evt);
}
if (res)
pr_err("msm_timer_init: request_irq failed for %s\n",
ce->name);
chip = irq_get_chip(clock->irq);
if (chip && chip->irq_mask)
chip->irq_mask(irq_get_irq_data(clock->irq));
if (clock->status_mask)
while (__raw_readl(MSM_TMR_BASE + TIMER_STATUS) &
clock->status_mask)
;
clockevents_register_device(ce);
}
msm_sched_clock_init();
#ifdef ARCH_HAS_READ_CURRENT_TIMER
if (is_smp()) {
__raw_writel(1,
msm_clocks[MSM_CLOCK_DGT].regbase + TIMER_ENABLE);
set_delay_fn(read_current_timer_delay_loop);
}
#endif
#ifdef CONFIG_LOCAL_TIMERS
local_timer_register(&msm_lt_ops);
#endif
}
struct sys_timer msm_timer = {
.init = msm_timer_init
};