blob: 10c5a17b20dd34ace0cb50c26b997346c33a0a47 [file] [log] [blame]
/* Copyright (c) 2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/of.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/types.h>
#include <linux/hwmon.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/spmi.h>
#include <linux/of_irq.h>
#include <linux/wakelock.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/hwmon-sysfs.h>
#include <linux/qpnp/qpnp-adc.h>
#include <linux/platform_device.h>
/* QPNP IADC register definition */
#define QPNP_IADC_REVISION1 0x0
#define QPNP_IADC_REVISION2 0x1
#define QPNP_IADC_REVISION3 0x2
#define QPNP_IADC_REVISION4 0x3
#define QPNP_IADC_PERPH_TYPE 0x4
#define QPNP_IADC_PERH_SUBTYPE 0x5
#define QPNP_IADC_SUPPORTED_REVISION2 1
#define QPNP_STATUS1 0x8
#define QPNP_STATUS1_OP_MODE 4
#define QPNP_STATUS1_MULTI_MEAS_EN BIT(3)
#define QPNP_STATUS1_MEAS_INTERVAL_EN_STS BIT(2)
#define QPNP_STATUS1_REQ_STS BIT(1)
#define QPNP_STATUS1_EOC BIT(0)
#define QPNP_STATUS2 0x9
#define QPNP_STATUS2_CONV_SEQ_STATE_SHIFT 4
#define QPNP_STATUS2_FIFO_NOT_EMPTY_FLAG BIT(1)
#define QPNP_STATUS2_CONV_SEQ_TIMEOUT_STS BIT(0)
#define QPNP_CONV_TIMEOUT_ERR 2
#define QPNP_INT_RT_ST 0x10
#define QPNP_INT_SET_TYPE 0x11
#define QPNP_INT_SET_TYPE_LOW_THR_INT_SET BIT(4)
#define QPNP_INT_SET_TYPE_HIGH_THR_INT_SET BIT(3)
#define QPNP_INT_SET_TYPE_CONV_SEQ_TIMEOUT_INT_SET BIT(2)
#define QPNP_INT_SET_TYPE_FIFO_NOT_EMPTY_INT_SET BIT(1)
#define QPNP_INT_SET_TYPE_EOC_SET_INT_TYPE BIT(0)
#define QPNP_INT_POLARITY_HIGH 0x12
#define QPNP_INT_POLARITY_LOW 0x13
#define QPNP_INT_EN_SET 0x15
#define QPNP_INT_EN_SET_LOW_THR_INT_EN_SET BIT(4)
#define QPNP_INT_EN_SET_HIGH_THR_INT_EN_SET BIT(3)
#define QPNP_INT_EN_SET_CONV_SEQ_TIMEOUT_INT_EN BIT(2)
#define QPNP_INT_EN_SET_FIFO_NOT_EMPTY_INT_EN BIT(1)
#define QPNP_INT_EN_SET_EOC_INT_EN_SET BIT(0)
#define QPNP_INT_CLR 0x16
#define QPNP_INT_CLR_LOW_THR_INT_EN_CLR BIT(4)
#define QPNP_INT_CLR_HIGH_THR_INT_EN_CLKR BIT(3)
#define QPNP_INT_CLR_CONV_SEQ_TIMEOUT_INT_EN BIT(2)
#define QPNP_INT_CLR_FIFO_NOT_EMPTY_INT_EN BIT(1)
#define QPNP_INT_CLR_EOC_INT_EN_CLR BIT(0)
#define QPNP_INT_CLR_MASK 0x1f
#define QPNP_IADC_MODE_CTL 0x40
#define QPNP_OP_MODE_SHIFT 4
#define QPNP_USE_BMS_DATA BIT(4)
#define QPNP_VADC_SYNCH_EN BIT(2)
#define QPNP_OFFSET_RMV_EN BIT(1)
#define QPNP_ADC_TRIM_EN BIT(0)
#define QPNP_IADC_EN_CTL1 0x46
#define QPNP_IADC_ADC_EN BIT(7)
#define QPNP_ADC_CH_SEL_CTL 0x48
#define QPNP_ADC_DIG_PARAM 0x50
#define QPNP_ADC_CLK_SEL_MASK 0x3
#define QPNP_ADC_DEC_RATIO_SEL_MASK 0xc
#define QPNP_ADC_DIG_DEC_RATIO_SEL_SHIFT 2
#define QPNP_HW_SETTLE_DELAY 0x51
#define QPNP_CONV_REQ 0x52
#define QPNP_CONV_REQ_SET BIT(7)
#define QPNP_CONV_SEQ_CTL 0x54
#define QPNP_CONV_SEQ_HOLDOFF_SHIFT 4
#define QPNP_CONV_SEQ_TRIG_CTL 0x55
#define QPNP_FAST_AVG_CTL 0x5a
#define QPNP_M0_LOW_THR_LSB 0x5c
#define QPNP_M0_LOW_THR_MSB 0x5d
#define QPNP_M0_HIGH_THR_LSB 0x5e
#define QPNP_M0_HIGH_THR_MSB 0x5f
#define QPNP_M1_LOW_THR_LSB 0x69
#define QPNP_M1_LOW_THR_MSB 0x6a
#define QPNP_M1_HIGH_THR_LSB 0x6b
#define QPNP_M1_HIGH_THR_MSB 0x6c
#define QPNP_DATA0 0x60
#define QPNP_DATA1 0x61
#define QPNP_CONV_TIMEOUT_ERR 2
#define QPNP_IADC_SEC_ACCESS 0xD0
#define QPNP_IADC_SEC_ACCESS_DATA 0xA5
#define QPNP_IADC_MSB_OFFSET 0xF2
#define QPNP_IADC_LSB_OFFSET 0xF3
#define QPNP_IADC_NOMINAL_RSENSE 0xF4
#define QPNP_IADC_ATE_GAIN_CALIB_OFFSET 0xF5
#define QPNP_IADC_ADC_CH_SEL_CTL 0x48
#define QPNP_IADC_ADC_CHX_SEL_SHIFT 3
#define QPNP_IADC_ADC_DIG_PARAM 0x50
#define QPNP_IADC_CLK_SEL_SHIFT 1
#define QPNP_IADC_DEC_RATIO_SEL 3
#define QPNP_IADC_CONV_REQUEST 0x52
#define QPNP_IADC_CONV_REQ BIT(7)
#define QPNP_IADC_DATA0 0x60
#define QPNP_IADC_DATA1 0x61
#define QPNP_ADC_CONV_TIME_MIN 8000
#define QPNP_ADC_CONV_TIME_MAX 8200
#define QPNP_ADC_GAIN_NV 17857
#define QPNP_OFFSET_CALIBRATION_SHORT_CADC_LEADS_IDEAL 0
#define QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR 10000000
#define QPNP_IADC_NANO_VOLTS_FACTOR 1000000000
#define QPNP_IADC_CALIB_SECONDS 300000
#define QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT 15625
#define QPNP_IADC_DIE_TEMP_CALIB_OFFSET 5000
#define QPNP_RAW_CODE_16_BIT_MSB_MASK 0xff00
#define QPNP_RAW_CODE_16_BIT_LSB_MASK 0xff
#define QPNP_BIT_SHIFT_8 8
#define QPNP_RSENSE_MSB_SIGN_CHECK 0x80
struct qpnp_iadc_drv {
struct qpnp_adc_drv *adc;
int32_t rsense;
struct device *iadc_hwmon;
bool iadc_init_calib;
bool iadc_initialized;
int64_t die_temp_calib_offset;
struct delayed_work iadc_work;
struct sensor_device_attribute sens_attr[0];
};
struct qpnp_iadc_drv *qpnp_iadc;
static int32_t qpnp_iadc_read_reg(uint32_t reg, u8 *data)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
int rc;
rc = spmi_ext_register_readl(iadc->adc->spmi->ctrl, iadc->adc->slave,
(iadc->adc->offset + reg), data, 1);
if (rc < 0) {
pr_err("qpnp iadc read reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_iadc_write_reg(uint32_t reg, u8 data)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
int rc;
u8 *buf;
buf = &data;
rc = spmi_ext_register_writel(iadc->adc->spmi->ctrl, iadc->adc->slave,
(iadc->adc->offset + reg), buf, 1);
if (rc < 0) {
pr_err("qpnp iadc write reg %d failed with %d\n", reg, rc);
return rc;
}
return 0;
}
static int32_t qpnp_iadc_configure_interrupt(void)
{
int rc = 0;
u8 data = 0;
/* Configure interrupt as an Edge trigger */
rc = qpnp_iadc_write_reg(QPNP_INT_SET_TYPE,
QPNP_INT_CLR_MASK);
if (rc < 0) {
pr_err("%s Interrupt configure failed\n", __func__);
return rc;
}
/* Configure interrupt for rising edge trigger */
rc = qpnp_iadc_write_reg(QPNP_INT_POLARITY_HIGH,
QPNP_INT_CLR_MASK);
if (rc < 0) {
pr_err("%s Rising edge trigger configure failed\n", __func__);
return rc;
}
/* Disable low level interrupt triggering */
data = QPNP_INT_CLR_MASK;
rc = qpnp_iadc_write_reg(QPNP_INT_POLARITY_LOW,
(~data & QPNP_INT_CLR_MASK));
if (rc < 0) {
pr_err("%s Setting level low to disable failed\n", __func__);
return rc;
}
return 0;
}
static void trigger_iadc_completion(struct work_struct *work)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
int rc;
rc = qpnp_iadc_write_reg(QPNP_INT_CLR, QPNP_INT_CLR_MASK);
if (rc < 0)
pr_err("qpnp iadc interrupt mask failed with %d\n", rc);
complete(&iadc->adc->adc_rslt_completion);
return;
}
DECLARE_WORK(trigger_iadc_completion_work, trigger_iadc_completion);
static irqreturn_t qpnp_iadc_isr(int irq, void *dev_id)
{
schedule_work(&trigger_iadc_completion_work);
return IRQ_HANDLED;
}
static int32_t qpnp_iadc_enable(bool state)
{
int rc = 0;
u8 data = 0;
data = QPNP_IADC_ADC_EN;
if (state) {
rc = qpnp_iadc_write_reg(QPNP_IADC_EN_CTL1,
data);
if (rc < 0) {
pr_err("IADC enable failed\n");
return rc;
}
} else {
rc = qpnp_iadc_write_reg(QPNP_IADC_EN_CTL1,
(~data & QPNP_IADC_ADC_EN));
if (rc < 0) {
pr_err("IADC disable failed\n");
return rc;
}
}
return 0;
}
static int32_t qpnp_iadc_read_conversion_result(uint16_t *data)
{
uint8_t rslt_lsb, rslt_msb;
uint16_t rslt;
int32_t rc;
rc = qpnp_iadc_read_reg(QPNP_IADC_DATA0, &rslt_lsb);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_read_reg(QPNP_IADC_DATA1, &rslt_msb);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
rslt = (rslt_msb << 8) | rslt_lsb;
*data = rslt;
rc = qpnp_iadc_enable(false);
if (rc)
return rc;
return 0;
}
static int32_t qpnp_iadc_configure(enum qpnp_iadc_channels channel,
uint16_t *raw_code)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
u8 qpnp_iadc_mode_reg = 0, qpnp_iadc_ch_sel_reg = 0;
u8 qpnp_iadc_conv_req = 0, qpnp_iadc_dig_param_reg = 0;
int32_t rc = 0;
qpnp_iadc_ch_sel_reg = channel;
qpnp_iadc_dig_param_reg |= iadc->adc->amux_prop->decimation <<
QPNP_IADC_DEC_RATIO_SEL;
qpnp_iadc_conv_req = QPNP_IADC_CONV_REQ;
rc = qpnp_iadc_write_reg(QPNP_INT_EN_SET,
QPNP_INT_EN_SET_EOC_INT_EN_SET);
if (rc < 0) {
pr_err("qpnp adc configure error for interrupt setup\n");
return rc;
}
rc = qpnp_iadc_write_reg(QPNP_IADC_MODE_CTL, qpnp_iadc_mode_reg);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_write_reg(QPNP_IADC_ADC_CH_SEL_CTL,
qpnp_iadc_ch_sel_reg);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_write_reg(QPNP_ADC_DIG_PARAM,
qpnp_iadc_dig_param_reg);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
rc = qpnp_iadc_write_reg(QPNP_HW_SETTLE_DELAY,
iadc->adc->amux_prop->hw_settle_time);
if (rc < 0) {
pr_err("qpnp adc configure error for hw settling time setup\n");
return rc;
}
rc = qpnp_iadc_write_reg(QPNP_FAST_AVG_CTL,
iadc->adc->amux_prop->fast_avg_setup);
if (rc < 0) {
pr_err("qpnp adc fast averaging configure error\n");
return rc;
}
rc = qpnp_iadc_enable(true);
if (rc)
return rc;
rc = qpnp_iadc_write_reg(QPNP_CONV_REQ, qpnp_iadc_conv_req);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
wait_for_completion(&iadc->adc->adc_rslt_completion);
rc = qpnp_iadc_read_conversion_result(raw_code);
if (rc) {
pr_err("qpnp adc read adc failed with %d\n", rc);
return rc;
}
return 0;
}
static int32_t qpnp_convert_raw_offset_voltage(void)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
uint32_t num = 0;
num = iadc->adc->calib.offset_raw - iadc->adc->calib.offset_raw;
iadc->adc->calib.offset_uv = (num * QPNP_ADC_GAIN_NV)/
(iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw);
num = iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw;
iadc->adc->calib.gain_uv = (num * QPNP_ADC_GAIN_NV)/
(iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw);
return 0;
}
static int32_t qpnp_iadc_calibrate_for_trim(void)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
uint8_t rslt_lsb, rslt_msb;
int32_t rc = 0;
uint16_t raw_data;
rc = qpnp_iadc_configure(GAIN_CALIBRATION_17P857MV, &raw_data);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
goto fail;
}
iadc->adc->calib.gain_raw = raw_data;
rc = qpnp_iadc_configure(OFFSET_CALIBRATION_SHORT_CADC_LEADS,
&raw_data);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
goto fail;
}
iadc->adc->calib.offset_raw = raw_data;
if (rc < 0) {
pr_err("qpnp adc offset/gain calculation failed\n");
goto fail;
}
rc = qpnp_convert_raw_offset_voltage();
rslt_msb = (raw_data & QPNP_RAW_CODE_16_BIT_MSB_MASK) >>
QPNP_BIT_SHIFT_8;
rslt_lsb = raw_data & QPNP_RAW_CODE_16_BIT_LSB_MASK;
rc = qpnp_iadc_write_reg(QPNP_IADC_SEC_ACCESS,
QPNP_IADC_SEC_ACCESS_DATA);
if (rc < 0) {
pr_err("qpnp iadc configure error for sec access\n");
goto fail;
}
rc = qpnp_iadc_write_reg(QPNP_IADC_MSB_OFFSET,
rslt_msb);
if (rc < 0) {
pr_err("qpnp iadc configure error for MSB write\n");
goto fail;
}
rc = qpnp_iadc_write_reg(QPNP_IADC_SEC_ACCESS,
QPNP_IADC_SEC_ACCESS_DATA);
if (rc < 0) {
pr_err("qpnp iadc configure error for sec access\n");
goto fail;
}
rc = qpnp_iadc_write_reg(QPNP_IADC_LSB_OFFSET,
rslt_lsb);
if (rc < 0) {
pr_err("qpnp iadc configure error for LSB write\n");
goto fail;
}
fail:
return rc;
}
static void qpnp_iadc_work(struct work_struct *work)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
int rc = 0;
mutex_lock(&iadc->adc->adc_lock);
rc = qpnp_iadc_calibrate_for_trim();
if (rc)
pr_err("periodic IADC calibration failed\n");
mutex_unlock(&iadc->adc->adc_lock);
schedule_delayed_work(&iadc->iadc_work,
round_jiffies_relative(msecs_to_jiffies
(QPNP_IADC_CALIB_SECONDS)));
return;
}
static int32_t qpnp_iadc_version_check(void)
{
uint8_t revision;
int rc;
rc = qpnp_iadc_read_reg(QPNP_IADC_REVISION2, &revision);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
return rc;
}
if (revision < QPNP_IADC_SUPPORTED_REVISION2) {
pr_err("IADC Version not supported\n");
return -EINVAL;
}
return 0;
}
int32_t qpnp_iadc_is_ready(void)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
if (!iadc || !iadc->iadc_initialized)
return -EPROBE_DEFER;
else
return 0;
}
EXPORT_SYMBOL(qpnp_iadc_is_ready);
int32_t qpnp_iadc_get_rsense(int32_t *rsense)
{
uint8_t rslt_rsense;
int32_t rc, sign_bit = 0;
rc = qpnp_iadc_read_reg(QPNP_IADC_NOMINAL_RSENSE, &rslt_rsense);
if (rc < 0) {
pr_err("qpnp adc rsense read failed with %d\n", rc);
return rc;
}
if (rslt_rsense & QPNP_RSENSE_MSB_SIGN_CHECK)
sign_bit = 1;
rslt_rsense &= ~QPNP_RSENSE_MSB_SIGN_CHECK;
if (sign_bit)
*rsense = QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR -
(rslt_rsense * QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT);
else
*rsense = QPNP_IADC_INTERNAL_RSENSE_N_OHMS_FACTOR +
(rslt_rsense * QPNP_IADC_RSENSE_LSB_N_OHMS_PER_BIT);
return rc;
}
int32_t qpnp_check_pmic_temp(void)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
struct qpnp_vadc_result result_pmic_therm;
int rc;
rc = qpnp_vadc_read(DIE_TEMP, &result_pmic_therm);
if (rc < 0)
return rc;
if (((uint64_t) (result_pmic_therm.physical -
iadc->die_temp_calib_offset))
> QPNP_IADC_DIE_TEMP_CALIB_OFFSET) {
mutex_lock(&iadc->adc->adc_lock);
rc = qpnp_iadc_calibrate_for_trim();
if (rc)
pr_err("periodic IADC calibration failed\n");
mutex_unlock(&iadc->adc->adc_lock);
}
return 0;
}
int32_t qpnp_iadc_read(enum qpnp_iadc_channels channel,
struct qpnp_iadc_result *result)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
int32_t rc, rsense_n_ohms, sign = 0, num;
int64_t result_current;
uint16_t raw_data;
if (!iadc || !iadc->iadc_initialized)
return -EPROBE_DEFER;
rc = qpnp_check_pmic_temp();
if (rc) {
pr_err("Error checking pmic therm temp\n");
return rc;
}
mutex_lock(&iadc->adc->adc_lock);
rc = qpnp_iadc_configure(channel, &raw_data);
if (rc < 0) {
pr_err("qpnp adc result read failed with %d\n", rc);
goto fail;
}
rc = qpnp_iadc_get_rsense(&rsense_n_ohms);
num = raw_data - iadc->adc->calib.offset_raw;
if (num < 0) {
sign = 1;
num = -num;
}
result->result_uv = (num * QPNP_ADC_GAIN_NV)/
(iadc->adc->calib.gain_raw - iadc->adc->calib.offset_raw);
result_current = result->result_uv;
result_current *= QPNP_IADC_NANO_VOLTS_FACTOR;
do_div(result_current, rsense_n_ohms);
if (sign) {
result->result_uv = -result->result_uv;
result_current = -result_current;
}
result->result_ua = (int32_t) result_current;
fail:
mutex_unlock(&iadc->adc->adc_lock);
return rc;
}
EXPORT_SYMBOL(qpnp_iadc_read);
int32_t qpnp_iadc_get_gain_and_offset(struct qpnp_iadc_calib *result)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
int rc;
if (!iadc || !iadc->iadc_initialized)
return -EPROBE_DEFER;
rc = qpnp_check_pmic_temp();
if (rc) {
pr_err("Error checking pmic therm temp\n");
return rc;
}
mutex_lock(&iadc->adc->adc_lock);
result->gain_raw = iadc->adc->calib.gain_raw;
result->ideal_gain_nv = QPNP_ADC_GAIN_NV;
result->gain_uv = iadc->adc->calib.gain_uv;
result->offset_raw = iadc->adc->calib.offset_raw;
result->ideal_offset_uv =
QPNP_OFFSET_CALIBRATION_SHORT_CADC_LEADS_IDEAL;
result->offset_uv = iadc->adc->calib.offset_uv;
mutex_unlock(&iadc->adc->adc_lock);
return 0;
}
EXPORT_SYMBOL(qpnp_iadc_get_gain_and_offset);
static ssize_t qpnp_iadc_show(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct qpnp_iadc_result result;
int rc = -1;
rc = qpnp_iadc_read(attr->index, &result);
if (rc)
return 0;
return snprintf(buf, QPNP_ADC_HWMON_NAME_LENGTH,
"Result:%d\n", result.result_ua);
}
static struct sensor_device_attribute qpnp_adc_attr =
SENSOR_ATTR(NULL, S_IRUGO, qpnp_iadc_show, NULL, 0);
static int32_t qpnp_iadc_init_hwmon(struct spmi_device *spmi)
{
struct qpnp_iadc_drv *iadc = qpnp_iadc;
struct device_node *child;
struct device_node *node = spmi->dev.of_node;
int rc = 0, i = 0, channel;
for_each_child_of_node(node, child) {
channel = iadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.index = iadc->adc->adc_channels[i].channel_num;
qpnp_adc_attr.dev_attr.attr.name =
iadc->adc->adc_channels[i].name;
memcpy(&iadc->sens_attr[i], &qpnp_adc_attr,
sizeof(qpnp_adc_attr));
sysfs_attr_init(&iadc->sens_attr[i].dev_attr.attr);
rc = device_create_file(&spmi->dev,
&iadc->sens_attr[i].dev_attr);
if (rc) {
dev_err(&spmi->dev,
"device_create_file failed for dev %s\n",
iadc->adc->adc_channels[i].name);
goto hwmon_err_sens;
}
i++;
}
return 0;
hwmon_err_sens:
pr_err("Init HWMON failed for qpnp_iadc with %d\n", rc);
return rc;
}
static int __devinit qpnp_iadc_probe(struct spmi_device *spmi)
{
struct qpnp_iadc_drv *iadc;
struct qpnp_adc_drv *adc_qpnp;
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
int rc, count_adc_channel_list = 0;
if (!node)
return -EINVAL;
if (qpnp_iadc) {
pr_err("IADC already in use\n");
return -EBUSY;
}
for_each_child_of_node(node, child)
count_adc_channel_list++;
if (!count_adc_channel_list) {
pr_err("No channel listing\n");
return -EINVAL;
}
iadc = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_iadc_drv) +
(sizeof(struct sensor_device_attribute) *
count_adc_channel_list), GFP_KERNEL);
if (!iadc) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
adc_qpnp = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_adc_drv),
GFP_KERNEL);
if (!adc_qpnp) {
dev_err(&spmi->dev, "Unable to allocate memory\n");
return -ENOMEM;
}
iadc->adc = adc_qpnp;
rc = qpnp_adc_get_devicetree_data(spmi, iadc->adc);
if (rc) {
dev_err(&spmi->dev, "failed to read device tree\n");
return rc;
}
rc = of_property_read_u32(node, "qcom,rsense",
&iadc->rsense);
if (rc) {
pr_err("Invalid rsens reference property\n");
return -EINVAL;
}
rc = devm_request_irq(&spmi->dev, iadc->adc->adc_irq,
qpnp_iadc_isr,
IRQF_TRIGGER_RISING, "qpnp_iadc_interrupt", iadc);
if (rc) {
dev_err(&spmi->dev, "failed to request adc irq\n");
return rc;
} else
enable_irq_wake(iadc->adc->adc_irq);
iadc->iadc_init_calib = false;
dev_set_drvdata(&spmi->dev, iadc);
qpnp_iadc = iadc;
rc = qpnp_iadc_init_hwmon(spmi);
if (rc) {
dev_err(&spmi->dev, "failed to initialize qpnp hwmon adc\n");
return rc;
}
iadc->iadc_hwmon = hwmon_device_register(&iadc->adc->spmi->dev);
rc = qpnp_iadc_configure_interrupt();
if (rc) {
dev_err(&spmi->dev, "failed to configure interrupt\n");
return rc;
}
rc = qpnp_iadc_version_check();
if (rc) {
dev_err(&spmi->dev, "IADC version not supported\n");
return rc;
}
rc = qpnp_iadc_calibrate_for_trim();
if (rc) {
dev_err(&spmi->dev, "failed to calibrate for USR trim\n");
return rc;
}
iadc->iadc_init_calib = true;
INIT_DELAYED_WORK(&iadc->iadc_work, qpnp_iadc_work);
schedule_delayed_work(&iadc->iadc_work,
round_jiffies_relative(msecs_to_jiffies
(QPNP_IADC_CALIB_SECONDS)));
iadc->iadc_initialized = true;
return 0;
}
static int __devexit qpnp_iadc_remove(struct spmi_device *spmi)
{
struct qpnp_iadc_drv *iadc = dev_get_drvdata(&spmi->dev);
struct device_node *node = spmi->dev.of_node;
struct device_node *child;
int i = 0;
for_each_child_of_node(node, child) {
device_remove_file(&spmi->dev,
&iadc->sens_attr[i].dev_attr);
i++;
}
dev_set_drvdata(&spmi->dev, NULL);
return 0;
}
static const struct of_device_id qpnp_iadc_match_table[] = {
{ .compatible = "qcom,qpnp-iadc",
},
{}
};
static struct spmi_driver qpnp_iadc_driver = {
.driver = {
.name = "qcom,qpnp-iadc",
.of_match_table = qpnp_iadc_match_table,
},
.probe = qpnp_iadc_probe,
.remove = qpnp_iadc_remove,
};
static int __init qpnp_iadc_init(void)
{
return spmi_driver_register(&qpnp_iadc_driver);
}
module_init(qpnp_iadc_init);
static void __exit qpnp_iadc_exit(void)
{
spmi_driver_unregister(&qpnp_iadc_driver);
}
module_exit(qpnp_iadc_exit);
MODULE_DESCRIPTION("QPNP PMIC current ADC driver");
MODULE_LICENSE("GPL v2");