| /* |
| * linux/fs/namei.c |
| * |
| * Copyright (C) 1991, 1992 Linus Torvalds |
| */ |
| |
| /* |
| * Some corrections by tytso. |
| */ |
| |
| /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname |
| * lookup logic. |
| */ |
| /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. |
| */ |
| |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/fs.h> |
| #include <linux/namei.h> |
| #include <linux/pagemap.h> |
| #include <linux/fsnotify.h> |
| #include <linux/personality.h> |
| #include <linux/security.h> |
| #include <linux/ima.h> |
| #include <linux/syscalls.h> |
| #include <linux/mount.h> |
| #include <linux/audit.h> |
| #include <linux/capability.h> |
| #include <linux/file.h> |
| #include <linux/fcntl.h> |
| #include <linux/device_cgroup.h> |
| #include <linux/fs_struct.h> |
| #include <linux/posix_acl.h> |
| #include <asm/uaccess.h> |
| |
| #include "internal.h" |
| #include "mount.h" |
| |
| /* [Feb-1997 T. Schoebel-Theuer] |
| * Fundamental changes in the pathname lookup mechanisms (namei) |
| * were necessary because of omirr. The reason is that omirr needs |
| * to know the _real_ pathname, not the user-supplied one, in case |
| * of symlinks (and also when transname replacements occur). |
| * |
| * The new code replaces the old recursive symlink resolution with |
| * an iterative one (in case of non-nested symlink chains). It does |
| * this with calls to <fs>_follow_link(). |
| * As a side effect, dir_namei(), _namei() and follow_link() are now |
| * replaced with a single function lookup_dentry() that can handle all |
| * the special cases of the former code. |
| * |
| * With the new dcache, the pathname is stored at each inode, at least as |
| * long as the refcount of the inode is positive. As a side effect, the |
| * size of the dcache depends on the inode cache and thus is dynamic. |
| * |
| * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink |
| * resolution to correspond with current state of the code. |
| * |
| * Note that the symlink resolution is not *completely* iterative. |
| * There is still a significant amount of tail- and mid- recursion in |
| * the algorithm. Also, note that <fs>_readlink() is not used in |
| * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() |
| * may return different results than <fs>_follow_link(). Many virtual |
| * filesystems (including /proc) exhibit this behavior. |
| */ |
| |
| /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: |
| * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL |
| * and the name already exists in form of a symlink, try to create the new |
| * name indicated by the symlink. The old code always complained that the |
| * name already exists, due to not following the symlink even if its target |
| * is nonexistent. The new semantics affects also mknod() and link() when |
| * the name is a symlink pointing to a non-existent name. |
| * |
| * I don't know which semantics is the right one, since I have no access |
| * to standards. But I found by trial that HP-UX 9.0 has the full "new" |
| * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the |
| * "old" one. Personally, I think the new semantics is much more logical. |
| * Note that "ln old new" where "new" is a symlink pointing to a non-existing |
| * file does succeed in both HP-UX and SunOs, but not in Solaris |
| * and in the old Linux semantics. |
| */ |
| |
| /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink |
| * semantics. See the comments in "open_namei" and "do_link" below. |
| * |
| * [10-Sep-98 Alan Modra] Another symlink change. |
| */ |
| |
| /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: |
| * inside the path - always follow. |
| * in the last component in creation/removal/renaming - never follow. |
| * if LOOKUP_FOLLOW passed - follow. |
| * if the pathname has trailing slashes - follow. |
| * otherwise - don't follow. |
| * (applied in that order). |
| * |
| * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT |
| * restored for 2.4. This is the last surviving part of old 4.2BSD bug. |
| * During the 2.4 we need to fix the userland stuff depending on it - |
| * hopefully we will be able to get rid of that wart in 2.5. So far only |
| * XEmacs seems to be relying on it... |
| */ |
| /* |
| * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) |
| * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives |
| * any extra contention... |
| */ |
| |
| /* In order to reduce some races, while at the same time doing additional |
| * checking and hopefully speeding things up, we copy filenames to the |
| * kernel data space before using them.. |
| * |
| * POSIX.1 2.4: an empty pathname is invalid (ENOENT). |
| * PATH_MAX includes the nul terminator --RR. |
| */ |
| static int do_getname(const char __user *filename, char *page) |
| { |
| int retval; |
| unsigned long len = PATH_MAX; |
| |
| if (!segment_eq(get_fs(), KERNEL_DS)) { |
| if ((unsigned long) filename >= TASK_SIZE) |
| return -EFAULT; |
| if (TASK_SIZE - (unsigned long) filename < PATH_MAX) |
| len = TASK_SIZE - (unsigned long) filename; |
| } |
| |
| retval = strncpy_from_user(page, filename, len); |
| if (retval > 0) { |
| if (retval < len) |
| return 0; |
| return -ENAMETOOLONG; |
| } else if (!retval) |
| retval = -ENOENT; |
| return retval; |
| } |
| |
| static char *getname_flags(const char __user *filename, int flags, int *empty) |
| { |
| char *result = __getname(); |
| int retval; |
| |
| if (!result) |
| return ERR_PTR(-ENOMEM); |
| |
| retval = do_getname(filename, result); |
| if (retval < 0) { |
| if (retval == -ENOENT && empty) |
| *empty = 1; |
| if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) { |
| __putname(result); |
| return ERR_PTR(retval); |
| } |
| } |
| audit_getname(result); |
| return result; |
| } |
| |
| char *getname(const char __user * filename) |
| { |
| return getname_flags(filename, 0, 0); |
| } |
| |
| #ifdef CONFIG_AUDITSYSCALL |
| void putname(const char *name) |
| { |
| if (unlikely(!audit_dummy_context())) |
| audit_putname(name); |
| else |
| __putname(name); |
| } |
| EXPORT_SYMBOL(putname); |
| #endif |
| |
| static int check_acl(struct inode *inode, int mask) |
| { |
| #ifdef CONFIG_FS_POSIX_ACL |
| struct posix_acl *acl; |
| |
| if (mask & MAY_NOT_BLOCK) { |
| acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); |
| if (!acl) |
| return -EAGAIN; |
| /* no ->get_acl() calls in RCU mode... */ |
| if (acl == ACL_NOT_CACHED) |
| return -ECHILD; |
| return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); |
| } |
| |
| acl = get_cached_acl(inode, ACL_TYPE_ACCESS); |
| |
| /* |
| * A filesystem can force a ACL callback by just never filling the |
| * ACL cache. But normally you'd fill the cache either at inode |
| * instantiation time, or on the first ->get_acl call. |
| * |
| * If the filesystem doesn't have a get_acl() function at all, we'll |
| * just create the negative cache entry. |
| */ |
| if (acl == ACL_NOT_CACHED) { |
| if (inode->i_op->get_acl) { |
| acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS); |
| if (IS_ERR(acl)) |
| return PTR_ERR(acl); |
| } else { |
| set_cached_acl(inode, ACL_TYPE_ACCESS, NULL); |
| return -EAGAIN; |
| } |
| } |
| |
| if (acl) { |
| int error = posix_acl_permission(inode, acl, mask); |
| posix_acl_release(acl); |
| return error; |
| } |
| #endif |
| |
| return -EAGAIN; |
| } |
| |
| /* |
| * This does the basic permission checking |
| */ |
| static int acl_permission_check(struct inode *inode, int mask) |
| { |
| unsigned int mode = inode->i_mode; |
| |
| if (current_user_ns() != inode_userns(inode)) |
| goto other_perms; |
| |
| if (likely(current_fsuid() == inode->i_uid)) |
| mode >>= 6; |
| else { |
| if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { |
| int error = check_acl(inode, mask); |
| if (error != -EAGAIN) |
| return error; |
| } |
| |
| if (in_group_p(inode->i_gid)) |
| mode >>= 3; |
| } |
| |
| other_perms: |
| /* |
| * If the DACs are ok we don't need any capability check. |
| */ |
| if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) |
| return 0; |
| return -EACCES; |
| } |
| |
| /** |
| * generic_permission - check for access rights on a Posix-like filesystem |
| * @inode: inode to check access rights for |
| * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) |
| * |
| * Used to check for read/write/execute permissions on a file. |
| * We use "fsuid" for this, letting us set arbitrary permissions |
| * for filesystem access without changing the "normal" uids which |
| * are used for other things. |
| * |
| * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk |
| * request cannot be satisfied (eg. requires blocking or too much complexity). |
| * It would then be called again in ref-walk mode. |
| */ |
| int generic_permission(struct inode *inode, int mask) |
| { |
| int ret; |
| |
| /* |
| * Do the basic permission checks. |
| */ |
| ret = acl_permission_check(inode, mask); |
| if (ret != -EACCES) |
| return ret; |
| |
| if (S_ISDIR(inode->i_mode)) { |
| /* DACs are overridable for directories */ |
| if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) |
| return 0; |
| if (!(mask & MAY_WRITE)) |
| if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) |
| return 0; |
| return -EACCES; |
| } |
| /* |
| * Read/write DACs are always overridable. |
| * Executable DACs are overridable when there is |
| * at least one exec bit set. |
| */ |
| if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) |
| if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE)) |
| return 0; |
| |
| /* |
| * Searching includes executable on directories, else just read. |
| */ |
| mask &= MAY_READ | MAY_WRITE | MAY_EXEC; |
| if (mask == MAY_READ) |
| if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH)) |
| return 0; |
| |
| return -EACCES; |
| } |
| |
| /* |
| * We _really_ want to just do "generic_permission()" without |
| * even looking at the inode->i_op values. So we keep a cache |
| * flag in inode->i_opflags, that says "this has not special |
| * permission function, use the fast case". |
| */ |
| static inline int do_inode_permission(struct inode *inode, int mask) |
| { |
| if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { |
| if (likely(inode->i_op->permission)) |
| return inode->i_op->permission(inode, mask); |
| |
| /* This gets set once for the inode lifetime */ |
| spin_lock(&inode->i_lock); |
| inode->i_opflags |= IOP_FASTPERM; |
| spin_unlock(&inode->i_lock); |
| } |
| return generic_permission(inode, mask); |
| } |
| |
| /** |
| * inode_permission - check for access rights to a given inode |
| * @inode: inode to check permission on |
| * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) |
| * |
| * Used to check for read/write/execute permissions on an inode. |
| * We use "fsuid" for this, letting us set arbitrary permissions |
| * for filesystem access without changing the "normal" uids which |
| * are used for other things. |
| * |
| * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. |
| */ |
| int inode_permission(struct inode *inode, int mask) |
| { |
| int retval; |
| |
| if (unlikely(mask & MAY_WRITE)) { |
| umode_t mode = inode->i_mode; |
| |
| /* |
| * Nobody gets write access to a read-only fs. |
| */ |
| if (IS_RDONLY(inode) && |
| (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) |
| return -EROFS; |
| |
| /* |
| * Nobody gets write access to an immutable file. |
| */ |
| if (IS_IMMUTABLE(inode)) |
| return -EACCES; |
| } |
| |
| retval = do_inode_permission(inode, mask); |
| if (retval) |
| return retval; |
| |
| retval = devcgroup_inode_permission(inode, mask); |
| if (retval) |
| return retval; |
| |
| return security_inode_permission(inode, mask); |
| } |
| |
| /** |
| * path_get - get a reference to a path |
| * @path: path to get the reference to |
| * |
| * Given a path increment the reference count to the dentry and the vfsmount. |
| */ |
| void path_get(struct path *path) |
| { |
| mntget(path->mnt); |
| dget(path->dentry); |
| } |
| EXPORT_SYMBOL(path_get); |
| |
| /** |
| * path_put - put a reference to a path |
| * @path: path to put the reference to |
| * |
| * Given a path decrement the reference count to the dentry and the vfsmount. |
| */ |
| void path_put(struct path *path) |
| { |
| dput(path->dentry); |
| mntput(path->mnt); |
| } |
| EXPORT_SYMBOL(path_put); |
| |
| /* |
| * Path walking has 2 modes, rcu-walk and ref-walk (see |
| * Documentation/filesystems/path-lookup.txt). In situations when we can't |
| * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab |
| * normal reference counts on dentries and vfsmounts to transition to rcu-walk |
| * mode. Refcounts are grabbed at the last known good point before rcu-walk |
| * got stuck, so ref-walk may continue from there. If this is not successful |
| * (eg. a seqcount has changed), then failure is returned and it's up to caller |
| * to restart the path walk from the beginning in ref-walk mode. |
| */ |
| |
| /** |
| * unlazy_walk - try to switch to ref-walk mode. |
| * @nd: nameidata pathwalk data |
| * @dentry: child of nd->path.dentry or NULL |
| * Returns: 0 on success, -ECHILD on failure |
| * |
| * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry |
| * for ref-walk mode. @dentry must be a path found by a do_lookup call on |
| * @nd or NULL. Must be called from rcu-walk context. |
| */ |
| static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) |
| { |
| struct fs_struct *fs = current->fs; |
| struct dentry *parent = nd->path.dentry; |
| int want_root = 0; |
| |
| BUG_ON(!(nd->flags & LOOKUP_RCU)); |
| if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { |
| want_root = 1; |
| spin_lock(&fs->lock); |
| if (nd->root.mnt != fs->root.mnt || |
| nd->root.dentry != fs->root.dentry) |
| goto err_root; |
| } |
| spin_lock(&parent->d_lock); |
| if (!dentry) { |
| if (!__d_rcu_to_refcount(parent, nd->seq)) |
| goto err_parent; |
| BUG_ON(nd->inode != parent->d_inode); |
| } else { |
| if (dentry->d_parent != parent) |
| goto err_parent; |
| spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); |
| if (!__d_rcu_to_refcount(dentry, nd->seq)) |
| goto err_child; |
| /* |
| * If the sequence check on the child dentry passed, then |
| * the child has not been removed from its parent. This |
| * means the parent dentry must be valid and able to take |
| * a reference at this point. |
| */ |
| BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent); |
| BUG_ON(!parent->d_count); |
| parent->d_count++; |
| spin_unlock(&dentry->d_lock); |
| } |
| spin_unlock(&parent->d_lock); |
| if (want_root) { |
| path_get(&nd->root); |
| spin_unlock(&fs->lock); |
| } |
| mntget(nd->path.mnt); |
| |
| rcu_read_unlock(); |
| br_read_unlock(vfsmount_lock); |
| nd->flags &= ~LOOKUP_RCU; |
| return 0; |
| |
| err_child: |
| spin_unlock(&dentry->d_lock); |
| err_parent: |
| spin_unlock(&parent->d_lock); |
| err_root: |
| if (want_root) |
| spin_unlock(&fs->lock); |
| return -ECHILD; |
| } |
| |
| /** |
| * release_open_intent - free up open intent resources |
| * @nd: pointer to nameidata |
| */ |
| void release_open_intent(struct nameidata *nd) |
| { |
| struct file *file = nd->intent.open.file; |
| |
| if (file && !IS_ERR(file)) { |
| if (file->f_path.dentry == NULL) |
| put_filp(file); |
| else |
| fput(file); |
| } |
| } |
| |
| static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd) |
| { |
| return dentry->d_op->d_revalidate(dentry, nd); |
| } |
| |
| /** |
| * complete_walk - successful completion of path walk |
| * @nd: pointer nameidata |
| * |
| * If we had been in RCU mode, drop out of it and legitimize nd->path. |
| * Revalidate the final result, unless we'd already done that during |
| * the path walk or the filesystem doesn't ask for it. Return 0 on |
| * success, -error on failure. In case of failure caller does not |
| * need to drop nd->path. |
| */ |
| static int complete_walk(struct nameidata *nd) |
| { |
| struct dentry *dentry = nd->path.dentry; |
| int status; |
| |
| if (nd->flags & LOOKUP_RCU) { |
| nd->flags &= ~LOOKUP_RCU; |
| if (!(nd->flags & LOOKUP_ROOT)) |
| nd->root.mnt = NULL; |
| spin_lock(&dentry->d_lock); |
| if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) { |
| spin_unlock(&dentry->d_lock); |
| rcu_read_unlock(); |
| br_read_unlock(vfsmount_lock); |
| return -ECHILD; |
| } |
| BUG_ON(nd->inode != dentry->d_inode); |
| spin_unlock(&dentry->d_lock); |
| mntget(nd->path.mnt); |
| rcu_read_unlock(); |
| br_read_unlock(vfsmount_lock); |
| } |
| |
| if (likely(!(nd->flags & LOOKUP_JUMPED))) |
| return 0; |
| |
| if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE))) |
| return 0; |
| |
| if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT))) |
| return 0; |
| |
| /* Note: we do not d_invalidate() */ |
| status = d_revalidate(dentry, nd); |
| if (status > 0) |
| return 0; |
| |
| if (!status) |
| status = -ESTALE; |
| |
| path_put(&nd->path); |
| return status; |
| } |
| |
| static __always_inline void set_root(struct nameidata *nd) |
| { |
| if (!nd->root.mnt) |
| get_fs_root(current->fs, &nd->root); |
| } |
| |
| static int link_path_walk(const char *, struct nameidata *); |
| |
| static __always_inline void set_root_rcu(struct nameidata *nd) |
| { |
| if (!nd->root.mnt) { |
| struct fs_struct *fs = current->fs; |
| unsigned seq; |
| |
| do { |
| seq = read_seqcount_begin(&fs->seq); |
| nd->root = fs->root; |
| nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq); |
| } while (read_seqcount_retry(&fs->seq, seq)); |
| } |
| } |
| |
| static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link) |
| { |
| int ret; |
| |
| if (IS_ERR(link)) |
| goto fail; |
| |
| if (*link == '/') { |
| set_root(nd); |
| path_put(&nd->path); |
| nd->path = nd->root; |
| path_get(&nd->root); |
| nd->flags |= LOOKUP_JUMPED; |
| } |
| nd->inode = nd->path.dentry->d_inode; |
| |
| ret = link_path_walk(link, nd); |
| return ret; |
| fail: |
| path_put(&nd->path); |
| return PTR_ERR(link); |
| } |
| |
| static void path_put_conditional(struct path *path, struct nameidata *nd) |
| { |
| dput(path->dentry); |
| if (path->mnt != nd->path.mnt) |
| mntput(path->mnt); |
| } |
| |
| static inline void path_to_nameidata(const struct path *path, |
| struct nameidata *nd) |
| { |
| if (!(nd->flags & LOOKUP_RCU)) { |
| dput(nd->path.dentry); |
| if (nd->path.mnt != path->mnt) |
| mntput(nd->path.mnt); |
| } |
| nd->path.mnt = path->mnt; |
| nd->path.dentry = path->dentry; |
| } |
| |
| static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) |
| { |
| struct inode *inode = link->dentry->d_inode; |
| if (!IS_ERR(cookie) && inode->i_op->put_link) |
| inode->i_op->put_link(link->dentry, nd, cookie); |
| path_put(link); |
| } |
| |
| static __always_inline int |
| follow_link(struct path *link, struct nameidata *nd, void **p) |
| { |
| int error; |
| struct dentry *dentry = link->dentry; |
| |
| BUG_ON(nd->flags & LOOKUP_RCU); |
| |
| if (link->mnt == nd->path.mnt) |
| mntget(link->mnt); |
| |
| if (unlikely(current->total_link_count >= 40)) { |
| *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */ |
| path_put(&nd->path); |
| return -ELOOP; |
| } |
| cond_resched(); |
| current->total_link_count++; |
| |
| touch_atime(link->mnt, dentry); |
| nd_set_link(nd, NULL); |
| |
| error = security_inode_follow_link(link->dentry, nd); |
| if (error) { |
| *p = ERR_PTR(error); /* no ->put_link(), please */ |
| path_put(&nd->path); |
| return error; |
| } |
| |
| nd->last_type = LAST_BIND; |
| *p = dentry->d_inode->i_op->follow_link(dentry, nd); |
| error = PTR_ERR(*p); |
| if (!IS_ERR(*p)) { |
| char *s = nd_get_link(nd); |
| error = 0; |
| if (s) |
| error = __vfs_follow_link(nd, s); |
| else if (nd->last_type == LAST_BIND) { |
| nd->flags |= LOOKUP_JUMPED; |
| nd->inode = nd->path.dentry->d_inode; |
| if (nd->inode->i_op->follow_link) { |
| /* stepped on a _really_ weird one */ |
| path_put(&nd->path); |
| error = -ELOOP; |
| } |
| } |
| } |
| return error; |
| } |
| |
| static int follow_up_rcu(struct path *path) |
| { |
| struct mount *mnt = real_mount(path->mnt); |
| struct mount *parent; |
| struct dentry *mountpoint; |
| |
| parent = mnt->mnt_parent; |
| if (&parent->mnt == path->mnt) |
| return 0; |
| mountpoint = mnt->mnt_mountpoint; |
| path->dentry = mountpoint; |
| path->mnt = &parent->mnt; |
| return 1; |
| } |
| |
| int follow_up(struct path *path) |
| { |
| struct mount *mnt = real_mount(path->mnt); |
| struct mount *parent; |
| struct dentry *mountpoint; |
| |
| br_read_lock(vfsmount_lock); |
| parent = mnt->mnt_parent; |
| if (&parent->mnt == path->mnt) { |
| br_read_unlock(vfsmount_lock); |
| return 0; |
| } |
| mntget(&parent->mnt); |
| mountpoint = dget(mnt->mnt_mountpoint); |
| br_read_unlock(vfsmount_lock); |
| dput(path->dentry); |
| path->dentry = mountpoint; |
| mntput(path->mnt); |
| path->mnt = &parent->mnt; |
| return 1; |
| } |
| |
| /* |
| * Perform an automount |
| * - return -EISDIR to tell follow_managed() to stop and return the path we |
| * were called with. |
| */ |
| static int follow_automount(struct path *path, unsigned flags, |
| bool *need_mntput) |
| { |
| struct vfsmount *mnt; |
| int err; |
| |
| if (!path->dentry->d_op || !path->dentry->d_op->d_automount) |
| return -EREMOTE; |
| |
| /* We don't want to mount if someone's just doing a stat - |
| * unless they're stat'ing a directory and appended a '/' to |
| * the name. |
| * |
| * We do, however, want to mount if someone wants to open or |
| * create a file of any type under the mountpoint, wants to |
| * traverse through the mountpoint or wants to open the |
| * mounted directory. Also, autofs may mark negative dentries |
| * as being automount points. These will need the attentions |
| * of the daemon to instantiate them before they can be used. |
| */ |
| if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | |
| LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && |
| path->dentry->d_inode) |
| return -EISDIR; |
| |
| current->total_link_count++; |
| if (current->total_link_count >= 40) |
| return -ELOOP; |
| |
| mnt = path->dentry->d_op->d_automount(path); |
| if (IS_ERR(mnt)) { |
| /* |
| * The filesystem is allowed to return -EISDIR here to indicate |
| * it doesn't want to automount. For instance, autofs would do |
| * this so that its userspace daemon can mount on this dentry. |
| * |
| * However, we can only permit this if it's a terminal point in |
| * the path being looked up; if it wasn't then the remainder of |
| * the path is inaccessible and we should say so. |
| */ |
| if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) |
| return -EREMOTE; |
| return PTR_ERR(mnt); |
| } |
| |
| if (!mnt) /* mount collision */ |
| return 0; |
| |
| if (!*need_mntput) { |
| /* lock_mount() may release path->mnt on error */ |
| mntget(path->mnt); |
| *need_mntput = true; |
| } |
| err = finish_automount(mnt, path); |
| |
| switch (err) { |
| case -EBUSY: |
| /* Someone else made a mount here whilst we were busy */ |
| return 0; |
| case 0: |
| path_put(path); |
| path->mnt = mnt; |
| path->dentry = dget(mnt->mnt_root); |
| return 0; |
| default: |
| return err; |
| } |
| |
| } |
| |
| /* |
| * Handle a dentry that is managed in some way. |
| * - Flagged for transit management (autofs) |
| * - Flagged as mountpoint |
| * - Flagged as automount point |
| * |
| * This may only be called in refwalk mode. |
| * |
| * Serialization is taken care of in namespace.c |
| */ |
| static int follow_managed(struct path *path, unsigned flags) |
| { |
| struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ |
| unsigned managed; |
| bool need_mntput = false; |
| int ret = 0; |
| |
| /* Given that we're not holding a lock here, we retain the value in a |
| * local variable for each dentry as we look at it so that we don't see |
| * the components of that value change under us */ |
| while (managed = ACCESS_ONCE(path->dentry->d_flags), |
| managed &= DCACHE_MANAGED_DENTRY, |
| unlikely(managed != 0)) { |
| /* Allow the filesystem to manage the transit without i_mutex |
| * being held. */ |
| if (managed & DCACHE_MANAGE_TRANSIT) { |
| BUG_ON(!path->dentry->d_op); |
| BUG_ON(!path->dentry->d_op->d_manage); |
| ret = path->dentry->d_op->d_manage(path->dentry, false); |
| if (ret < 0) |
| break; |
| } |
| |
| /* Transit to a mounted filesystem. */ |
| if (managed & DCACHE_MOUNTED) { |
| struct vfsmount *mounted = lookup_mnt(path); |
| if (mounted) { |
| dput(path->dentry); |
| if (need_mntput) |
| mntput(path->mnt); |
| path->mnt = mounted; |
| path->dentry = dget(mounted->mnt_root); |
| need_mntput = true; |
| continue; |
| } |
| |
| /* Something is mounted on this dentry in another |
| * namespace and/or whatever was mounted there in this |
| * namespace got unmounted before we managed to get the |
| * vfsmount_lock */ |
| } |
| |
| /* Handle an automount point */ |
| if (managed & DCACHE_NEED_AUTOMOUNT) { |
| ret = follow_automount(path, flags, &need_mntput); |
| if (ret < 0) |
| break; |
| continue; |
| } |
| |
| /* We didn't change the current path point */ |
| break; |
| } |
| |
| if (need_mntput && path->mnt == mnt) |
| mntput(path->mnt); |
| if (ret == -EISDIR) |
| ret = 0; |
| return ret < 0 ? ret : need_mntput; |
| } |
| |
| int follow_down_one(struct path *path) |
| { |
| struct vfsmount *mounted; |
| |
| mounted = lookup_mnt(path); |
| if (mounted) { |
| dput(path->dentry); |
| mntput(path->mnt); |
| path->mnt = mounted; |
| path->dentry = dget(mounted->mnt_root); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline bool managed_dentry_might_block(struct dentry *dentry) |
| { |
| return (dentry->d_flags & DCACHE_MANAGE_TRANSIT && |
| dentry->d_op->d_manage(dentry, true) < 0); |
| } |
| |
| /* |
| * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if |
| * we meet a managed dentry that would need blocking. |
| */ |
| static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, |
| struct inode **inode) |
| { |
| for (;;) { |
| struct mount *mounted; |
| /* |
| * Don't forget we might have a non-mountpoint managed dentry |
| * that wants to block transit. |
| */ |
| if (unlikely(managed_dentry_might_block(path->dentry))) |
| return false; |
| |
| if (!d_mountpoint(path->dentry)) |
| break; |
| |
| mounted = __lookup_mnt(path->mnt, path->dentry, 1); |
| if (!mounted) |
| break; |
| path->mnt = &mounted->mnt; |
| path->dentry = mounted->mnt.mnt_root; |
| nd->flags |= LOOKUP_JUMPED; |
| nd->seq = read_seqcount_begin(&path->dentry->d_seq); |
| /* |
| * Update the inode too. We don't need to re-check the |
| * dentry sequence number here after this d_inode read, |
| * because a mount-point is always pinned. |
| */ |
| *inode = path->dentry->d_inode; |
| } |
| return true; |
| } |
| |
| static void follow_mount_rcu(struct nameidata *nd) |
| { |
| while (d_mountpoint(nd->path.dentry)) { |
| struct mount *mounted; |
| mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1); |
| if (!mounted) |
| break; |
| nd->path.mnt = &mounted->mnt; |
| nd->path.dentry = mounted->mnt.mnt_root; |
| nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); |
| } |
| } |
| |
| static int follow_dotdot_rcu(struct nameidata *nd) |
| { |
| set_root_rcu(nd); |
| |
| while (1) { |
| if (nd->path.dentry == nd->root.dentry && |
| nd->path.mnt == nd->root.mnt) { |
| break; |
| } |
| if (nd->path.dentry != nd->path.mnt->mnt_root) { |
| struct dentry *old = nd->path.dentry; |
| struct dentry *parent = old->d_parent; |
| unsigned seq; |
| |
| seq = read_seqcount_begin(&parent->d_seq); |
| if (read_seqcount_retry(&old->d_seq, nd->seq)) |
| goto failed; |
| nd->path.dentry = parent; |
| nd->seq = seq; |
| break; |
| } |
| if (!follow_up_rcu(&nd->path)) |
| break; |
| nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); |
| } |
| follow_mount_rcu(nd); |
| nd->inode = nd->path.dentry->d_inode; |
| return 0; |
| |
| failed: |
| nd->flags &= ~LOOKUP_RCU; |
| if (!(nd->flags & LOOKUP_ROOT)) |
| nd->root.mnt = NULL; |
| rcu_read_unlock(); |
| br_read_unlock(vfsmount_lock); |
| return -ECHILD; |
| } |
| |
| /* |
| * Follow down to the covering mount currently visible to userspace. At each |
| * point, the filesystem owning that dentry may be queried as to whether the |
| * caller is permitted to proceed or not. |
| */ |
| int follow_down(struct path *path) |
| { |
| unsigned managed; |
| int ret; |
| |
| while (managed = ACCESS_ONCE(path->dentry->d_flags), |
| unlikely(managed & DCACHE_MANAGED_DENTRY)) { |
| /* Allow the filesystem to manage the transit without i_mutex |
| * being held. |
| * |
| * We indicate to the filesystem if someone is trying to mount |
| * something here. This gives autofs the chance to deny anyone |
| * other than its daemon the right to mount on its |
| * superstructure. |
| * |
| * The filesystem may sleep at this point. |
| */ |
| if (managed & DCACHE_MANAGE_TRANSIT) { |
| BUG_ON(!path->dentry->d_op); |
| BUG_ON(!path->dentry->d_op->d_manage); |
| ret = path->dentry->d_op->d_manage( |
| path->dentry, false); |
| if (ret < 0) |
| return ret == -EISDIR ? 0 : ret; |
| } |
| |
| /* Transit to a mounted filesystem. */ |
| if (managed & DCACHE_MOUNTED) { |
| struct vfsmount *mounted = lookup_mnt(path); |
| if (!mounted) |
| break; |
| dput(path->dentry); |
| mntput(path->mnt); |
| path->mnt = mounted; |
| path->dentry = dget(mounted->mnt_root); |
| continue; |
| } |
| |
| /* Don't handle automount points here */ |
| break; |
| } |
| return 0; |
| } |
| |
| /* |
| * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() |
| */ |
| static void follow_mount(struct path *path) |
| { |
| while (d_mountpoint(path->dentry)) { |
| struct vfsmount *mounted = lookup_mnt(path); |
| if (!mounted) |
| break; |
| dput(path->dentry); |
| mntput(path->mnt); |
| path->mnt = mounted; |
| path->dentry = dget(mounted->mnt_root); |
| } |
| } |
| |
| static void follow_dotdot(struct nameidata *nd) |
| { |
| set_root(nd); |
| |
| while(1) { |
| struct dentry *old = nd->path.dentry; |
| |
| if (nd->path.dentry == nd->root.dentry && |
| nd->path.mnt == nd->root.mnt) { |
| break; |
| } |
| if (nd->path.dentry != nd->path.mnt->mnt_root) { |
| /* rare case of legitimate dget_parent()... */ |
| nd->path.dentry = dget_parent(nd->path.dentry); |
| dput(old); |
| break; |
| } |
| if (!follow_up(&nd->path)) |
| break; |
| } |
| follow_mount(&nd->path); |
| nd->inode = nd->path.dentry->d_inode; |
| } |
| |
| /* |
| * Allocate a dentry with name and parent, and perform a parent |
| * directory ->lookup on it. Returns the new dentry, or ERR_PTR |
| * on error. parent->d_inode->i_mutex must be held. d_lookup must |
| * have verified that no child exists while under i_mutex. |
| */ |
| static struct dentry *d_alloc_and_lookup(struct dentry *parent, |
| struct qstr *name, struct nameidata *nd) |
| { |
| struct inode *inode = parent->d_inode; |
| struct dentry *dentry; |
| struct dentry *old; |
| |
| /* Don't create child dentry for a dead directory. */ |
| if (unlikely(IS_DEADDIR(inode))) |
| return ERR_PTR(-ENOENT); |
| |
| dentry = d_alloc(parent, name); |
| if (unlikely(!dentry)) |
| return ERR_PTR(-ENOMEM); |
| |
| old = inode->i_op->lookup(inode, dentry, nd); |
| if (unlikely(old)) { |
| dput(dentry); |
| dentry = old; |
| } |
| return dentry; |
| } |
| |
| /* |
| * We already have a dentry, but require a lookup to be performed on the parent |
| * directory to fill in d_inode. Returns the new dentry, or ERR_PTR on error. |
| * parent->d_inode->i_mutex must be held. d_lookup must have verified that no |
| * child exists while under i_mutex. |
| */ |
| static struct dentry *d_inode_lookup(struct dentry *parent, struct dentry *dentry, |
| struct nameidata *nd) |
| { |
| struct inode *inode = parent->d_inode; |
| struct dentry *old; |
| |
| /* Don't create child dentry for a dead directory. */ |
| if (unlikely(IS_DEADDIR(inode))) { |
| dput(dentry); |
| return ERR_PTR(-ENOENT); |
| } |
| |
| old = inode->i_op->lookup(inode, dentry, nd); |
| if (unlikely(old)) { |
| dput(dentry); |
| dentry = old; |
| } |
| return dentry; |
| } |
| |
| /* |
| * It's more convoluted than I'd like it to be, but... it's still fairly |
| * small and for now I'd prefer to have fast path as straight as possible. |
| * It _is_ time-critical. |
| */ |
| static int do_lookup(struct nameidata *nd, struct qstr *name, |
| struct path *path, struct inode **inode) |
| { |
| struct vfsmount *mnt = nd->path.mnt; |
| struct dentry *dentry, *parent = nd->path.dentry; |
| int need_reval = 1; |
| int status = 1; |
| int err; |
| |
| /* |
| * Rename seqlock is not required here because in the off chance |
| * of a false negative due to a concurrent rename, we're going to |
| * do the non-racy lookup, below. |
| */ |
| if (nd->flags & LOOKUP_RCU) { |
| unsigned seq; |
| *inode = nd->inode; |
| dentry = __d_lookup_rcu(parent, name, &seq, inode); |
| if (!dentry) |
| goto unlazy; |
| |
| /* Memory barrier in read_seqcount_begin of child is enough */ |
| if (__read_seqcount_retry(&parent->d_seq, nd->seq)) |
| return -ECHILD; |
| nd->seq = seq; |
| |
| if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { |
| status = d_revalidate(dentry, nd); |
| if (unlikely(status <= 0)) { |
| if (status != -ECHILD) |
| need_reval = 0; |
| goto unlazy; |
| } |
| } |
| if (unlikely(d_need_lookup(dentry))) |
| goto unlazy; |
| path->mnt = mnt; |
| path->dentry = dentry; |
| if (unlikely(!__follow_mount_rcu(nd, path, inode))) |
| goto unlazy; |
| if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT)) |
| goto unlazy; |
| return 0; |
| unlazy: |
| if (unlazy_walk(nd, dentry)) |
| return -ECHILD; |
| } else { |
| dentry = __d_lookup(parent, name); |
| } |
| |
| if (dentry && unlikely(d_need_lookup(dentry))) { |
| dput(dentry); |
| dentry = NULL; |
| } |
| retry: |
| if (unlikely(!dentry)) { |
| struct inode *dir = parent->d_inode; |
| BUG_ON(nd->inode != dir); |
| |
| mutex_lock(&dir->i_mutex); |
| dentry = d_lookup(parent, name); |
| if (likely(!dentry)) { |
| dentry = d_alloc_and_lookup(parent, name, nd); |
| if (IS_ERR(dentry)) { |
| mutex_unlock(&dir->i_mutex); |
| return PTR_ERR(dentry); |
| } |
| /* known good */ |
| need_reval = 0; |
| status = 1; |
| } else if (unlikely(d_need_lookup(dentry))) { |
| dentry = d_inode_lookup(parent, dentry, nd); |
| if (IS_ERR(dentry)) { |
| mutex_unlock(&dir->i_mutex); |
| return PTR_ERR(dentry); |
| } |
| /* known good */ |
| need_reval = 0; |
| status = 1; |
| } |
| mutex_unlock(&dir->i_mutex); |
| } |
| if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) |
| status = d_revalidate(dentry, nd); |
| if (unlikely(status <= 0)) { |
| if (status < 0) { |
| dput(dentry); |
| return status; |
| } |
| if (!d_invalidate(dentry)) { |
| dput(dentry); |
| dentry = NULL; |
| need_reval = 1; |
| goto retry; |
| } |
| } |
| |
| path->mnt = mnt; |
| path->dentry = dentry; |
| err = follow_managed(path, nd->flags); |
| if (unlikely(err < 0)) { |
| path_put_conditional(path, nd); |
| return err; |
| } |
| if (err) |
| nd->flags |= LOOKUP_JUMPED; |
| *inode = path->dentry->d_inode; |
| return 0; |
| } |
| |
| static inline int may_lookup(struct nameidata *nd) |
| { |
| if (nd->flags & LOOKUP_RCU) { |
| int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); |
| if (err != -ECHILD) |
| return err; |
| if (unlazy_walk(nd, NULL)) |
| return -ECHILD; |
| } |
| return inode_permission(nd->inode, MAY_EXEC); |
| } |
| |
| static inline int handle_dots(struct nameidata *nd, int type) |
| { |
| if (type == LAST_DOTDOT) { |
| if (nd->flags & LOOKUP_RCU) { |
| if (follow_dotdot_rcu(nd)) |
| return -ECHILD; |
| } else |
| follow_dotdot(nd); |
| } |
| return 0; |
| } |
| |
| static void terminate_walk(struct nameidata *nd) |
| { |
| if (!(nd->flags & LOOKUP_RCU)) { |
| path_put(&nd->path); |
| } else { |
| nd->flags &= ~LOOKUP_RCU; |
| if (!(nd->flags & LOOKUP_ROOT)) |
| nd->root.mnt = NULL; |
| rcu_read_unlock(); |
| br_read_unlock(vfsmount_lock); |
| } |
| } |
| |
| /* |
| * Do we need to follow links? We _really_ want to be able |
| * to do this check without having to look at inode->i_op, |
| * so we keep a cache of "no, this doesn't need follow_link" |
| * for the common case. |
| */ |
| static inline int should_follow_link(struct inode *inode, int follow) |
| { |
| if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { |
| if (likely(inode->i_op->follow_link)) |
| return follow; |
| |
| /* This gets set once for the inode lifetime */ |
| spin_lock(&inode->i_lock); |
| inode->i_opflags |= IOP_NOFOLLOW; |
| spin_unlock(&inode->i_lock); |
| } |
| return 0; |
| } |
| |
| static inline int walk_component(struct nameidata *nd, struct path *path, |
| struct qstr *name, int type, int follow) |
| { |
| struct inode *inode; |
| int err; |
| /* |
| * "." and ".." are special - ".." especially so because it has |
| * to be able to know about the current root directory and |
| * parent relationships. |
| */ |
| if (unlikely(type != LAST_NORM)) |
| return handle_dots(nd, type); |
| err = do_lookup(nd, name, path, &inode); |
| if (unlikely(err)) { |
| terminate_walk(nd); |
| return err; |
| } |
| if (!inode) { |
| path_to_nameidata(path, nd); |
| terminate_walk(nd); |
| return -ENOENT; |
| } |
| if (should_follow_link(inode, follow)) { |
| if (nd->flags & LOOKUP_RCU) { |
| if (unlikely(unlazy_walk(nd, path->dentry))) { |
| terminate_walk(nd); |
| return -ECHILD; |
| } |
| } |
| BUG_ON(inode != path->dentry->d_inode); |
| return 1; |
| } |
| path_to_nameidata(path, nd); |
| nd->inode = inode; |
| return 0; |
| } |
| |
| /* |
| * This limits recursive symlink follows to 8, while |
| * limiting consecutive symlinks to 40. |
| * |
| * Without that kind of total limit, nasty chains of consecutive |
| * symlinks can cause almost arbitrarily long lookups. |
| */ |
| static inline int nested_symlink(struct path *path, struct nameidata *nd) |
| { |
| int res; |
| |
| if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { |
| path_put_conditional(path, nd); |
| path_put(&nd->path); |
| return -ELOOP; |
| } |
| BUG_ON(nd->depth >= MAX_NESTED_LINKS); |
| |
| nd->depth++; |
| current->link_count++; |
| |
| do { |
| struct path link = *path; |
| void *cookie; |
| |
| res = follow_link(&link, nd, &cookie); |
| if (!res) |
| res = walk_component(nd, path, &nd->last, |
| nd->last_type, LOOKUP_FOLLOW); |
| put_link(nd, &link, cookie); |
| } while (res > 0); |
| |
| current->link_count--; |
| nd->depth--; |
| return res; |
| } |
| |
| /* |
| * We really don't want to look at inode->i_op->lookup |
| * when we don't have to. So we keep a cache bit in |
| * the inode ->i_opflags field that says "yes, we can |
| * do lookup on this inode". |
| */ |
| static inline int can_lookup(struct inode *inode) |
| { |
| if (likely(inode->i_opflags & IOP_LOOKUP)) |
| return 1; |
| if (likely(!inode->i_op->lookup)) |
| return 0; |
| |
| /* We do this once for the lifetime of the inode */ |
| spin_lock(&inode->i_lock); |
| inode->i_opflags |= IOP_LOOKUP; |
| spin_unlock(&inode->i_lock); |
| return 1; |
| } |
| |
| /* |
| * We can do the critical dentry name comparison and hashing |
| * operations one word at a time, but we are limited to: |
| * |
| * - Architectures with fast unaligned word accesses. We could |
| * do a "get_unaligned()" if this helps and is sufficiently |
| * fast. |
| * |
| * - Little-endian machines (so that we can generate the mask |
| * of low bytes efficiently). Again, we *could* do a byte |
| * swapping load on big-endian architectures if that is not |
| * expensive enough to make the optimization worthless. |
| * |
| * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we |
| * do not trap on the (extremely unlikely) case of a page |
| * crossing operation. |
| * |
| * - Furthermore, we need an efficient 64-bit compile for the |
| * 64-bit case in order to generate the "number of bytes in |
| * the final mask". Again, that could be replaced with a |
| * efficient population count instruction or similar. |
| */ |
| #ifdef CONFIG_DCACHE_WORD_ACCESS |
| |
| #ifdef CONFIG_64BIT |
| |
| /* |
| * Jan Achrenius on G+: microoptimized version of |
| * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56" |
| * that works for the bytemasks without having to |
| * mask them first. |
| */ |
| static inline long count_masked_bytes(unsigned long mask) |
| { |
| return mask*0x0001020304050608 >> 56; |
| } |
| |
| static inline unsigned int fold_hash(unsigned long hash) |
| { |
| hash += hash >> (8*sizeof(int)); |
| return hash; |
| } |
| |
| #else /* 32-bit case */ |
| |
| /* Carl Chatfield / Jan Achrenius G+ version for 32-bit */ |
| static inline long count_masked_bytes(long mask) |
| { |
| /* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */ |
| long a = (0x0ff0001+mask) >> 23; |
| /* Fix the 1 for 00 case */ |
| return a & mask; |
| } |
| |
| #define fold_hash(x) (x) |
| |
| #endif |
| |
| unsigned int full_name_hash(const unsigned char *name, unsigned int len) |
| { |
| unsigned long a, mask; |
| unsigned long hash = 0; |
| |
| for (;;) { |
| a = *(unsigned long *)name; |
| hash *= 9; |
| if (len < sizeof(unsigned long)) |
| break; |
| hash += a; |
| name += sizeof(unsigned long); |
| len -= sizeof(unsigned long); |
| if (!len) |
| goto done; |
| } |
| mask = ~(~0ul << len*8); |
| hash += mask & a; |
| done: |
| return fold_hash(hash); |
| } |
| EXPORT_SYMBOL(full_name_hash); |
| |
| #define ONEBYTES 0x0101010101010101ul |
| #define SLASHBYTES 0x2f2f2f2f2f2f2f2ful |
| #define HIGHBITS 0x8080808080808080ul |
| |
| /* Return the high bit set in the first byte that is a zero */ |
| static inline unsigned long has_zero(unsigned long a) |
| { |
| return ((a - ONEBYTES) & ~a) & HIGHBITS; |
| } |
| |
| /* |
| * Calculate the length and hash of the path component, and |
| * return the length of the component; |
| */ |
| static inline unsigned long hash_name(const char *name, unsigned int *hashp) |
| { |
| unsigned long a, mask, hash, len; |
| |
| hash = a = 0; |
| len = -sizeof(unsigned long); |
| do { |
| hash = (hash + a) * 9; |
| len += sizeof(unsigned long); |
| a = *(unsigned long *)(name+len); |
| /* Do we have any NUL or '/' bytes in this word? */ |
| mask = has_zero(a) | has_zero(a ^ SLASHBYTES); |
| } while (!mask); |
| |
| /* The mask *below* the first high bit set */ |
| mask = (mask - 1) & ~mask; |
| mask >>= 7; |
| hash += a & mask; |
| *hashp = fold_hash(hash); |
| |
| return len + count_masked_bytes(mask); |
| } |
| |
| #else |
| |
| unsigned int full_name_hash(const unsigned char *name, unsigned int len) |
| { |
| unsigned long hash = init_name_hash(); |
| while (len--) |
| hash = partial_name_hash(*name++, hash); |
| return end_name_hash(hash); |
| } |
| EXPORT_SYMBOL(full_name_hash); |
| |
| /* |
| * We know there's a real path component here of at least |
| * one character. |
| */ |
| static inline unsigned long hash_name(const char *name, unsigned int *hashp) |
| { |
| unsigned long hash = init_name_hash(); |
| unsigned long len = 0, c; |
| |
| c = (unsigned char)*name; |
| do { |
| len++; |
| hash = partial_name_hash(c, hash); |
| c = (unsigned char)name[len]; |
| } while (c && c != '/'); |
| *hashp = end_name_hash(hash); |
| return len; |
| } |
| |
| #endif |
| |
| /* |
| * Name resolution. |
| * This is the basic name resolution function, turning a pathname into |
| * the final dentry. We expect 'base' to be positive and a directory. |
| * |
| * Returns 0 and nd will have valid dentry and mnt on success. |
| * Returns error and drops reference to input namei data on failure. |
| */ |
| static int link_path_walk(const char *name, struct nameidata *nd) |
| { |
| struct path next; |
| int err; |
| |
| while (*name=='/') |
| name++; |
| if (!*name) |
| return 0; |
| |
| /* At this point we know we have a real path component. */ |
| for(;;) { |
| struct qstr this; |
| long len; |
| int type; |
| |
| err = may_lookup(nd); |
| if (err) |
| break; |
| |
| len = hash_name(name, &this.hash); |
| this.name = name; |
| this.len = len; |
| |
| type = LAST_NORM; |
| if (name[0] == '.') switch (len) { |
| case 2: |
| if (name[1] == '.') { |
| type = LAST_DOTDOT; |
| nd->flags |= LOOKUP_JUMPED; |
| } |
| break; |
| case 1: |
| type = LAST_DOT; |
| } |
| if (likely(type == LAST_NORM)) { |
| struct dentry *parent = nd->path.dentry; |
| nd->flags &= ~LOOKUP_JUMPED; |
| if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { |
| err = parent->d_op->d_hash(parent, nd->inode, |
| &this); |
| if (err < 0) |
| break; |
| } |
| } |
| |
| if (!name[len]) |
| goto last_component; |
| /* |
| * If it wasn't NUL, we know it was '/'. Skip that |
| * slash, and continue until no more slashes. |
| */ |
| do { |
| len++; |
| } while (unlikely(name[len] == '/')); |
| if (!name[len]) |
| goto last_component; |
| name += len; |
| |
| err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW); |
| if (err < 0) |
| return err; |
| |
| if (err) { |
| err = nested_symlink(&next, nd); |
| if (err) |
| return err; |
| } |
| if (can_lookup(nd->inode)) |
| continue; |
| err = -ENOTDIR; |
| break; |
| /* here ends the main loop */ |
| |
| last_component: |
| nd->last = this; |
| nd->last_type = type; |
| return 0; |
| } |
| terminate_walk(nd); |
| return err; |
| } |
| |
| static int path_init(int dfd, const char *name, unsigned int flags, |
| struct nameidata *nd, struct file **fp) |
| { |
| int retval = 0; |
| int fput_needed; |
| struct file *file; |
| |
| nd->last_type = LAST_ROOT; /* if there are only slashes... */ |
| nd->flags = flags | LOOKUP_JUMPED; |
| nd->depth = 0; |
| if (flags & LOOKUP_ROOT) { |
| struct inode *inode = nd->root.dentry->d_inode; |
| if (*name) { |
| if (!inode->i_op->lookup) |
| return -ENOTDIR; |
| retval = inode_permission(inode, MAY_EXEC); |
| if (retval) |
| return retval; |
| } |
| nd->path = nd->root; |
| nd->inode = inode; |
| if (flags & LOOKUP_RCU) { |
| br_read_lock(vfsmount_lock); |
| rcu_read_lock(); |
| nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); |
| } else { |
| path_get(&nd->path); |
| } |
| return 0; |
| } |
| |
| nd->root.mnt = NULL; |
| |
| if (*name=='/') { |
| if (flags & LOOKUP_RCU) { |
| br_read_lock(vfsmount_lock); |
| rcu_read_lock(); |
| set_root_rcu(nd); |
| } else { |
| set_root(nd); |
| path_get(&nd->root); |
| } |
| nd->path = nd->root; |
| } else if (dfd == AT_FDCWD) { |
| if (flags & LOOKUP_RCU) { |
| struct fs_struct *fs = current->fs; |
| unsigned seq; |
| |
| br_read_lock(vfsmount_lock); |
| rcu_read_lock(); |
| |
| do { |
| seq = read_seqcount_begin(&fs->seq); |
| nd->path = fs->pwd; |
| nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); |
| } while (read_seqcount_retry(&fs->seq, seq)); |
| } else { |
| get_fs_pwd(current->fs, &nd->path); |
| } |
| } else { |
| struct dentry *dentry; |
| |
| file = fget_raw_light(dfd, &fput_needed); |
| retval = -EBADF; |
| if (!file) |
| goto out_fail; |
| |
| dentry = file->f_path.dentry; |
| |
| if (*name) { |
| retval = -ENOTDIR; |
| if (!S_ISDIR(dentry->d_inode->i_mode)) |
| goto fput_fail; |
| |
| retval = inode_permission(dentry->d_inode, MAY_EXEC); |
| if (retval) |
| goto fput_fail; |
| } |
| |
| nd->path = file->f_path; |
| if (flags & LOOKUP_RCU) { |
| if (fput_needed) |
| *fp = file; |
| nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); |
| br_read_lock(vfsmount_lock); |
| rcu_read_lock(); |
| } else { |
| path_get(&file->f_path); |
| fput_light(file, fput_needed); |
| } |
| } |
| |
| nd->inode = nd->path.dentry->d_inode; |
| return 0; |
| |
| fput_fail: |
| fput_light(file, fput_needed); |
| out_fail: |
| return retval; |
| } |
| |
| static inline int lookup_last(struct nameidata *nd, struct path *path) |
| { |
| if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) |
| nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; |
| |
| nd->flags &= ~LOOKUP_PARENT; |
| return walk_component(nd, path, &nd->last, nd->last_type, |
| nd->flags & LOOKUP_FOLLOW); |
| } |
| |
| /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ |
| static int path_lookupat(int dfd, const char *name, |
| unsigned int flags, struct nameidata *nd) |
| { |
| struct file *base = NULL; |
| struct path path; |
| int err; |
| |
| /* |
| * Path walking is largely split up into 2 different synchronisation |
| * schemes, rcu-walk and ref-walk (explained in |
| * Documentation/filesystems/path-lookup.txt). These share much of the |
| * path walk code, but some things particularly setup, cleanup, and |
| * following mounts are sufficiently divergent that functions are |
| * duplicated. Typically there is a function foo(), and its RCU |
| * analogue, foo_rcu(). |
| * |
| * -ECHILD is the error number of choice (just to avoid clashes) that |
| * is returned if some aspect of an rcu-walk fails. Such an error must |
| * be handled by restarting a traditional ref-walk (which will always |
| * be able to complete). |
| */ |
| err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base); |
| |
| if (unlikely(err)) |
| return err; |
| |
| current->total_link_count = 0; |
| err = link_path_walk(name, nd); |
| |
| if (!err && !(flags & LOOKUP_PARENT)) { |
| err = lookup_last(nd, &path); |
| while (err > 0) { |
| void *cookie; |
| struct path link = path; |
| nd->flags |= LOOKUP_PARENT; |
| err = follow_link(&link, nd, &cookie); |
| if (!err) |
| err = lookup_last(nd, &path); |
| put_link(nd, &link, cookie); |
| } |
| } |
| |
| if (!err) |
| err = complete_walk(nd); |
| |
| if (!err && nd->flags & LOOKUP_DIRECTORY) { |
| if (!nd->inode->i_op->lookup) { |
| path_put(&nd->path); |
| err = -ENOTDIR; |
| } |
| } |
| |
| if (base) |
| fput(base); |
| |
| if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { |
| path_put(&nd->root); |
| nd->root.mnt = NULL; |
| } |
| return err; |
| } |
| |
| static int do_path_lookup(int dfd, const char *name, |
| unsigned int flags, struct nameidata *nd) |
| { |
| int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); |
| if (unlikely(retval == -ECHILD)) |
| retval = path_lookupat(dfd, name, flags, nd); |
| if (unlikely(retval == -ESTALE)) |
| retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); |
| |
| if (likely(!retval)) { |
| if (unlikely(!audit_dummy_context())) { |
| if (nd->path.dentry && nd->inode) |
| audit_inode(name, nd->path.dentry); |
| } |
| } |
| return retval; |
| } |
| |
| int kern_path_parent(const char *name, struct nameidata *nd) |
| { |
| return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd); |
| } |
| |
| int kern_path(const char *name, unsigned int flags, struct path *path) |
| { |
| struct nameidata nd; |
| int res = do_path_lookup(AT_FDCWD, name, flags, &nd); |
| if (!res) |
| *path = nd.path; |
| return res; |
| } |
| |
| /** |
| * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair |
| * @dentry: pointer to dentry of the base directory |
| * @mnt: pointer to vfs mount of the base directory |
| * @name: pointer to file name |
| * @flags: lookup flags |
| * @path: pointer to struct path to fill |
| */ |
| int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, |
| const char *name, unsigned int flags, |
| struct path *path) |
| { |
| struct nameidata nd; |
| int err; |
| nd.root.dentry = dentry; |
| nd.root.mnt = mnt; |
| BUG_ON(flags & LOOKUP_PARENT); |
| /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */ |
| err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd); |
| if (!err) |
| *path = nd.path; |
| return err; |
| } |
| |
| static struct dentry *__lookup_hash(struct qstr *name, |
| struct dentry *base, struct nameidata *nd) |
| { |
| struct inode *inode = base->d_inode; |
| struct dentry *dentry; |
| int err; |
| |
| err = inode_permission(inode, MAY_EXEC); |
| if (err) |
| return ERR_PTR(err); |
| |
| /* |
| * Don't bother with __d_lookup: callers are for creat as |
| * well as unlink, so a lot of the time it would cost |
| * a double lookup. |
| */ |
| dentry = d_lookup(base, name); |
| |
| if (dentry && d_need_lookup(dentry)) { |
| /* |
| * __lookup_hash is called with the parent dir's i_mutex already |
| * held, so we are good to go here. |
| */ |
| dentry = d_inode_lookup(base, dentry, nd); |
| if (IS_ERR(dentry)) |
| return dentry; |
| } |
| |
| if (dentry && (dentry->d_flags & DCACHE_OP_REVALIDATE)) { |
| int status = d_revalidate(dentry, nd); |
| if (unlikely(status <= 0)) { |
| /* |
| * The dentry failed validation. |
| * If d_revalidate returned 0 attempt to invalidate |
| * the dentry otherwise d_revalidate is asking us |
| * to return a fail status. |
| */ |
| if (status < 0) { |
| dput(dentry); |
| return ERR_PTR(status); |
| } else if (!d_invalidate(dentry)) { |
| dput(dentry); |
| dentry = NULL; |
| } |
| } |
| } |
| |
| if (!dentry) |
| dentry = d_alloc_and_lookup(base, name, nd); |
| |
| return dentry; |
| } |
| |
| /* |
| * Restricted form of lookup. Doesn't follow links, single-component only, |
| * needs parent already locked. Doesn't follow mounts. |
| * SMP-safe. |
| */ |
| static struct dentry *lookup_hash(struct nameidata *nd) |
| { |
| return __lookup_hash(&nd->last, nd->path.dentry, nd); |
| } |
| |
| /** |
| * lookup_one_len - filesystem helper to lookup single pathname component |
| * @name: pathname component to lookup |
| * @base: base directory to lookup from |
| * @len: maximum length @len should be interpreted to |
| * |
| * Note that this routine is purely a helper for filesystem usage and should |
| * not be called by generic code. Also note that by using this function the |
| * nameidata argument is passed to the filesystem methods and a filesystem |
| * using this helper needs to be prepared for that. |
| */ |
| struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) |
| { |
| struct qstr this; |
| unsigned int c; |
| |
| WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); |
| |
| this.name = name; |
| this.len = len; |
| this.hash = full_name_hash(name, len); |
| if (!len) |
| return ERR_PTR(-EACCES); |
| |
| while (len--) { |
| c = *(const unsigned char *)name++; |
| if (c == '/' || c == '\0') |
| return ERR_PTR(-EACCES); |
| } |
| /* |
| * See if the low-level filesystem might want |
| * to use its own hash.. |
| */ |
| if (base->d_flags & DCACHE_OP_HASH) { |
| int err = base->d_op->d_hash(base, base->d_inode, &this); |
| if (err < 0) |
| return ERR_PTR(err); |
| } |
| |
| return __lookup_hash(&this, base, NULL); |
| } |
| |
| int user_path_at_empty(int dfd, const char __user *name, unsigned flags, |
| struct path *path, int *empty) |
| { |
| struct nameidata nd; |
| char *tmp = getname_flags(name, flags, empty); |
| int err = PTR_ERR(tmp); |
| if (!IS_ERR(tmp)) { |
| |
| BUG_ON(flags & LOOKUP_PARENT); |
| |
| err = do_path_lookup(dfd, tmp, flags, &nd); |
| putname(tmp); |
| if (!err) |
| *path = nd.path; |
| } |
| return err; |
| } |
| |
| int user_path_at(int dfd, const char __user *name, unsigned flags, |
| struct path *path) |
| { |
| return user_path_at_empty(dfd, name, flags, path, 0); |
| } |
| |
| static int user_path_parent(int dfd, const char __user *path, |
| struct nameidata *nd, char **name) |
| { |
| char *s = getname(path); |
| int error; |
| |
| if (IS_ERR(s)) |
| return PTR_ERR(s); |
| |
| error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd); |
| if (error) |
| putname(s); |
| else |
| *name = s; |
| |
| return error; |
| } |
| |
| /* |
| * It's inline, so penalty for filesystems that don't use sticky bit is |
| * minimal. |
| */ |
| static inline int check_sticky(struct inode *dir, struct inode *inode) |
| { |
| uid_t fsuid = current_fsuid(); |
| |
| if (!(dir->i_mode & S_ISVTX)) |
| return 0; |
| if (current_user_ns() != inode_userns(inode)) |
| goto other_userns; |
| if (inode->i_uid == fsuid) |
| return 0; |
| if (dir->i_uid == fsuid) |
| return 0; |
| |
| other_userns: |
| return !ns_capable(inode_userns(inode), CAP_FOWNER); |
| } |
| |
| /* |
| * Check whether we can remove a link victim from directory dir, check |
| * whether the type of victim is right. |
| * 1. We can't do it if dir is read-only (done in permission()) |
| * 2. We should have write and exec permissions on dir |
| * 3. We can't remove anything from append-only dir |
| * 4. We can't do anything with immutable dir (done in permission()) |
| * 5. If the sticky bit on dir is set we should either |
| * a. be owner of dir, or |
| * b. be owner of victim, or |
| * c. have CAP_FOWNER capability |
| * 6. If the victim is append-only or immutable we can't do antyhing with |
| * links pointing to it. |
| * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. |
| * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. |
| * 9. We can't remove a root or mountpoint. |
| * 10. We don't allow removal of NFS sillyrenamed files; it's handled by |
| * nfs_async_unlink(). |
| */ |
| static int may_delete(struct inode *dir,struct dentry *victim,int isdir) |
| { |
| int error; |
| |
| if (!victim->d_inode) |
| return -ENOENT; |
| |
| BUG_ON(victim->d_parent->d_inode != dir); |
| audit_inode_child(victim, dir); |
| |
| error = inode_permission(dir, MAY_WRITE | MAY_EXEC); |
| if (error) |
| return error; |
| if (IS_APPEND(dir)) |
| return -EPERM; |
| if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)|| |
| IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) |
| return -EPERM; |
| if (isdir) { |
| if (!S_ISDIR(victim->d_inode->i_mode)) |
| return -ENOTDIR; |
| if (IS_ROOT(victim)) |
| return -EBUSY; |
| } else if (S_ISDIR(victim->d_inode->i_mode)) |
| return -EISDIR; |
| if (IS_DEADDIR(dir)) |
| return -ENOENT; |
| if (victim->d_flags & DCACHE_NFSFS_RENAMED) |
| return -EBUSY; |
| return 0; |
| } |
| |
| /* Check whether we can create an object with dentry child in directory |
| * dir. |
| * 1. We can't do it if child already exists (open has special treatment for |
| * this case, but since we are inlined it's OK) |
| * 2. We can't do it if dir is read-only (done in permission()) |
| * 3. We should have write and exec permissions on dir |
| * 4. We can't do it if dir is immutable (done in permission()) |
| */ |
| static inline int may_create(struct inode *dir, struct dentry *child) |
| { |
| if (child->d_inode) |
| return -EEXIST; |
| if (IS_DEADDIR(dir)) |
| return -ENOENT; |
| return inode_permission(dir, MAY_WRITE | MAY_EXEC); |
| } |
| |
| /* |
| * p1 and p2 should be directories on the same fs. |
| */ |
| struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) |
| { |
| struct dentry *p; |
| |
| if (p1 == p2) { |
| mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); |
| return NULL; |
| } |
| |
| mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); |
| |
| p = d_ancestor(p2, p1); |
| if (p) { |
| mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); |
| mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); |
| return p; |
| } |
| |
| p = d_ancestor(p1, p2); |
| if (p) { |
| mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); |
| mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); |
| return p; |
| } |
| |
| mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); |
| mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); |
| return NULL; |
| } |
| |
| void unlock_rename(struct dentry *p1, struct dentry *p2) |
| { |
| mutex_unlock(&p1->d_inode->i_mutex); |
| if (p1 != p2) { |
| mutex_unlock(&p2->d_inode->i_mutex); |
| mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); |
| } |
| } |
| |
| int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, |
| struct nameidata *nd) |
| { |
| int error = may_create(dir, dentry); |
| |
| if (error) |
| return error; |
| |
| if (!dir->i_op->create) |
| return -EACCES; /* shouldn't it be ENOSYS? */ |
| mode &= S_IALLUGO; |
| mode |= S_IFREG; |
| error = security_inode_create(dir, dentry, mode); |
| if (error) |
| return error; |
| error = dir->i_op->create(dir, dentry, mode, nd); |
| if (!error) |
| fsnotify_create(dir, dentry); |
| return error; |
| } |
| |
| static int may_open(struct path *path, int acc_mode, int flag) |
| { |
| struct dentry *dentry = path->dentry; |
| struct inode *inode = dentry->d_inode; |
| int error; |
| |
| /* O_PATH? */ |
| if (!acc_mode) |
| return 0; |
| |
| if (!inode) |
| return -ENOENT; |
| |
| switch (inode->i_mode & S_IFMT) { |
| case S_IFLNK: |
| return -ELOOP; |
| case S_IFDIR: |
| if (acc_mode & MAY_WRITE) |
| return -EISDIR; |
| break; |
| case S_IFBLK: |
| case S_IFCHR: |
| if (path->mnt->mnt_flags & MNT_NODEV) |
| return -EACCES; |
| /*FALLTHRU*/ |
| case S_IFIFO: |
| case S_IFSOCK: |
| flag &= ~O_TRUNC; |
| break; |
| } |
| |
| error = inode_permission(inode, acc_mode); |
| if (error) |
| return error; |
| |
| /* |
| * An append-only file must be opened in append mode for writing. |
| */ |
| if (IS_APPEND(inode)) { |
| if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) |
| return -EPERM; |
| if (flag & O_TRUNC) |
| return -EPERM; |
| } |
| |
| /* O_NOATIME can only be set by the owner or superuser */ |
| if (flag & O_NOATIME && !inode_owner_or_capable(inode)) |
| return -EPERM; |
| |
| return 0; |
| } |
| |
| static int handle_truncate(struct file *filp) |
| { |
| struct path *path = &filp->f_path; |
| struct inode *inode = path->dentry->d_inode; |
| int error = get_write_access(inode); |
| if (error) |
| return error; |
| /* |
| * Refuse to truncate files with mandatory locks held on them. |
| */ |
| error = locks_verify_locked(inode); |
| if (!error) |
| error = security_path_truncate(path); |
| if (!error) { |
| error = do_truncate(path->dentry, 0, |
| ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, |
| filp); |
| } |
| put_write_access(inode); |
| return error; |
| } |
| |
| static inline int open_to_namei_flags(int flag) |
| { |
| if ((flag & O_ACCMODE) == 3) |
| flag--; |
| return flag; |
| } |
| |
| /* |
| * Handle the last step of open() |
| */ |
| static struct file *do_last(struct nameidata *nd, struct path *path, |
| const struct open_flags *op, const char *pathname) |
| { |
| struct dentry *dir = nd->path.dentry; |
| struct dentry *dentry; |
| int open_flag = op->open_flag; |
| int will_truncate = open_flag & O_TRUNC; |
| int want_write = 0; |
| int acc_mode = op->acc_mode; |
| struct file *filp; |
| int error; |
| |
| nd->flags &= ~LOOKUP_PARENT; |
| nd->flags |= op->intent; |
| |
| switch (nd->last_type) { |
| case LAST_DOTDOT: |
| case LAST_DOT: |
| error = handle_dots(nd, nd->last_type); |
| if (error) |
| return ERR_PTR(error); |
| /* fallthrough */ |
| case LAST_ROOT: |
| error = complete_walk(nd); |
| if (error) |
| return ERR_PTR(error); |
| audit_inode(pathname, nd->path.dentry); |
| if (open_flag & O_CREAT) { |
| error = -EISDIR; |
| goto exit; |
| } |
| goto ok; |
| case LAST_BIND: |
| error = complete_walk(nd); |
| if (error) |
| return ERR_PTR(error); |
| audit_inode(pathname, dir); |
| goto ok; |
| } |
| |
| if (!(open_flag & O_CREAT)) { |
| int symlink_ok = 0; |
| if (nd->last.name[nd->last.len]) |
| nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; |
| if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) |
| symlink_ok = 1; |
| /* we _can_ be in RCU mode here */ |
| error = walk_component(nd, path, &nd->last, LAST_NORM, |
| !symlink_ok); |
| if (error < 0) |
| return ERR_PTR(error); |
| if (error) /* symlink */ |
| return NULL; |
| /* sayonara */ |
| error = complete_walk(nd); |
| if (error) |
| return ERR_PTR(error); |
| |
| error = -ENOTDIR; |
| if (nd->flags & LOOKUP_DIRECTORY) { |
| if (!nd->inode->i_op->lookup) |
| goto exit; |
| } |
| audit_inode(pathname, nd->path.dentry); |
| goto ok; |
| } |
| |
| /* create side of things */ |
| /* |
| * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been |
| * cleared when we got to the last component we are about to look up |
| */ |
| error = complete_walk(nd); |
| if (error) |
| return ERR_PTR(error); |
| |
| audit_inode(pathname, dir); |
| error = -EISDIR; |
| /* trailing slashes? */ |
| if (nd->last.name[nd->last.len]) |
| goto exit; |
| |
| mutex_lock(&dir->d_inode->i_mutex); |
| |
| dentry = lookup_hash(nd); |
| error = PTR_ERR(dentry); |
| if (IS_ERR(dentry)) { |
| mutex_unlock(&dir->d_inode->i_mutex); |
| goto exit; |
| } |
| |
| path->dentry = dentry; |
| path->mnt = nd->path.mnt; |
| |
| /* Negative dentry, just create the file */ |
| if (!dentry->d_inode) { |
| umode_t mode = op->mode; |
| if (!IS_POSIXACL(dir->d_inode)) |
| mode &= ~current_umask(); |
| /* |
| * This write is needed to ensure that a |
| * rw->ro transition does not occur between |
| * the time when the file is created and when |
| * a permanent write count is taken through |
| * the 'struct file' in nameidata_to_filp(). |
| */ |
| error = mnt_want_write(nd->path.mnt); |
| if (error) |
| goto exit_mutex_unlock; |
| want_write = 1; |
| /* Don't check for write permission, don't truncate */ |
| open_flag &= ~O_TRUNC; |
| will_truncate = 0; |
| acc_mode = MAY_OPEN; |
| error = security_path_mknod(&nd->path, dentry, mode, 0); |
| if (error) |
| goto exit_mutex_unlock; |
| error = vfs_create(dir->d_inode, dentry, mode, nd); |
| if (error) |
| goto exit_mutex_unlock; |
| mutex_unlock(&dir->d_inode->i_mutex); |
| dput(nd->path.dentry); |
| nd->path.dentry = dentry; |
| goto common; |
| } |
| |
| /* |
| * It already exists. |
| */ |
| mutex_unlock(&dir->d_inode->i_mutex); |
| audit_inode(pathname, path->dentry); |
| |
| error = -EEXIST; |
| if (open_flag & O_EXCL) |
| goto exit_dput; |
| |
| error = follow_managed(path, nd->flags); |
| if (error < 0) |
| goto exit_dput; |
| |
| if (error) |
| nd->flags |= LOOKUP_JUMPED; |
| |
| error = -ENOENT; |
| if (!path->dentry->d_inode) |
| goto exit_dput; |
| |
| if (path->dentry->d_inode->i_op->follow_link) |
| return NULL; |
| |
| path_to_nameidata(path, nd); |
| nd->inode = path->dentry->d_inode; |
| /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ |
| error = complete_walk(nd); |
| if (error) |
| return ERR_PTR(error); |
| error = -EISDIR; |
| if (S_ISDIR(nd->inode->i_mode)) |
| goto exit; |
| ok: |
| if (!S_ISREG(nd->inode->i_mode)) |
| will_truncate = 0; |
| |
| if (will_truncate) { |
| error = mnt_want_write(nd->path.mnt); |
| if (error) |
| goto exit; |
| want_write = 1; |
| } |
| common: |
| error = may_open(&nd->path, acc_mode, open_flag); |
| if (error) |
| goto exit; |
| filp = nameidata_to_filp(nd); |
| if (!IS_ERR(filp)) { |
| error = ima_file_check(filp, op->acc_mode); |
| if (error) { |
| fput(filp); |
| filp = ERR_PTR(error); |
| } |
| } |
| if (!IS_ERR(filp)) { |
| if (will_truncate) { |
| error = handle_truncate(filp); |
| if (error) { |
| fput(filp); |
| filp = ERR_PTR(error); |
| } |
| } |
| } |
| out: |
| if (want_write) |
| mnt_drop_write(nd->path.mnt); |
| path_put(&nd->path); |
| return filp; |
| |
| exit_mutex_unlock: |
| mutex_unlock(&dir->d_inode->i_mutex); |
| exit_dput: |
| path_put_conditional(path, nd); |
| exit: |
| filp = ERR_PTR(error); |
| goto out; |
| } |
| |
| static struct file *path_openat(int dfd, const char *pathname, |
| struct nameidata *nd, const struct open_flags *op, int flags) |
| { |
| struct file *base = NULL; |
| struct file *filp; |
| struct path path; |
| int error; |
| |
| filp = get_empty_filp(); |
| if (!filp) |
| return ERR_PTR(-ENFILE); |
| |
| filp->f_flags = op->open_flag; |
| nd->intent.open.file = filp; |
| nd->intent.open.flags = open_to_namei_flags(op->open_flag); |
| nd->intent.open.create_mode = op->mode; |
| |
| error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base); |
| if (unlikely(error)) |
| goto out_filp; |
| |
| current->total_link_count = 0; |
| error = link_path_walk(pathname, nd); |
| if (unlikely(error)) |
| goto out_filp; |
| |
| filp = do_last(nd, &path, op, pathname); |
| while (unlikely(!filp)) { /* trailing symlink */ |
| struct path link = path; |
| void *cookie; |
| if (!(nd->flags & LOOKUP_FOLLOW)) { |
| path_put_conditional(&path, nd); |
| path_put(&nd->path); |
| filp = ERR_PTR(-ELOOP); |
| break; |
| } |
| nd->flags |= LOOKUP_PARENT; |
| nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); |
| error = follow_link(&link, nd, &cookie); |
| if (unlikely(error)) |
| filp = ERR_PTR(error); |
| else |
| filp = do_last(nd, &path, op, pathname); |
| put_link(nd, &link, cookie); |
| } |
| out: |
| if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) |
| path_put(&nd->root); |
| if (base) |
| fput(base); |
| release_open_intent(nd); |
| return filp; |
| |
| out_filp: |
| filp = ERR_PTR(error); |
| goto out; |
| } |
| |
| struct file *do_filp_open(int dfd, const char *pathname, |
| const struct open_flags *op, int flags) |
| { |
| struct nameidata nd; |
| struct file *filp; |
| |
| filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); |
| if (unlikely(filp == ERR_PTR(-ECHILD))) |
| filp = path_openat(dfd, pathname, &nd, op, flags); |
| if (unlikely(filp == ERR_PTR(-ESTALE))) |
| filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); |
| return filp; |
| } |
| |
| struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, |
| const char *name, const struct open_flags *op, int flags) |
| { |
| struct nameidata nd; |
| struct file *file; |
| |
| nd.root.mnt = mnt; |
| nd.root.dentry = dentry; |
| |
| flags |= LOOKUP_ROOT; |
| |
| if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN) |
| return ERR_PTR(-ELOOP); |
| |
| file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU); |
| if (unlikely(file == ERR_PTR(-ECHILD))) |
| file = path_openat(-1, name, &nd, op, flags); |
| if (unlikely(file == ERR_PTR(-ESTALE))) |
| file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL); |
| return file; |
| } |
| |
| struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir) |
| { |
| struct dentry *dentry = ERR_PTR(-EEXIST); |
| struct nameidata nd; |
| int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd); |
| if (error) |
| return ERR_PTR(error); |
| |
| /* |
| * Yucky last component or no last component at all? |
| * (foo/., foo/.., /////) |
| */ |
| if (nd.last_type != LAST_NORM) |
| goto out; |
| nd.flags &= ~LOOKUP_PARENT; |
| nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; |
| nd.intent.open.flags = O_EXCL; |
| |
| /* |
| * Do the final lookup. |
| */ |
| mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); |
| dentry = lookup_hash(&nd); |
| if (IS_ERR(dentry)) |
| goto fail; |
| |
| if (dentry->d_inode) |
| goto eexist; |
| /* |
| * Special case - lookup gave negative, but... we had foo/bar/ |
| * From the vfs_mknod() POV we just have a negative dentry - |
| * all is fine. Let's be bastards - you had / on the end, you've |
| * been asking for (non-existent) directory. -ENOENT for you. |
| */ |
| if (unlikely(!is_dir && nd.last.name[nd.last.len])) { |
| dput(dentry); |
| dentry = ERR_PTR(-ENOENT); |
| goto fail; |
| } |
| *path = nd.path; |
| return dentry; |
| eexist: |
| dput(dentry); |
| dentry = ERR_PTR(-EEXIST); |
| fail: |
| mutex_unlock(&nd.path.dentry->d_inode->i_mutex); |
| out: |
| path_put(&nd.path); |
| return dentry; |
| } |
| EXPORT_SYMBOL(kern_path_create); |
| |
| struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir) |
| { |
| char *tmp = getname(pathname); |
| struct dentry *res; |
| if (IS_ERR(tmp)) |
| return ERR_CAST(tmp); |
| res = kern_path_create(dfd, tmp, path, is_dir); |
| putname(tmp); |
| return res; |
| } |
| EXPORT_SYMBOL(user_path_create); |
| |
| int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) |
| { |
| int error = may_create(dir, dentry); |
| |
| if (error) |
| return error; |
| |
| if ((S_ISCHR(mode) || S_ISBLK(mode)) && |
| !ns_capable(inode_userns(dir), CAP_MKNOD)) |
| return -EPERM; |
| |
| if (!dir->i_op->mknod) |
| return -EPERM; |
| |
| error = devcgroup_inode_mknod(mode, dev); |
| if (error) |
| return error; |
| |
| error = security_inode_mknod(dir, dentry, mode, dev); |
| if (error) |
| return error; |
| |
| error = dir->i_op->mknod(dir, dentry, mode, dev); |
| if (!error) |
| fsnotify_create(dir, dentry); |
| return error; |
| } |
| |
| static int may_mknod(umode_t mode) |
| { |
| switch (mode & S_IFMT) { |
| case S_IFREG: |
| case S_IFCHR: |
| case S_IFBLK: |
| case S_IFIFO: |
| case S_IFSOCK: |
| case 0: /* zero mode translates to S_IFREG */ |
| return 0; |
| case S_IFDIR: |
| return -EPERM; |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, |
| unsigned, dev) |
| { |
| struct dentry *dentry; |
| struct path path; |
| int error; |
| |
| if (S_ISDIR(mode)) |
| return -EPERM; |
| |
| dentry = user_path_create(dfd, filename, &path, 0); |
| if (IS_ERR(dentry)) |
| return PTR_ERR(dentry); |
| |
| if (!IS_POSIXACL(path.dentry->d_inode)) |
| mode &= ~current_umask(); |
| error = may_mknod(mode); |
| if (error) |
| goto out_dput; |
| error = mnt_want_write(path.mnt); |
| if (error) |
| goto out_dput; |
| error = security_path_mknod(&path, dentry, mode, dev); |
| if (error) |
| goto out_drop_write; |
| switch (mode & S_IFMT) { |
| case 0: case S_IFREG: |
| error = vfs_create(path.dentry->d_inode,dentry,mode,NULL); |
| break; |
| case S_IFCHR: case S_IFBLK: |
| error = vfs_mknod(path.dentry->d_inode,dentry,mode, |
| new_decode_dev(dev)); |
| break; |
| case S_IFIFO: case S_IFSOCK: |
| error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); |
| break; |
| } |
| out_drop_write: |
| mnt_drop_write(path.mnt); |
| out_dput: |
| dput(dentry); |
| mutex_unlock(&path.dentry->d_inode->i_mutex); |
| path_put(&path); |
| |
| return error; |
| } |
| |
| SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) |
| { |
| return sys_mknodat(AT_FDCWD, filename, mode, dev); |
| } |
| |
| int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) |
| { |
| int error = may_create(dir, dentry); |
| |
| if (error) |
| return error; |
| |
| if (!dir->i_op->mkdir) |
| return -EPERM; |
| |
| mode &= (S_IRWXUGO|S_ISVTX); |
| error = security_inode_mkdir(dir, dentry, mode); |
| if (error) |
| return error; |
| |
| error = dir->i_op->mkdir(dir, dentry, mode); |
| if (!error) |
| fsnotify_mkdir(dir, dentry); |
| return error; |
| } |
| |
| SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) |
| { |
| struct dentry *dentry; |
| struct path path; |
| int error; |
| |
| dentry = user_path_create(dfd, pathname, &path, 1); |
| if (IS_ERR(dentry)) |
| return PTR_ERR(dentry); |
| |
| if (!IS_POSIXACL(path.dentry->d_inode)) |
| mode &= ~current_umask(); |
| error = mnt_want_write(path.mnt); |
| if (error) |
| goto out_dput; |
| error = security_path_mkdir(&path, dentry, mode); |
| if (error) |
| goto out_drop_write; |
| error = vfs_mkdir(path.dentry->d_inode, dentry, mode); |
| out_drop_write: |
| mnt_drop_write(path.mnt); |
| out_dput: |
| dput(dentry); |
| mutex_unlock(&path.dentry->d_inode->i_mutex); |
| path_put(&path); |
| return error; |
| } |
| |
| SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) |
| { |
| return sys_mkdirat(AT_FDCWD, pathname, mode); |
| } |
| |
| /* |
| * The dentry_unhash() helper will try to drop the dentry early: we |
| * should have a usage count of 2 if we're the only user of this |
| * dentry, and if that is true (possibly after pruning the dcache), |
| * then we drop the dentry now. |
| * |
| * A low-level filesystem can, if it choses, legally |
| * do a |
| * |
| * if (!d_unhashed(dentry)) |
| * return -EBUSY; |
| * |
| * if it cannot handle the case of removing a directory |
| * that is still in use by something else.. |
| */ |
| void dentry_unhash(struct dentry *dentry) |
| { |
| shrink_dcache_parent(dentry); |
| spin_lock(&dentry->d_lock); |
| if (dentry->d_count == 1) |
| __d_drop(dentry); |
| spin_unlock(&dentry->d_lock); |
| } |
| |
| int vfs_rmdir(struct inode *dir, struct dentry *dentry) |
| { |
| int error = may_delete(dir, dentry, 1); |
| |
| if (error) |
| return error; |
| |
| if (!dir->i_op->rmdir) |
| return -EPERM; |
| |
| dget(dentry); |
| mutex_lock(&dentry->d_inode->i_mutex); |
| |
| error = -EBUSY; |
| if (d_mountpoint(dentry)) |
| goto out; |
| |
| error = security_inode_rmdir(dir, dentry); |
| if (error) |
| goto out; |
| |
| shrink_dcache_parent(dentry); |
| error = dir->i_op->rmdir(dir, dentry); |
| if (error) |
| goto out; |
| |
| dentry->d_inode->i_flags |= S_DEAD; |
| dont_mount(dentry); |
| |
| out: |
| mutex_unlock(&dentry->d_inode->i_mutex); |
| dput(dentry); |
| if (!error) |
| d_delete(dentry); |
| return error; |
| } |
| |
| static long do_rmdir(int dfd, const char __user *pathname) |
| { |
| int error = 0; |
| char * name; |
| struct dentry *dentry; |
| struct nameidata nd; |
| |
| error = user_path_parent(dfd, pathname, &nd, &name); |
| if (error) |
| return error; |
| |
| switch(nd.last_type) { |
| case LAST_DOTDOT: |
| error = -ENOTEMPTY; |
| goto exit1; |
| case LAST_DOT: |
| error = -EINVAL; |
| goto exit1; |
| case LAST_ROOT: |
| error = -EBUSY; |
| goto exit1; |
| } |
| |
| nd.flags &= ~LOOKUP_PARENT; |
| |
| mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); |
| dentry = lookup_hash(&nd); |
| error = PTR_ERR(dentry); |
| if (IS_ERR(dentry)) |
| goto exit2; |
| if (!dentry->d_inode) { |
| error = -ENOENT; |
| goto exit3; |
| } |
| error = mnt_want_write(nd.path.mnt); |
| if (error) |
| goto exit3; |
| error = security_path_rmdir(&nd.path, dentry); |
| if (error) |
| goto exit4; |
| error = vfs_rmdir(nd.path.dentry->d_inode, dentry); |
| exit4: |
| mnt_drop_write(nd.path.mnt); |
| exit3: |
| dput(dentry); |
| exit2: |
| mutex_unlock(&nd.path.dentry->d_inode->i_mutex); |
| exit1: |
| path_put(&nd.path); |
| putname(name); |
| return error; |
| } |
| |
| SYSCALL_DEFINE1(rmdir, const char __user *, pathname) |
| { |
| return do_rmdir(AT_FDCWD, pathname); |
| } |
| |
| int vfs_unlink(struct inode *dir, struct dentry *dentry) |
| { |
| int error = may_delete(dir, dentry, 0); |
| |
| if (error) |
| return error; |
| |
| if (!dir->i_op->unlink) |
| return -EPERM; |
| |
| mutex_lock(&dentry->d_inode->i_mutex); |
| if (d_mountpoint(dentry)) |
| error = -EBUSY; |
| else { |
| error = security_inode_unlink(dir, dentry); |
| if (!error) { |
| error = dir->i_op->unlink(dir, dentry); |
| if (!error) |
| dont_mount(dentry); |
| } |
| } |
| mutex_unlock(&dentry->d_inode->i_mutex); |
| |
| /* We don't d_delete() NFS sillyrenamed files--they still exist. */ |
| if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { |
| fsnotify_link_count(dentry->d_inode); |
| d_delete(dentry); |
| } |
| |
| return error; |
| } |
| |
| /* |
| * Make sure that the actual truncation of the file will occur outside its |
| * directory's i_mutex. Truncate can take a long time if there is a lot of |
| * writeout happening, and we don't want to prevent access to the directory |
| * while waiting on the I/O. |
| */ |
| static long do_unlinkat(int dfd, const char __user *pathname) |
| { |
| int error; |
| char *name; |
| struct dentry *dentry; |
| struct nameidata nd; |
| struct inode *inode = NULL; |
| |
| error = user_path_parent(dfd, pathname, &nd, &name); |
| if (error) |
| return error; |
| |
| error = -EISDIR; |
| if (nd.last_type != LAST_NORM) |
| goto exit1; |
| |
| nd.flags &= ~LOOKUP_PARENT; |
| |
| mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); |
| dentry = lookup_hash(&nd); |
| error = PTR_ERR(dentry); |
| if (!IS_ERR(dentry)) { |
| /* Why not before? Because we want correct error value */ |
| if (nd.last.name[nd.last.len]) |
| goto slashes; |
| inode = dentry->d_inode; |
| if (!inode) |
| goto slashes; |
| ihold(inode); |
| error = mnt_want_write(nd.path.mnt); |
| if (error) |
| goto exit2; |
| error = security_path_unlink(&nd.path, dentry); |
| if (error) |
| goto exit3; |
| error = vfs_unlink(nd.path.dentry->d_inode, dentry); |
| exit3: |
| mnt_drop_write(nd.path.mnt); |
| exit2: |
| dput(dentry); |
| } |
| mutex_unlock(&nd.path.dentry->d_inode->i_mutex); |
| if (inode) |
| iput(inode); /* truncate the inode here */ |
| exit1: |
| path_put(&nd.path); |
| putname(name); |
| return error; |
| |
| slashes: |
| error = !dentry->d_inode ? -ENOENT : |
| S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR; |
| goto exit2; |
| } |
| |
| SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) |
| { |
| if ((flag & ~AT_REMOVEDIR) != 0) |
| return -EINVAL; |
| |
| if (flag & AT_REMOVEDIR) |
| return do_rmdir(dfd, pathname); |
| |
| return do_unlinkat(dfd, pathname); |
| } |
| |
| SYSCALL_DEFINE1(unlink, const char __user *, pathname) |
| { |
| return do_unlinkat(AT_FDCWD, pathname); |
| } |
| |
| int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) |
| { |
| int error = may_create(dir, dentry); |
| |
| if (error) |
| return error; |
| |
| if (!dir->i_op->symlink) |
| return -EPERM; |
| |
| error = security_inode_symlink(dir, dentry, oldname); |
| if (error) |
| return error; |
| |
| error = dir->i_op->symlink(dir, dentry, oldname); |
| if (!error) |
| fsnotify_create(dir, dentry); |
| return error; |
| } |
| |
| SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, |
| int, newdfd, const char __user *, newname) |
| { |
| int error; |
| char *from; |
| struct dentry *dentry; |
| struct path path; |
| |
| from = getname(oldname); |
| if (IS_ERR(from)) |
| return PTR_ERR(from); |
| |
| dentry = user_path_create(newdfd, newname, &path, 0); |
| error = PTR_ERR(dentry); |
| if (IS_ERR(dentry)) |
| goto out_putname; |
| |
| error = mnt_want_write(path.mnt); |
| if (error) |
| goto out_dput; |
| error = security_path_symlink(&path, dentry, from); |
| if (error) |
| goto out_drop_write; |
| error = vfs_symlink(path.dentry->d_inode, dentry, from); |
| out_drop_write: |
| mnt_drop_write(path.mnt); |
| out_dput: |
| dput(dentry); |
| mutex_unlock(&path.dentry->d_inode->i_mutex); |
| path_put(&path); |
| out_putname: |
| putname(from); |
| return error; |
| } |
| |
| SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) |
| { |
| return sys_symlinkat(oldname, AT_FDCWD, newname); |
| } |
| |
| int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) |
| { |
| struct inode *inode = old_dentry->d_inode; |
| int error; |
| |
| if (!inode) |
| return -ENOENT; |
| |
| error = may_create(dir, new_dentry); |
| if (error) |
| return error; |
| |
| if (dir->i_sb != inode->i_sb) |
| return -EXDEV; |
| |
| /* |
| * A link to an append-only or immutable file cannot be created. |
| */ |
| if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) |
| return -EPERM; |
| if (!dir->i_op->link) |
| return -EPERM; |
| if (S_ISDIR(inode->i_mode)) |
| return -EPERM; |
| |
| error = security_inode_link(old_dentry, dir, new_dentry); |
| if (error) |
| return error; |
| |
| mutex_lock(&inode->i_mutex); |
| /* Make sure we don't allow creating hardlink to an unlinked file */ |
| if (inode->i_nlink == 0) |
| error = -ENOENT; |
| else |
| error = dir->i_op->link(old_dentry, dir, new_dentry); |
| mutex_unlock(&inode->i_mutex); |
| if (!error) |
| fsnotify_link(dir, inode, new_dentry); |
| return error; |
| } |
| |
| /* |
| * Hardlinks are often used in delicate situations. We avoid |
| * security-related surprises by not following symlinks on the |
| * newname. --KAB |
| * |
| * We don't follow them on the oldname either to be compatible |
| * with linux 2.0, and to avoid hard-linking to directories |
| * and other special files. --ADM |
| */ |
| SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, |
| int, newdfd, const char __user *, newname, int, flags) |
| { |
| struct dentry *new_dentry; |
| struct path old_path, new_path; |
| int how = 0; |
| int error; |
| |
| if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) |
| return -EINVAL; |
| /* |
| * To use null names we require CAP_DAC_READ_SEARCH |
| * This ensures that not everyone will be able to create |
| * handlink using the passed filedescriptor. |
| */ |
| if (flags & AT_EMPTY_PATH) { |
| if (!capable(CAP_DAC_READ_SEARCH)) |
| return -ENOENT; |
| how = LOOKUP_EMPTY; |
| } |
| |
| if (flags & AT_SYMLINK_FOLLOW) |
| how |= LOOKUP_FOLLOW; |
| |
| error = user_path_at(olddfd, oldname, how, &old_path); |
| if (error) |
| return error; |
| |
| new_dentry = user_path_create(newdfd, newname, &new_path, 0); |
| error = PTR_ERR(new_dentry); |
| if (IS_ERR(new_dentry)) |
| goto out; |
| |
| error = -EXDEV; |
| if (old_path.mnt != new_path.mnt) |
| goto out_dput; |
| error = mnt_want_write(new_path.mnt); |
| if (error) |
| goto out_dput; |
| error = security_path_link(old_path.dentry, &new_path, new_dentry); |
| if (error) |
| goto out_drop_write; |
| error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry); |
| out_drop_write: |
| mnt_drop_write(new_path.mnt); |
| out_dput: |
| dput(new_dentry); |
| mutex_unlock(&new_path.dentry->d_inode->i_mutex); |
| path_put(&new_path); |
| out: |
| path_put(&old_path); |
| |
| return error; |
| } |
| |
| SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) |
| { |
| return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); |
| } |
| |
| /* |
| * The worst of all namespace operations - renaming directory. "Perverted" |
| * doesn't even start to describe it. Somebody in UCB had a heck of a trip... |
| * Problems: |
| * a) we can get into loop creation. Check is done in is_subdir(). |
| * b) race potential - two innocent renames can create a loop together. |
| * That's where 4.4 screws up. Current fix: serialization on |
| * sb->s_vfs_rename_mutex. We might be more accurate, but that's another |
| * story. |
| * c) we have to lock _three_ objects - parents and victim (if it exists). |
| * And that - after we got ->i_mutex on parents (until then we don't know |
| * whether the target exists). Solution: try to be smart with locking |
| * order for inodes. We rely on the fact that tree topology may change |
| * only under ->s_vfs_rename_mutex _and_ that parent of the object we |
| * move will be locked. Thus we can rank directories by the tree |
| * (ancestors first) and rank all non-directories after them. |
| * That works since everybody except rename does "lock parent, lookup, |
| * lock child" and rename is under ->s_vfs_rename_mutex. |
| * HOWEVER, it relies on the assumption that any object with ->lookup() |
| * has no more than 1 dentry. If "hybrid" objects will ever appear, |
| * we'd better make sure that there's no link(2) for them. |
| * d) conversion from fhandle to dentry may come in the wrong moment - when |
| * we are removing the target. Solution: we will have to grab ->i_mutex |
| * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on |
| * ->i_mutex on parents, which works but leads to some truly excessive |
| * locking]. |
| */ |
| static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry) |
| { |
| int error = 0; |
| struct inode *target = new_dentry->d_inode; |
| |
| /* |
| * If we are going to change the parent - check write permissions, |
| * we'll need to flip '..'. |
| */ |
| if (new_dir != old_dir) { |
| error = inode_permission(old_dentry->d_inode, MAY_WRITE); |
| if (error) |
| return error; |
| } |
| |
| error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); |
| if (error) |
| return error; |
| |
| dget(new_dentry); |
| if (target) |
| mutex_lock(&target->i_mutex); |
| |
| error = -EBUSY; |
| if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry)) |
| goto out; |
| |
| if (target) |
| shrink_dcache_parent(new_dentry); |
| error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); |
| if (error) |
| goto out; |
| |
| if (target) { |
| target->i_flags |= S_DEAD; |
| dont_mount(new_dentry); |
| } |
| out: |
| if (target) |
| mutex_unlock(&target->i_mutex); |
| dput(new_dentry); |
| if (!error) |
| if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) |
| d_move(old_dentry,new_dentry); |
| return error; |
| } |
| |
| static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry) |
| { |
| struct inode *target = new_dentry->d_inode; |
| int error; |
| |
| error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry); |
| if (error) |
| return error; |
| |
| dget(new_dentry); |
| if (target) |
| mutex_lock(&target->i_mutex); |
| |
| error = -EBUSY; |
| if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry)) |
| goto out; |
| |
| error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry); |
| if (error) |
| goto out; |
| |
| if (target) |
| dont_mount(new_dentry); |
| if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) |
| d_move(old_dentry, new_dentry); |
| out: |
| if (target) |
| mutex_unlock(&target->i_mutex); |
| dput(new_dentry); |
| return error; |
| } |
| |
| int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, |
| struct inode *new_dir, struct dentry *new_dentry) |
| { |
| int error; |
| int is_dir = S_ISDIR(old_dentry->d_inode->i_mode); |
| const unsigned char *old_name; |
| |
| if (old_dentry->d_inode == new_dentry->d_inode) |
| return 0; |
| |
| error = may_delete(old_dir, old_dentry, is_dir); |
| if (error) |
| return error; |
| |
| if (!new_dentry->d_inode) |
| error = may_create(new_dir, new_dentry); |
| else |
| error = may_delete(new_dir, new_dentry, is_dir); |
| if (error) |
| return error; |
| |
| if (!old_dir->i_op->rename) |
| return -EPERM; |
| |
| old_name = fsnotify_oldname_init(old_dentry->d_name.name); |
| |
| if (is_dir) |
| error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry); |
| else |
| error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry); |
| if (!error) |
| fsnotify_move(old_dir, new_dir, old_name, is_dir, |
| new_dentry->d_inode, old_dentry); |
| fsnotify_oldname_free(old_name); |
| |
| return error; |
| } |
| |
| SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, |
| int, newdfd, const char __user *, newname) |
| { |
| struct dentry *old_dir, *new_dir; |
| struct dentry *old_dentry, *new_dentry; |
| struct dentry *trap; |
| struct nameidata oldnd, newnd; |
| char *from; |
| char *to; |
| int error; |
| |
| error = user_path_parent(olddfd, oldname, &oldnd, &from); |
| if (error) |
| goto exit; |
| |
| error = user_path_parent(newdfd, newname, &newnd, &to); |
| if (error) |
| goto exit1; |
| |
| error = -EXDEV; |
| if (oldnd.path.mnt != newnd.path.mnt) |
| goto exit2; |
| |
| old_dir = oldnd.path.dentry; |
| error = -EBUSY; |
| if (oldnd.last_type != LAST_NORM) |
| goto exit2; |
| |
| new_dir = newnd.path.dentry; |
| if (newnd.last_type != LAST_NORM) |
| goto exit2; |
| |
| oldnd.flags &= ~LOOKUP_PARENT; |
| newnd.flags &= ~LOOKUP_PARENT; |
| newnd.flags |= LOOKUP_RENAME_TARGET; |
| |
| trap = lock_rename(new_dir, old_dir); |
| |
| old_dentry = lookup_hash(&oldnd); |
| error = PTR_ERR(old_dentry); |
| if (IS_ERR(old_dentry)) |
| goto exit3; |
| /* source must exist */ |
| error = -ENOENT; |
| if (!old_dentry->d_inode) |
| goto exit4; |
| /* unless the source is a directory trailing slashes give -ENOTDIR */ |
| if (!S_ISDIR(old_dentry->d_inode->i_mode)) { |
| error = -ENOTDIR; |
| if (oldnd.last.name[oldnd.last.len]) |
| goto exit4; |
| if (newnd.last.name[newnd.last.len]) |
| goto exit4; |
| } |
| /* source should not be ancestor of target */ |
| error = -EINVAL; |
| if (old_dentry == trap) |
| goto exit4; |
| new_dentry = lookup_hash(&newnd); |
| error = PTR_ERR(new_dentry); |
| if (IS_ERR(new_dentry)) |
| goto exit4; |
| /* target should not be an ancestor of source */ |
| error = -ENOTEMPTY; |
| if (new_dentry == trap) |
| goto exit5; |
| |
| error = mnt_want_write(oldnd.path.mnt); |
| if (error) |
| goto exit5; |
| error = security_path_rename(&oldnd.path, old_dentry, |
| &newnd.path, new_dentry); |
| if (error) |
| goto exit6; |
| error = vfs_rename(old_dir->d_inode, old_dentry, |
| new_dir->d_inode, new_dentry); |
| exit6: |
| mnt_drop_write(oldnd.path.mnt); |
| exit5: |
| dput(new_dentry); |
| exit4: |
| dput(old_dentry); |
| exit3: |
| unlock_rename(new_dir, old_dir); |
| exit2: |
| path_put(&newnd.path); |
| putname(to); |
| exit1: |
| path_put(&oldnd.path); |
| putname(from); |
| exit: |
| return error; |
| } |
| |
| SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) |
| { |
| return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname); |
| } |
| |
| int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link) |
| { |
| int len; |
| |
| len = PTR_ERR(link); |
| if (IS_ERR(link)) |
| goto out; |
| |
| len = strlen(link); |
| if (len > (unsigned) buflen) |
| len = buflen; |
| if (copy_to_user(buffer, link, len)) |
| len = -EFAULT; |
| out: |
| return len; |
| } |
| |
| /* |
| * A helper for ->readlink(). This should be used *ONLY* for symlinks that |
| * have ->follow_link() touching nd only in nd_set_link(). Using (or not |
| * using) it for any given inode is up to filesystem. |
| */ |
| int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) |
| { |
| struct nameidata nd; |
| void *cookie; |
| int res; |
| |
| nd.depth = 0; |
| cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); |
| if (IS_ERR(cookie)) |
| return PTR_ERR(cookie); |
| |
| res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd)); |
| if (dentry->d_inode->i_op->put_link) |
| dentry->d_inode->i_op->put_link(dentry, &nd, cookie); |
| return res; |
| } |
| |
| int vfs_follow_link(struct nameidata *nd, const char *link) |
| { |
| return __vfs_follow_link(nd, link); |
| } |
| |
| /* get the link contents into pagecache */ |
| static char *page_getlink(struct dentry * dentry, struct page **ppage) |
| { |
| char *kaddr; |
| struct page *page; |
| struct address_space *mapping = dentry->d_inode->i_mapping; |
| page = read_mapping_page(mapping, 0, NULL); |
| if (IS_ERR(page)) |
| return (char*)page; |
| *ppage = page; |
| kaddr = kmap(page); |
| nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); |
| return kaddr; |
| } |
| |
| int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) |
| { |
| struct page *page = NULL; |
| char *s = page_getlink(dentry, &page); |
| int res = vfs_readlink(dentry,buffer,buflen,s); |
| if (page) { |
| kunmap(page); |
| page_cache_release(page); |
| } |
| return res; |
| } |
| |
| void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) |
| { |
| struct page *page = NULL; |
| nd_set_link(nd, page_getlink(dentry, &page)); |
| return page; |
| } |
| |
| void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) |
| { |
| struct page *page = cookie; |
| |
| if (page) { |
| kunmap(page); |
| page_cache_release(page); |
| } |
| } |
| |
| /* |
| * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS |
| */ |
| int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) |
| { |
| struct address_space *mapping = inode->i_mapping; |
| struct page *page; |
| void *fsdata; |
| int err; |
| char *kaddr; |
| unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; |
| if (nofs) |
| flags |= AOP_FLAG_NOFS; |
| |
| retry: |
| err = pagecache_write_begin(NULL, mapping, 0, len-1, |
| flags, &page, &fsdata); |
| if (err) |
| goto fail; |
| |
| kaddr = kmap_atomic(page); |
| memcpy(kaddr, symname, len-1); |
| kunmap_atomic(kaddr); |
| |
| err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, |
| page, fsdata); |
| if (err < 0) |
| goto fail; |
| if (err < len-1) |
| goto retry; |
| |
| mark_inode_dirty(inode); |
| return 0; |
| fail: |
| return err; |
| } |
| |
| int page_symlink(struct inode *inode, const char *symname, int len) |
| { |
| return __page_symlink(inode, symname, len, |
| !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); |
| } |
| |
| const struct inode_operations page_symlink_inode_operations = { |
| .readlink = generic_readlink, |
| .follow_link = page_follow_link_light, |
| .put_link = page_put_link, |
| }; |
| |
| EXPORT_SYMBOL(user_path_at); |
| EXPORT_SYMBOL(follow_down_one); |
| EXPORT_SYMBOL(follow_down); |
| EXPORT_SYMBOL(follow_up); |
| EXPORT_SYMBOL(get_write_access); /* binfmt_aout */ |
| EXPORT_SYMBOL(getname); |
| EXPORT_SYMBOL(lock_rename); |
| EXPORT_SYMBOL(lookup_one_len); |
| EXPORT_SYMBOL(page_follow_link_light); |
| EXPORT_SYMBOL(page_put_link); |
| EXPORT_SYMBOL(page_readlink); |
| EXPORT_SYMBOL(__page_symlink); |
| EXPORT_SYMBOL(page_symlink); |
| EXPORT_SYMBOL(page_symlink_inode_operations); |
| EXPORT_SYMBOL(kern_path); |
| EXPORT_SYMBOL(vfs_path_lookup); |
| EXPORT_SYMBOL(inode_permission); |
| EXPORT_SYMBOL(unlock_rename); |
| EXPORT_SYMBOL(vfs_create); |
| EXPORT_SYMBOL(vfs_follow_link); |
| EXPORT_SYMBOL(vfs_link); |
| EXPORT_SYMBOL(vfs_mkdir); |
| EXPORT_SYMBOL(vfs_mknod); |
| EXPORT_SYMBOL(generic_permission); |
| EXPORT_SYMBOL(vfs_readlink); |
| EXPORT_SYMBOL(vfs_rename); |
| EXPORT_SYMBOL(vfs_rmdir); |
| EXPORT_SYMBOL(vfs_symlink); |
| EXPORT_SYMBOL(vfs_unlink); |
| EXPORT_SYMBOL(dentry_unhash); |
| EXPORT_SYMBOL(generic_readlink); |