blob: 6cceff23a21ee7c5124c526e399eafd746031aeb [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/miscdevice.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/percpu.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/wakelock.h>
#include <linux/pm_qos.h>
#include <asm/atomic.h>
#include "cp14.h"
#define LOG_BUF_LEN 32768
/* each slot is 4 bytes, 8kb total */
#define ETB_RAM_SLOTS 2048
#define DATALOG_SYNC 0xB5C7
#define ETM_DUMP_MSG_ID 0x000A6960
#define ETB_DUMP_MSG_ID 0x000A6961
/* ETB Registers */
#define ETB_REG_CONTROL ETMIMPSPEC1
#define ETB_REG_STATUS ETMIMPSPEC2
#define ETB_REG_COUNT ETMIMPSPEC3
#define ETB_REG_ADDRESS ETMIMPSPEC4
#define ETB_REG_DATA ETMIMPSPEC5
/* Having etb macro accessors allows macro expansion for ETB reg defines */
#define etb_read(reg) etm_read(reg)
#define etb_write(val, reg) etm_write(val, reg)
/* Bitmasks for the ETM control register */
#define ETM_CONTROL_POWERDOWN 0x00000001
#define ETM_CONTROL_PROGRAM 0x00000400
/* Bitmasks for the ETM status register */
#define ETM_STATUS_PROGRAMMING 0x00000002
/* ETB Status Register bit definitions */
#define OV 0x00200000
/* ETB Control Register bit definitions */
#define AIR 0x00000008
#define AIW 0x00000004
#define CPTM 0x00000002
#define CPTEN 0x00000001
/* Bitmasks for the swconfig field of ETM_CONFIG
* ETM trigger propagated to ETM instances on all cores
*/
#define TRIGGER_ALL 0x00000002
#define PROG_TIMEOUT_MS 500
static int trace_enabled;
static int cpu_to_dump;
static int next_cpu_to_dump;
static struct wake_lock etm_wake_lock;
static struct pm_qos_request etm_qos_req;
static int trace_on_boot;
module_param_named(
trace_on_boot, trace_on_boot, int, S_IRUGO
);
struct b {
uint8_t etm_log_buf[LOG_BUF_LEN];
uint32_t log_end;
};
static struct b buf[NR_CPUS];
static struct b __percpu * *alloc_b;
static atomic_t etm_dev_in_use;
/* These default settings will be used to configure the ETM/ETB
* when the driver loads. */
struct etm_config_struct {
uint32_t etm_00_control;
uint32_t etm_02_trigger_event;
uint32_t etm_06_te_start_stop;
uint32_t etm_07_te_single_addr_comp;
uint32_t etm_08_te_event;
uint32_t etm_09_te_control;
uint32_t etm_0a_fifofull_region;
uint32_t etm_0b_fifofull_level;
uint32_t etm_0c_vd_event;
uint32_t etm_0d_vd_single_addr_comp;
uint32_t etm_0e_vd_mmd;
uint32_t etm_0f_vd_control;
uint32_t etm_addr_comp_value[8]; /* 10 to 17 */
uint32_t etm_addr_access_type[8]; /* 20 to 27 */
uint32_t etm_data_comp_value[2]; /* 30 and 32 */
uint32_t etm_data_comp_mask[2]; /* 40 and 42 */
uint32_t etm_counter_reload_value[2]; /* 50 to 51 */
uint32_t etm_counter_enable[2]; /* 54 to 55 */
uint32_t etm_counter_reload_event[2]; /* 58 to 59 */
uint32_t etm_60_seq_event_1_to_2;
uint32_t etm_61_seq_event_2_to_1;
uint32_t etm_62_seq_event_2_to_3;
uint32_t etm_63_seq_event_3_to_1;
uint32_t etm_64_seq_event_3_to_2;
uint32_t etm_65_seq_event_1_to_3;
uint32_t etm_6c_cid_comp_value_1;
uint32_t etm_6f_cid_comp_mask;
uint32_t etm_78_sync_freq;
uint32_t swconfig;
uint32_t etb_trig_cnt;
uint32_t etb_init_ptr;
};
static struct etm_config_struct etm_config = {
/* etm_00_control 0x0000D84E: 32-bit CID, cycle-accurate,
* monitorCPRT */
.etm_00_control = 0x0000D84E,
/* etm_02_trigger_event 0x00000000: address comparator 0 matches */
.etm_02_trigger_event = 0x00000000,
.etm_06_te_start_stop = 0x00000000,
.etm_07_te_single_addr_comp = 0x00000000,
/* etm_08_te_event 0x0000006F: always true */
.etm_08_te_event = 0x0000006F,
/* etm_09_te_control 0x01000000: exclude none */
.etm_09_te_control = 0x01000000,
.etm_0a_fifofull_region = 0x00000000,
.etm_0b_fifofull_level = 0x00000000,
/* etm_0c_vd_event 0x0000006F: always true */
.etm_0c_vd_event = 0x0000006F,
.etm_0d_vd_single_addr_comp = 0x00000000,
.etm_0e_vd_mmd = 0x00000000,
/* etm_0f_vd_control 0x00010000: exclude none */
.etm_0f_vd_control = 0x00010000,
.etm_addr_comp_value[0] = 0x00000000,
.etm_addr_comp_value[1] = 0x00000000,
.etm_addr_comp_value[2] = 0x00000000,
.etm_addr_comp_value[3] = 0x00000000,
.etm_addr_comp_value[4] = 0x00000000,
.etm_addr_comp_value[5] = 0x00000000,
.etm_addr_comp_value[6] = 0x00000000,
.etm_addr_comp_value[7] = 0x00000000,
.etm_addr_access_type[0] = 0x00000000,
.etm_addr_access_type[1] = 0x00000000,
.etm_addr_access_type[2] = 0x00000000,
.etm_addr_access_type[3] = 0x00000000,
.etm_addr_access_type[4] = 0x00000000,
.etm_addr_access_type[5] = 0x00000000,
.etm_addr_access_type[6] = 0x00000000,
.etm_addr_access_type[7] = 0x00000000,
.etm_data_comp_value[0] = 0x00000000,
.etm_data_comp_value[1] = 0x00000000,
.etm_data_comp_mask[0] = 0x00000000,
.etm_data_comp_mask[1] = 0x00000000,
.etm_counter_reload_value[0] = 0x00000000,
.etm_counter_reload_value[1] = 0x00000000,
.etm_counter_enable[0] = 0x0002406F,
.etm_counter_enable[1] = 0x0002406F,
.etm_counter_reload_event[0] = 0x0000406F,
.etm_counter_reload_event[1] = 0x0000406F,
.etm_60_seq_event_1_to_2 = 0x0000406F,
.etm_61_seq_event_2_to_1 = 0x0000406F,
.etm_62_seq_event_2_to_3 = 0x0000406F,
.etm_63_seq_event_3_to_1 = 0x0000406F,
.etm_64_seq_event_3_to_2 = 0x0000406F,
.etm_65_seq_event_1_to_3 = 0x0000406F,
.etm_6c_cid_comp_value_1 = 0x00000000,
.etm_6f_cid_comp_mask = 0x00000000,
.etm_78_sync_freq = 0x00000400,
.swconfig = 0x00000002,
/* etb_trig_cnt 0x00000000: ignore trigger */
.etb_trig_cnt = 0x00000000,
/* etb_init_ptr 0x00000010: 16 marker bytes */
.etb_init_ptr = 0x00000010,
};
/* ETM clock is derived from the processor clock and gets enabled on a
* logical OR of below items on Scorpion:
* 1.CPMR[ETMCLKEN] is set
* 2.ETM is not idle. Also means ETMCR[PD] is 0
* 3.Reset is asserted (core or debug)
* 4.MRC/MCR to ETM reg (CP14 access)
* 5.Debugger access to a ETM register in the core power domain
*
* 1. and 2. above are permanent enables whereas 3., 4. and 5. are
* temporary enables
*
* We rely on 4. to be able to access ETMCR and then use 2. above for ETM
* clock vote in the driver and the save-restore code uses 1. above
* for its vote.
*/
static inline void __cpu_set_etm_pwrdwn(void)
{
uint32_t etm_control;
isb();
etm_control = etm_read(ETMCR);
etm_control |= ETM_CONTROL_POWERDOWN;
etm_write(etm_control, ETMCR);
}
static inline void __cpu_clear_etm_pwrdwn(void)
{
uint32_t etm_control;
etm_control = etm_read(ETMCR);
etm_control &= ~ETM_CONTROL_POWERDOWN;
etm_write(etm_control, ETMCR);
isb();
}
static void emit_log_char(uint8_t c)
{
int this_cpu = get_cpu();
struct b *mybuf = *per_cpu_ptr(alloc_b, this_cpu);
char *log_buf = mybuf->etm_log_buf;
int index = (mybuf->log_end)++ & (LOG_BUF_LEN - 1);
log_buf[index] = c;
put_cpu();
}
static void emit_log_word(uint32_t word)
{
emit_log_char(word >> 24);
emit_log_char(word >> 16);
emit_log_char(word >> 8);
emit_log_char(word >> 0);
}
static void __cpu_enable_etb(void)
{
uint32_t etb_control;
uint32_t i;
/* enable auto-increment on reads and writes */
etb_control = AIR | AIW;
etb_write(etb_control, ETB_REG_CONTROL);
/* write tags to the slots before the write pointer so we can
* detect overflow */
etb_write(0x00000000, ETB_REG_ADDRESS);
for (i = 0; i < (etm_config.etb_init_ptr >> 2); i++)
etb_write(0xDEADBEEF, ETB_REG_DATA);
etb_write(0x00000000, ETB_REG_STATUS);
/* initialize write pointer */
etb_write(etm_config.etb_init_ptr, ETB_REG_ADDRESS);
/* multiple of 16 */
etb_write(etm_config.etb_trig_cnt & 0xFFFFFFF0, ETB_REG_COUNT);
/* Enable ETB and enable the trigger counter as appropriate. A
* trigger count of 0 will be used to signify that the user wants to
* ignore the trigger (just keep writing to the ETB and overwriting
* the oldest data). For "trace before trigger" captures the user
* should set the trigger count to a small number. */
etb_control |= CPTEN;
if (etm_config.etb_trig_cnt)
etb_control |= CPTM;
etb_write(etb_control, ETB_REG_CONTROL);
}
static void __cpu_disable_etb(void)
{
uint32_t etb_control;
etb_control = etb_read(ETB_REG_CONTROL);
etb_control &= ~CPTEN;
etb_write(etb_control, ETB_REG_CONTROL);
}
static void __cpu_enable_etm(void)
{
uint32_t etm_control;
unsigned long timeout = jiffies + msecs_to_jiffies(PROG_TIMEOUT_MS);
etm_control = etm_read(ETMCR);
etm_control &= ~ETM_CONTROL_PROGRAM;
etm_write(etm_control, ETMCR);
while ((etm_read(ETMSR) & ETM_STATUS_PROGRAMMING) == 1) {
cpu_relax();
if (time_after(jiffies, timeout)) {
pr_err("etm: timeout while clearing prog bit\n");
break;
}
}
}
static void __cpu_disable_etm(void)
{
uint32_t etm_control;
unsigned long timeout = jiffies + msecs_to_jiffies(PROG_TIMEOUT_MS);
etm_control = etm_read(ETMCR);
etm_control |= ETM_CONTROL_PROGRAM;
etm_write(etm_control, ETMCR);
while ((etm_read(ETMSR) & ETM_STATUS_PROGRAMMING) == 0) {
cpu_relax();
if (time_after(jiffies, timeout)) {
pr_err("etm: timeout while setting prog bit\n");
break;
}
}
}
static void __cpu_enable_trace(void *unused)
{
uint32_t etm_control;
uint32_t etm_trigger;
uint32_t etm_external_output;
get_cpu();
__cpu_disable_etb();
/* vote for ETM power/clock enable */
__cpu_clear_etm_pwrdwn();
__cpu_disable_etm();
etm_control = (etm_config.etm_00_control & ~ETM_CONTROL_POWERDOWN)
| ETM_CONTROL_PROGRAM;
etm_write(etm_control, ETMCR);
etm_trigger = etm_config.etm_02_trigger_event;
etm_external_output = 0x406F; /* always FALSE */
if (etm_config.swconfig & TRIGGER_ALL) {
uint32_t function = 0x5; /* A OR B */
uint32_t resource_b = 0x60; /* external input 1 */
etm_trigger &= 0x7F; /* keep resource A, clear function and
* resource B */
etm_trigger |= (function << 14);
etm_trigger |= (resource_b << 7);
etm_external_output = etm_trigger;
}
etm_write(etm_trigger, ETMTRIGGER);
etm_write(etm_config.etm_06_te_start_stop, ETMTSSCR);
etm_write(etm_config.etm_07_te_single_addr_comp, ETMTECR2);
etm_write(etm_config.etm_08_te_event, ETMTEEVR);
etm_write(etm_config.etm_09_te_control, ETMTECR1);
etm_write(etm_config.etm_0a_fifofull_region, ETMFFRR);
etm_write(etm_config.etm_0b_fifofull_level, ETMFFLR);
etm_write(etm_config.etm_0c_vd_event, ETMVDEVR);
etm_write(etm_config.etm_0d_vd_single_addr_comp, ETMVDCR1);
etm_write(etm_config.etm_0e_vd_mmd, ETMVDCR2);
etm_write(etm_config.etm_0f_vd_control, ETMVDCR3);
etm_write(etm_config.etm_addr_comp_value[0], ETMACVR0);
etm_write(etm_config.etm_addr_comp_value[1], ETMACVR1);
etm_write(etm_config.etm_addr_comp_value[2], ETMACVR2);
etm_write(etm_config.etm_addr_comp_value[3], ETMACVR3);
etm_write(etm_config.etm_addr_comp_value[4], ETMACVR4);
etm_write(etm_config.etm_addr_comp_value[5], ETMACVR5);
etm_write(etm_config.etm_addr_comp_value[6], ETMACVR6);
etm_write(etm_config.etm_addr_comp_value[7], ETMACVR7);
etm_write(etm_config.etm_addr_access_type[0], ETMACTR0);
etm_write(etm_config.etm_addr_access_type[1], ETMACTR1);
etm_write(etm_config.etm_addr_access_type[2], ETMACTR2);
etm_write(etm_config.etm_addr_access_type[3], ETMACTR3);
etm_write(etm_config.etm_addr_access_type[4], ETMACTR4);
etm_write(etm_config.etm_addr_access_type[5], ETMACTR5);
etm_write(etm_config.etm_addr_access_type[6], ETMACTR6);
etm_write(etm_config.etm_addr_access_type[7], ETMACTR7);
etm_write(etm_config.etm_data_comp_value[0], ETMDCVR0);
etm_write(etm_config.etm_data_comp_value[1], ETMDCVR2);
etm_write(etm_config.etm_data_comp_mask[0], ETMDCMR0);
etm_write(etm_config.etm_data_comp_mask[1], ETMDCMR2);
etm_write(etm_config.etm_counter_reload_value[0], ETMCNTRLDVR0);
etm_write(etm_config.etm_counter_reload_value[1], ETMCNTRLDVR1);
etm_write(etm_config.etm_counter_enable[0], ETMCNTENR0);
etm_write(etm_config.etm_counter_enable[1], ETMCNTENR1);
etm_write(etm_config.etm_counter_reload_event[0], ETMCNTRLDEVR0);
etm_write(etm_config.etm_counter_reload_event[1], ETMCNTRLDEVR1);
etm_write(etm_config.etm_60_seq_event_1_to_2, ETMSQ12EVR);
etm_write(etm_config.etm_61_seq_event_2_to_1, ETMSQ21EVR);
etm_write(etm_config.etm_62_seq_event_2_to_3, ETMSQ23EVR);
etm_write(etm_config.etm_63_seq_event_3_to_1, ETMSQ31EVR);
etm_write(etm_config.etm_64_seq_event_3_to_2, ETMSQ32EVR);
etm_write(etm_config.etm_65_seq_event_1_to_3, ETMSQ13EVR);
etm_write(etm_external_output, ETMEXTOUTEVR0);
etm_write(etm_config.etm_6c_cid_comp_value_1, ETMCIDCVR0);
etm_write(etm_config.etm_6f_cid_comp_mask, ETMCIDCMR);
etm_write(etm_config.etm_78_sync_freq, ETMSYNCFR);
/* Note that we must enable the ETB before we enable the ETM if we
* want to capture the "always true" trigger event. */
__cpu_enable_etb();
__cpu_enable_etm();
put_cpu();
}
static void __cpu_disable_trace(void *unused)
{
get_cpu();
__cpu_disable_etm();
/* program trace enable to be low by using always false event */
etm_write(0x6F | BIT(14), ETMTEEVR);
/* vote for ETM power/clock disable */
__cpu_set_etm_pwrdwn();
__cpu_disable_etb();
put_cpu();
}
static void enable_trace(void)
{
wake_lock(&etm_wake_lock);
pm_qos_update_request(&etm_qos_req, 0);
if (etm_config.swconfig & TRIGGER_ALL) {
/* This register is accessible from either core.
* CPU1_extout[0] -> CPU0_extin[0]
* CPU_extout[0] -> CPU1_extin[0] */
asm volatile("mcr p15, 3, %0, c15, c5, 2" : : "r" (0x1));
asm volatile("isb");
}
get_cpu();
__cpu_enable_trace(NULL);
smp_call_function(__cpu_enable_trace, NULL, 1);
put_cpu();
/* 1. causes all online cpus to come out of idle PC
* 2. prevents idle PC until save restore flag is enabled atomically
*
* we rely on the user to prevent hotplug on/off racing with this
* operation and to ensure cores where trace is expected to be turned
* on are already hotplugged on
*/
trace_enabled = 1;
pm_qos_update_request(&etm_qos_req, PM_QOS_DEFAULT_VALUE);
wake_unlock(&etm_wake_lock);
}
static void disable_trace(void)
{
wake_lock(&etm_wake_lock);
pm_qos_update_request(&etm_qos_req, 0);
get_cpu();
__cpu_disable_trace(NULL);
smp_call_function(__cpu_disable_trace, NULL, 1);
put_cpu();
/* 1. causes all online cpus to come out of idle PC
* 2. prevents idle PC until save restore flag is disabled atomically
*
* we rely on the user to prevent hotplug on/off racing with this
* operation and to ensure cores where trace is expected to be turned
* off are already hotplugged on
*/
trace_enabled = 0;
cpu_to_dump = next_cpu_to_dump = 0;
pm_qos_update_request(&etm_qos_req, PM_QOS_DEFAULT_VALUE);
wake_unlock(&etm_wake_lock);
}
static void generate_etb_dump(void)
{
uint32_t i;
uint32_t full_slots;
uint32_t etb_control;
uint32_t prim_len;
uint32_t uptime = 0;
etb_control = etb_read(ETB_REG_CONTROL);
etb_control |= AIR;
etb_write(etb_control, ETB_REG_CONTROL);
if (etb_read(ETB_REG_STATUS) & OV)
full_slots = ETB_RAM_SLOTS;
else
full_slots = etb_read(ETB_REG_ADDRESS) >> 2;
prim_len = 28 + (full_slots * 4);
emit_log_char((DATALOG_SYNC >> 8) & 0xFF);
emit_log_char((DATALOG_SYNC >> 0) & 0xFF);
emit_log_char((prim_len >> 8) & 0xFF);
emit_log_char((prim_len >> 0) & 0xFF);
emit_log_word(uptime);
emit_log_word(ETB_DUMP_MSG_ID);
emit_log_word(etm_read(ETMCR));
emit_log_word(etm_config.etb_init_ptr >> 2);
emit_log_word(etb_read(ETB_REG_ADDRESS) >> 2);
emit_log_word((etb_read(ETB_REG_STATUS) & OV) >> 21);
etb_write(0x00000000, ETB_REG_ADDRESS);
for (i = 0; i < full_slots; i++)
emit_log_word(etb_read(ETB_REG_DATA));
}
/* This should match the number of ETM registers being dumped below */
#define ETM_NUM_REGS_TO_DUMP 54
static void generate_etm_dump(void)
{
uint32_t prim_len;
uint32_t uptime = 0;
prim_len = 12 + (4 * ETM_NUM_REGS_TO_DUMP);
emit_log_char((DATALOG_SYNC >> 8) & 0xFF);
emit_log_char((DATALOG_SYNC >> 0) & 0xFF);
emit_log_char((prim_len >> 8) & 0xFF);
emit_log_char((prim_len >> 0) & 0xFF);
emit_log_word(uptime);
emit_log_word(ETM_DUMP_MSG_ID);
emit_log_word(etm_read(ETMCR));
emit_log_word(etm_read(ETMSR));
emit_log_word(etb_read(ETB_REG_CONTROL));
emit_log_word(etb_read(ETB_REG_STATUS));
emit_log_word(etb_read(ETB_REG_COUNT));
emit_log_word(etb_read(ETB_REG_ADDRESS));
emit_log_word(0); /* don't read ETB_REG_DATA, changes ETB_REG_ADDRESS */
emit_log_word(etm_read(ETMTRIGGER));
emit_log_word(etm_read(ETMTSSCR));
emit_log_word(etm_read(ETMTECR2));
emit_log_word(etm_read(ETMTEEVR));
emit_log_word(etm_read(ETMTECR1));
emit_log_word(etm_read(ETMFFRR));
emit_log_word(etm_read(ETMFFLR));
emit_log_word(etm_read(ETMVDEVR));
emit_log_word(etm_read(ETMVDCR1));
emit_log_word(etm_read(ETMVDCR2));
emit_log_word(etm_read(ETMVDCR3));
emit_log_word(etm_read(ETMACVR0));
emit_log_word(etm_read(ETMACVR1));
emit_log_word(etm_read(ETMACVR2));
emit_log_word(etm_read(ETMACVR3));
emit_log_word(etm_read(ETMACVR4));
emit_log_word(etm_read(ETMACVR5));
emit_log_word(etm_read(ETMACVR6));
emit_log_word(etm_read(ETMACVR7));
emit_log_word(etm_read(ETMACTR0));
emit_log_word(etm_read(ETMACTR1));
emit_log_word(etm_read(ETMACTR2));
emit_log_word(etm_read(ETMACTR3));
emit_log_word(etm_read(ETMACTR4));
emit_log_word(etm_read(ETMACTR5));
emit_log_word(etm_read(ETMACTR6));
emit_log_word(etm_read(ETMACTR7));
emit_log_word(etm_read(ETMDCVR0));
emit_log_word(etm_read(ETMDCVR2));
emit_log_word(etm_read(ETMDCMR0));
emit_log_word(etm_read(ETMDCMR2));
emit_log_word(etm_read(ETMCNTRLDVR0));
emit_log_word(etm_read(ETMCNTRLDVR1));
emit_log_word(etm_read(ETMCNTENR0));
emit_log_word(etm_read(ETMCNTENR1));
emit_log_word(etm_read(ETMCNTRLDEVR0));
emit_log_word(etm_read(ETMCNTRLDEVR1));
emit_log_word(etm_read(ETMSQ12EVR));
emit_log_word(etm_read(ETMSQ21EVR));
emit_log_word(etm_read(ETMSQ23EVR));
emit_log_word(etm_read(ETMSQ31EVR));
emit_log_word(etm_read(ETMSQ32EVR));
emit_log_word(etm_read(ETMSQ13EVR));
emit_log_word(etm_read(ETMEXTOUTEVR0));
emit_log_word(etm_read(ETMCIDCVR0));
emit_log_word(etm_read(ETMCIDCMR));
emit_log_word(etm_read(ETMSYNCFR));
}
static void dump_all(void *unused)
{
get_cpu();
__cpu_disable_etb();
generate_etm_dump();
generate_etb_dump();
if (trace_enabled)
__cpu_enable_etb();
put_cpu();
}
static void dump_trace(void)
{
get_cpu();
dump_all(NULL);
smp_call_function(dump_all, NULL, 1);
put_cpu();
}
static int bytes_to_dump;
static uint8_t *etm_buf_ptr;
static int etm_dev_open(struct inode *inode, struct file *file)
{
if (atomic_cmpxchg(&etm_dev_in_use, 0, 1))
return -EBUSY;
pr_debug("%s: successfully opened\n", __func__);
return 0;
}
static ssize_t etm_dev_read(struct file *file, char __user *data,
size_t len, loff_t *ppos)
{
if (cpu_to_dump == next_cpu_to_dump) {
if (cpu_to_dump == 0)
dump_trace();
bytes_to_dump = buf[cpu_to_dump].log_end;
buf[cpu_to_dump].log_end = 0;
etm_buf_ptr = buf[cpu_to_dump].etm_log_buf;
next_cpu_to_dump++;
if (next_cpu_to_dump >= num_possible_cpus())
next_cpu_to_dump = 0;
}
if (len > bytes_to_dump)
len = bytes_to_dump;
if (copy_to_user(data, etm_buf_ptr, len)) {
pr_debug("%s: copy_to_user failed\n", __func__);
return -EFAULT;
}
bytes_to_dump -= len;
etm_buf_ptr += len;
pr_debug("%s: %d bytes copied, %d bytes left (cpu %d)\n",
__func__, len, bytes_to_dump, next_cpu_to_dump);
return len;
}
static void setup_range_filter(char addr_type, char range, uint32_t reg1,
uint32_t addr1, uint32_t reg2, uint32_t addr2)
{
etm_config.etm_addr_comp_value[reg1] = addr1;
etm_config.etm_addr_comp_value[reg2] = addr2;
etm_config.etm_07_te_single_addr_comp |= (1 << reg1);
etm_config.etm_07_te_single_addr_comp |= (1 << reg2);
etm_config.etm_09_te_control |= (1 << (reg1/2));
if (range == 'i')
etm_config.etm_09_te_control &= ~(1 << 24);
else if (range == 'e')
etm_config.etm_09_te_control |= (1 << 24);
if (addr_type == 'i') {
etm_config.etm_addr_access_type[reg1] = 0x99;
etm_config.etm_addr_access_type[reg2] = 0x99;
} else if (addr_type == 'd') {
etm_config.etm_addr_access_type[reg1] = 0x9C;
etm_config.etm_addr_access_type[reg2] = 0x9C;
}
}
static void setup_start_stop_filter(char addr_type, char start_stop,
uint32_t reg, uint32_t addr)
{
etm_config.etm_addr_comp_value[reg] = addr;
if (start_stop == 's')
etm_config.etm_06_te_start_stop |= (1 << reg);
else if (start_stop == 't')
etm_config.etm_06_te_start_stop |= (1 << (reg + 16));
etm_config.etm_09_te_control |= (1 << 25);
if (addr_type == 'i')
etm_config.etm_addr_access_type[reg] = 0x99;
else if (addr_type == 'd')
etm_config.etm_addr_access_type[reg] = 0x9C;
}
static void setup_viewdata_range_filter(char range, uint32_t reg1,
uint32_t addr1, uint32_t reg2, uint32_t addr2)
{
etm_config.etm_addr_comp_value[reg1] = addr1;
etm_config.etm_addr_comp_value[reg2] = addr2;
if (range == 'i') {
etm_config.etm_0d_vd_single_addr_comp |= (1 << reg1);
etm_config.etm_0d_vd_single_addr_comp |= (1 << reg2);
etm_config.etm_0f_vd_control |= (1 << (reg1/2));
} else if (range == 'e') {
etm_config.etm_0d_vd_single_addr_comp |= (1 << (reg1 + 16));
etm_config.etm_0d_vd_single_addr_comp |= (1 << (reg2 + 16));
etm_config.etm_0f_vd_control |= (1 << ((reg1/2) + 8));
}
etm_config.etm_0f_vd_control &= ~(1 << 16);
etm_config.etm_addr_access_type[reg1] = 0x9C;
etm_config.etm_addr_access_type[reg2] = 0x9C;
}
static void setup_viewdata_start_stop_filter(char start_stop, uint32_t reg,
uint32_t addr)
{
etm_config.etm_addr_comp_value[reg] = addr;
if (start_stop == 's')
etm_config.etm_06_te_start_stop |= (1 << reg);
else if (start_stop == 't')
etm_config.etm_06_te_start_stop |= (1 << (reg + 16));
etm_config.etm_addr_access_type[reg] = 0x9C;
}
static void setup_access_type(uint32_t reg, uint32_t value)
{
etm_config.etm_addr_access_type[reg] &= 0xFFFFFFF8;
value &= 0x7;
etm_config.etm_addr_access_type[reg] |= value;
}
static void reset_filter(void)
{
etm_config.etm_00_control = 0x0000D84E;
/* etm_02_trigger_event 0x00000000: address comparator 0 matches */
etm_config.etm_02_trigger_event = 0x00000000;
etm_config.etm_06_te_start_stop = 0x00000000;
etm_config.etm_07_te_single_addr_comp = 0x00000000;
/* etm_08_te_event 0x0000006F: always true */
etm_config.etm_08_te_event = 0x0000006F;
/* etm_09_te_control 0x01000000: exclude none */
etm_config.etm_09_te_control = 0x01000000;
etm_config.etm_0a_fifofull_region = 0x00000000;
etm_config.etm_0b_fifofull_level = 0x00000000;
/* etm_0c_vd_event 0x0000006F: always true */
etm_config.etm_0c_vd_event = 0x0000006F;
etm_config.etm_0d_vd_single_addr_comp = 0x00000000;
etm_config.etm_0e_vd_mmd = 0x00000000;
/* etm_0f_vd_control 0x00010000: exclude none */
etm_config.etm_0f_vd_control = 0x00010000;
etm_config.etm_addr_comp_value[0] = 0x00000000;
etm_config.etm_addr_comp_value[1] = 0x00000000;
etm_config.etm_addr_comp_value[2] = 0x00000000;
etm_config.etm_addr_comp_value[3] = 0x00000000;
etm_config.etm_addr_comp_value[4] = 0x00000000;
etm_config.etm_addr_comp_value[5] = 0x00000000;
etm_config.etm_addr_comp_value[6] = 0x00000000;
etm_config.etm_addr_comp_value[7] = 0x00000000;
etm_config.etm_addr_access_type[0] = 0x00000000;
etm_config.etm_addr_access_type[1] = 0x00000000;
etm_config.etm_addr_access_type[2] = 0x00000000;
etm_config.etm_addr_access_type[3] = 0x00000000;
etm_config.etm_addr_access_type[4] = 0x00000000;
etm_config.etm_addr_access_type[5] = 0x00000000;
etm_config.etm_addr_access_type[6] = 0x00000000;
etm_config.etm_addr_access_type[7] = 0x00000000;
etm_config.etm_data_comp_value[0] = 0x00000000;
etm_config.etm_data_comp_value[1] = 0x00000000;
etm_config.etm_data_comp_mask[0] = 0x00000000;
etm_config.etm_data_comp_mask[1] = 0x00000000;
etm_config.etm_counter_reload_value[0] = 0x00000000;
etm_config.etm_counter_reload_value[1] = 0x00000000;
etm_config.etm_counter_enable[0] = 0x0002406F;
etm_config.etm_counter_enable[1] = 0x0002406F;
etm_config.etm_counter_reload_event[0] = 0x0000406F;
etm_config.etm_counter_reload_event[1] = 0x0000406F;
etm_config.etm_60_seq_event_1_to_2 = 0x0000406F;
etm_config.etm_61_seq_event_2_to_1 = 0x0000406F;
etm_config.etm_62_seq_event_2_to_3 = 0x0000406F;
etm_config.etm_63_seq_event_3_to_1 = 0x0000406F;
etm_config.etm_64_seq_event_3_to_2 = 0x0000406F;
etm_config.etm_65_seq_event_1_to_3 = 0x0000406F;
etm_config.etm_6c_cid_comp_value_1 = 0x00000000;
etm_config.etm_6f_cid_comp_mask = 0x00000000;
etm_config.etm_78_sync_freq = 0x00000400;
etm_config.swconfig = 0x00000002;
/* etb_trig_cnt 0x00000020: ignore trigger */
etm_config.etb_trig_cnt = 0x00000000;
/* etb_init_ptr 0x00000010: 16 marker bytes */
etm_config.etb_init_ptr = 0x00000010;
}
#define MAX_COMMAND_STRLEN 40
static ssize_t etm_dev_write(struct file *file, const char __user *data,
size_t len, loff_t *ppos)
{
char command[MAX_COMMAND_STRLEN];
int strlen;
unsigned long value;
unsigned long reg1, reg2;
unsigned long addr1, addr2;
strlen = strnlen_user(data, MAX_COMMAND_STRLEN);
pr_debug("etm: string length: %d", strlen);
if (strlen == 0 || strlen == (MAX_COMMAND_STRLEN+1)) {
pr_err("etm: error in strlen: %d", strlen);
return -EFAULT;
}
/* includes the null character */
if (copy_from_user(command, data, strlen)) {
pr_err("etm: error in copy_from_user: %d", strlen);
return -EFAULT;
}
pr_debug("etm: input = %s", command);
switch (command[0]) {
case '0':
if (trace_enabled) {
disable_trace();
pr_info("etm: tracing disabled\n");
}
break;
case '1':
if (!trace_enabled) {
enable_trace();
pr_info("etm: tracing enabled\n");
}
break;
case 'f':
switch (command[2]) {
case 'i':
case 'd':
switch (command[4]) {
case 'i':
if (sscanf(&command[6], "%lx:%lx:%lx:%lx\\0",
&reg1, &addr1, &reg2, &addr2) != 4)
goto err_out;
if (reg1 > 7 || reg2 > 7 || (reg1 % 2))
goto err_out;
setup_range_filter(command[2], 'i',
reg1, addr1, reg2, addr2);
break;
case 'e':
if (sscanf(&command[6], "%lx:%lx:%lx:%lx\\0",
&reg1, &addr1, &reg2, &addr2) != 4)
goto err_out;
if (reg1 > 7 || reg2 > 7 || (reg1 % 2)
|| command[2] == 'd')
goto err_out;
setup_range_filter(command[2], 'e',
reg1, addr1, reg2, addr2);
break;
case 's':
if (sscanf(&command[6], "%lx:%lx\\0",
&reg1, &addr1) != 2)
goto err_out;
if (reg1 > 7)
goto err_out;
setup_start_stop_filter(command[2], 's',
reg1, addr1);
break;
case 't':
if (sscanf(&command[6], "%lx:%lx\\0",
&reg1, &addr1) != 2)
goto err_out;
if (reg1 > 7)
goto err_out;
setup_start_stop_filter(command[2], 't',
reg1, addr1);
break;
default:
goto err_out;
}
break;
case 'r':
reset_filter();
break;
default:
goto err_out;
}
break;
case 'v':
switch (command[2]) {
case 'd':
switch (command[4]) {
case 'i':
if (sscanf(&command[6], "%lx:%lx:%lx:%lx\\0",
&reg1, &addr1, &reg2, &addr2) != 4)
goto err_out;
if (reg1 > 7 || reg2 > 7 || (reg1 % 2))
goto err_out;
setup_viewdata_range_filter('i',
reg1, addr1, reg2, addr2);
break;
case 'e':
if (sscanf(&command[6], "%lx:%lx:%lx:%lx\\0",
&reg1, &addr1, &reg2, &addr2) != 4)
goto err_out;
if (reg1 > 7 || reg2 > 7 || (reg1 % 2))
goto err_out;
setup_viewdata_range_filter('e',
reg1, addr1, reg2, addr2);
break;
case 's':
if (sscanf(&command[6], "%lx:%lx\\0",
&reg1, &addr1) != 2)
goto err_out;
if (reg1 > 7)
goto err_out;
setup_viewdata_start_stop_filter('s',
reg1, addr1);
break;
case 't':
if (sscanf(&command[6], "%lx:%lx\\0",
&reg1, &addr1) != 2)
goto err_out;
if (reg1 > 7)
goto err_out;
setup_viewdata_start_stop_filter('t',
reg1, addr1);
break;
default:
goto err_out;
}
break;
default:
goto err_out;
}
break;
case 'a':
switch (command[2]) {
case 't':
if (sscanf(&command[4], "%lx:%lx\\0",
&reg1, &value) != 2)
goto err_out;
if (reg1 > 7 || value > 6)
goto err_out;
setup_access_type(reg1, value);
break;
default:
goto err_out;
}
break;
default:
goto err_out;
}
return len;
err_out:
return -EFAULT;
}
static int etm_dev_release(struct inode *inode, struct file *file)
{
if (cpu_to_dump == next_cpu_to_dump)
next_cpu_to_dump = 0;
cpu_to_dump = next_cpu_to_dump;
atomic_set(&etm_dev_in_use, 0);
pr_debug("%s: released\n", __func__);
return 0;
}
static const struct file_operations etm_dev_fops = {
.owner = THIS_MODULE,
.open = etm_dev_open,
.read = etm_dev_read,
.write = etm_dev_write,
.release = etm_dev_release,
};
static struct miscdevice etm_dev = {
.name = "msm_etm",
.minor = MISC_DYNAMIC_MINOR,
.fops = &etm_dev_fops,
};
static void __cpu_clear_sticky(void *unused)
{
etm_read(ETMPDSR); /* clear sticky bit in PDSR */
isb();
}
static int __init etm_init(void)
{
int ret, cpu;
ret = misc_register(&etm_dev);
if (ret)
return -ENODEV;
alloc_b = alloc_percpu(typeof(*alloc_b));
if (!alloc_b)
goto err1;
for_each_possible_cpu(cpu)
*per_cpu_ptr(alloc_b, cpu) = &buf[cpu];
wake_lock_init(&etm_wake_lock, WAKE_LOCK_SUSPEND, "msm_etm");
pm_qos_add_request(&etm_qos_req, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
/* No need to explicity turn on ETM clock since CP14 access go
* through via the autoclock turn on/off
*/
__cpu_clear_sticky(NULL);
smp_call_function(__cpu_clear_sticky, NULL, 1);
cpu_to_dump = next_cpu_to_dump = 0;
pr_info("ETM/ETB intialized.\n");
if (trace_on_boot)
enable_trace();
return 0;
err1:
misc_deregister(&etm_dev);
return -ENOMEM;
}
module_init(etm_init);
static void __exit etm_exit(void)
{
disable_trace();
pm_qos_remove_request(&etm_qos_req);
wake_lock_destroy(&etm_wake_lock);
free_percpu(alloc_b);
misc_deregister(&etm_dev);
}
module_exit(etm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("embedded trace driver");