blob: ddd2c5d1b854b73eacb8803bee64a75b9aff7f72 [file] [log] [blame]
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_da_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_itable.h"
#include "xfs_btree.h"
#include "xfs_ialloc.h"
#include "xfs_alloc.h"
#include "xfs_bmap.h"
#include "xfs_acl.h"
#include "xfs_attr.h"
#include "xfs_rw.h"
#include "xfs_error.h"
#include "xfs_quota.h"
#include "xfs_utils.h"
#include "xfs_rtalloc.h"
#include "xfs_trans_space.h"
#include "xfs_log_priv.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_trace.h"
int
xfs_setattr(
struct xfs_inode *ip,
struct iattr *iattr,
int flags)
{
xfs_mount_t *mp = ip->i_mount;
struct inode *inode = VFS_I(ip);
int mask = iattr->ia_valid;
xfs_trans_t *tp;
int code;
uint lock_flags;
uint commit_flags=0;
uid_t uid=0, iuid=0;
gid_t gid=0, igid=0;
struct xfs_dquot *udqp, *gdqp, *olddquot1, *olddquot2;
int need_iolock = 1;
xfs_itrace_entry(ip);
if (mp->m_flags & XFS_MOUNT_RDONLY)
return XFS_ERROR(EROFS);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
code = -inode_change_ok(inode, iattr);
if (code)
return code;
olddquot1 = olddquot2 = NULL;
udqp = gdqp = NULL;
/*
* If disk quotas is on, we make sure that the dquots do exist on disk,
* before we start any other transactions. Trying to do this later
* is messy. We don't care to take a readlock to look at the ids
* in inode here, because we can't hold it across the trans_reserve.
* If the IDs do change before we take the ilock, we're covered
* because the i_*dquot fields will get updated anyway.
*/
if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
uint qflags = 0;
if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
uid = iattr->ia_uid;
qflags |= XFS_QMOPT_UQUOTA;
} else {
uid = ip->i_d.di_uid;
}
if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
gid = iattr->ia_gid;
qflags |= XFS_QMOPT_GQUOTA;
} else {
gid = ip->i_d.di_gid;
}
/*
* We take a reference when we initialize udqp and gdqp,
* so it is important that we never blindly double trip on
* the same variable. See xfs_create() for an example.
*/
ASSERT(udqp == NULL);
ASSERT(gdqp == NULL);
code = xfs_qm_vop_dqalloc(ip, uid, gid, ip->i_d.di_projid,
qflags, &udqp, &gdqp);
if (code)
return code;
}
/*
* For the other attributes, we acquire the inode lock and
* first do an error checking pass.
*/
tp = NULL;
lock_flags = XFS_ILOCK_EXCL;
if (flags & XFS_ATTR_NOLOCK)
need_iolock = 0;
if (!(mask & ATTR_SIZE)) {
tp = xfs_trans_alloc(mp, XFS_TRANS_SETATTR_NOT_SIZE);
commit_flags = 0;
code = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp),
0, 0, 0);
if (code) {
lock_flags = 0;
goto error_return;
}
} else {
if (DM_EVENT_ENABLED(ip, DM_EVENT_TRUNCATE) &&
!(flags & XFS_ATTR_DMI)) {
int dmflags = AT_DELAY_FLAG(flags) | DM_SEM_FLAG_WR;
code = XFS_SEND_DATA(mp, DM_EVENT_TRUNCATE, ip,
iattr->ia_size, 0, dmflags, NULL);
if (code) {
lock_flags = 0;
goto error_return;
}
}
if (need_iolock)
lock_flags |= XFS_IOLOCK_EXCL;
}
xfs_ilock(ip, lock_flags);
/*
* Change file ownership. Must be the owner or privileged.
*/
if (mask & (ATTR_UID|ATTR_GID)) {
/*
* These IDs could have changed since we last looked at them.
* But, we're assured that if the ownership did change
* while we didn't have the inode locked, inode's dquot(s)
* would have changed also.
*/
iuid = ip->i_d.di_uid;
igid = ip->i_d.di_gid;
gid = (mask & ATTR_GID) ? iattr->ia_gid : igid;
uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid;
/*
* Do a quota reservation only if uid/gid is actually
* going to change.
*/
if (XFS_IS_QUOTA_RUNNING(mp) &&
((XFS_IS_UQUOTA_ON(mp) && iuid != uid) ||
(XFS_IS_GQUOTA_ON(mp) && igid != gid))) {
ASSERT(tp);
code = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp,
capable(CAP_FOWNER) ?
XFS_QMOPT_FORCE_RES : 0);
if (code) /* out of quota */
goto error_return;
}
}
/*
* Truncate file. Must have write permission and not be a directory.
*/
if (mask & ATTR_SIZE) {
/* Short circuit the truncate case for zero length files */
if (iattr->ia_size == 0 &&
ip->i_size == 0 && ip->i_d.di_nextents == 0) {
xfs_iunlock(ip, XFS_ILOCK_EXCL);
lock_flags &= ~XFS_ILOCK_EXCL;
if (mask & ATTR_CTIME)
xfs_ichgtime(ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
code = 0;
goto error_return;
}
if (S_ISDIR(ip->i_d.di_mode)) {
code = XFS_ERROR(EISDIR);
goto error_return;
} else if (!S_ISREG(ip->i_d.di_mode)) {
code = XFS_ERROR(EINVAL);
goto error_return;
}
/*
* Make sure that the dquots are attached to the inode.
*/
code = xfs_qm_dqattach_locked(ip, 0);
if (code)
goto error_return;
/*
* Now we can make the changes. Before we join the inode
* to the transaction, if ATTR_SIZE is set then take care of
* the part of the truncation that must be done without the
* inode lock. This needs to be done before joining the inode
* to the transaction, because the inode cannot be unlocked
* once it is a part of the transaction.
*/
if (iattr->ia_size > ip->i_size) {
/*
* Do the first part of growing a file: zero any data
* in the last block that is beyond the old EOF. We
* need to do this before the inode is joined to the
* transaction to modify the i_size.
*/
code = xfs_zero_eof(ip, iattr->ia_size, ip->i_size);
}
xfs_iunlock(ip, XFS_ILOCK_EXCL);
/*
* We are going to log the inode size change in this
* transaction so any previous writes that are beyond the on
* disk EOF and the new EOF that have not been written out need
* to be written here. If we do not write the data out, we
* expose ourselves to the null files problem.
*
* Only flush from the on disk size to the smaller of the in
* memory file size or the new size as that's the range we
* really care about here and prevents waiting for other data
* not within the range we care about here.
*/
if (!code &&
ip->i_size != ip->i_d.di_size &&
iattr->ia_size > ip->i_d.di_size) {
code = xfs_flush_pages(ip,
ip->i_d.di_size, iattr->ia_size,
XBF_ASYNC, FI_NONE);
}
/* wait for all I/O to complete */
xfs_ioend_wait(ip);
if (!code)
code = xfs_itruncate_data(ip, iattr->ia_size);
if (code) {
ASSERT(tp == NULL);
lock_flags &= ~XFS_ILOCK_EXCL;
ASSERT(lock_flags == XFS_IOLOCK_EXCL);
goto error_return;
}
tp = xfs_trans_alloc(mp, XFS_TRANS_SETATTR_SIZE);
if ((code = xfs_trans_reserve(tp, 0,
XFS_ITRUNCATE_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES,
XFS_ITRUNCATE_LOG_COUNT))) {
xfs_trans_cancel(tp, 0);
if (need_iolock)
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return code;
}
commit_flags = XFS_TRANS_RELEASE_LOG_RES;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, lock_flags);
xfs_trans_ihold(tp, ip);
/*
* Only change the c/mtime if we are changing the size
* or we are explicitly asked to change it. This handles
* the semantic difference between truncate() and ftruncate()
* as implemented in the VFS.
*
* The regular truncate() case without ATTR_CTIME and ATTR_MTIME
* is a special case where we need to update the times despite
* not having these flags set. For all other operations the
* VFS set these flags explicitly if it wants a timestamp
* update.
*/
if (iattr->ia_size != ip->i_size &&
(!(mask & (ATTR_CTIME | ATTR_MTIME)))) {
iattr->ia_ctime = iattr->ia_mtime =
current_fs_time(inode->i_sb);
mask |= ATTR_CTIME | ATTR_MTIME;
}
if (iattr->ia_size > ip->i_size) {
ip->i_d.di_size = iattr->ia_size;
ip->i_size = iattr->ia_size;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
} else if (iattr->ia_size <= ip->i_size ||
(iattr->ia_size == 0 && ip->i_d.di_nextents)) {
/*
* signal a sync transaction unless
* we're truncating an already unlinked
* file on a wsync filesystem
*/
code = xfs_itruncate_finish(&tp, ip, iattr->ia_size,
XFS_DATA_FORK,
((ip->i_d.di_nlink != 0 ||
!(mp->m_flags & XFS_MOUNT_WSYNC))
? 1 : 0));
if (code)
goto abort_return;
/*
* Truncated "down", so we're removing references
* to old data here - if we now delay flushing for
* a long time, we expose ourselves unduly to the
* notorious NULL files problem. So, we mark this
* vnode and flush it when the file is closed, and
* do not wait the usual (long) time for writeout.
*/
xfs_iflags_set(ip, XFS_ITRUNCATED);
}
} else if (tp) {
xfs_trans_ijoin(tp, ip, lock_flags);
xfs_trans_ihold(tp, ip);
}
/*
* Change file ownership. Must be the owner or privileged.
*/
if (mask & (ATTR_UID|ATTR_GID)) {
/*
* CAP_FSETID overrides the following restrictions:
*
* The set-user-ID and set-group-ID bits of a file will be
* cleared upon successful return from chown()
*/
if ((ip->i_d.di_mode & (S_ISUID|S_ISGID)) &&
!capable(CAP_FSETID)) {
ip->i_d.di_mode &= ~(S_ISUID|S_ISGID);
}
/*
* Change the ownerships and register quota modifications
* in the transaction.
*/
if (iuid != uid) {
if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_UQUOTA_ON(mp)) {
ASSERT(mask & ATTR_UID);
ASSERT(udqp);
olddquot1 = xfs_qm_vop_chown(tp, ip,
&ip->i_udquot, udqp);
}
ip->i_d.di_uid = uid;
inode->i_uid = uid;
}
if (igid != gid) {
if (XFS_IS_QUOTA_RUNNING(mp) && XFS_IS_GQUOTA_ON(mp)) {
ASSERT(!XFS_IS_PQUOTA_ON(mp));
ASSERT(mask & ATTR_GID);
ASSERT(gdqp);
olddquot2 = xfs_qm_vop_chown(tp, ip,
&ip->i_gdquot, gdqp);
}
ip->i_d.di_gid = gid;
inode->i_gid = gid;
}
}
/*
* Change file access modes.
*/
if (mask & ATTR_MODE) {
umode_t mode = iattr->ia_mode;
if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
mode &= ~S_ISGID;
ip->i_d.di_mode &= S_IFMT;
ip->i_d.di_mode |= mode & ~S_IFMT;
inode->i_mode &= S_IFMT;
inode->i_mode |= mode & ~S_IFMT;
}
/*
* Change file access or modified times.
*/
if (mask & ATTR_ATIME) {
inode->i_atime = iattr->ia_atime;
ip->i_d.di_atime.t_sec = iattr->ia_atime.tv_sec;
ip->i_d.di_atime.t_nsec = iattr->ia_atime.tv_nsec;
ip->i_update_core = 1;
}
if (mask & ATTR_CTIME) {
inode->i_ctime = iattr->ia_ctime;
ip->i_d.di_ctime.t_sec = iattr->ia_ctime.tv_sec;
ip->i_d.di_ctime.t_nsec = iattr->ia_ctime.tv_nsec;
ip->i_update_core = 1;
}
if (mask & ATTR_MTIME) {
inode->i_mtime = iattr->ia_mtime;
ip->i_d.di_mtime.t_sec = iattr->ia_mtime.tv_sec;
ip->i_d.di_mtime.t_nsec = iattr->ia_mtime.tv_nsec;
ip->i_update_core = 1;
}
/*
* And finally, log the inode core if any attribute in it
* has been changed.
*/
if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE|
ATTR_ATIME|ATTR_CTIME|ATTR_MTIME))
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
XFS_STATS_INC(xs_ig_attrchg);
/*
* If this is a synchronous mount, make sure that the
* transaction goes to disk before returning to the user.
* This is slightly sub-optimal in that truncates require
* two sync transactions instead of one for wsync filesystems.
* One for the truncate and one for the timestamps since we
* don't want to change the timestamps unless we're sure the
* truncate worked. Truncates are less than 1% of the laddis
* mix so this probably isn't worth the trouble to optimize.
*/
code = 0;
if (mp->m_flags & XFS_MOUNT_WSYNC)
xfs_trans_set_sync(tp);
code = xfs_trans_commit(tp, commit_flags);
xfs_iunlock(ip, lock_flags);
/*
* Release any dquot(s) the inode had kept before chown.
*/
xfs_qm_dqrele(olddquot1);
xfs_qm_dqrele(olddquot2);
xfs_qm_dqrele(udqp);
xfs_qm_dqrele(gdqp);
if (code)
return code;
/*
* XXX(hch): Updating the ACL entries is not atomic vs the i_mode
* update. We could avoid this with linked transactions
* and passing down the transaction pointer all the way
* to attr_set. No previous user of the generic
* Posix ACL code seems to care about this issue either.
*/
if ((mask & ATTR_MODE) && !(flags & XFS_ATTR_NOACL)) {
code = -xfs_acl_chmod(inode);
if (code)
return XFS_ERROR(code);
}
if (DM_EVENT_ENABLED(ip, DM_EVENT_ATTRIBUTE) &&
!(flags & XFS_ATTR_DMI)) {
(void) XFS_SEND_NAMESP(mp, DM_EVENT_ATTRIBUTE, ip, DM_RIGHT_NULL,
NULL, DM_RIGHT_NULL, NULL, NULL,
0, 0, AT_DELAY_FLAG(flags));
}
return 0;
abort_return:
commit_flags |= XFS_TRANS_ABORT;
/* FALLTHROUGH */
error_return:
xfs_qm_dqrele(udqp);
xfs_qm_dqrele(gdqp);
if (tp) {
xfs_trans_cancel(tp, commit_flags);
}
if (lock_flags != 0) {
xfs_iunlock(ip, lock_flags);
}
return code;
}
/*
* The maximum pathlen is 1024 bytes. Since the minimum file system
* blocksize is 512 bytes, we can get a max of 2 extents back from
* bmapi.
*/
#define SYMLINK_MAPS 2
STATIC int
xfs_readlink_bmap(
xfs_inode_t *ip,
char *link)
{
xfs_mount_t *mp = ip->i_mount;
int pathlen = ip->i_d.di_size;
int nmaps = SYMLINK_MAPS;
xfs_bmbt_irec_t mval[SYMLINK_MAPS];
xfs_daddr_t d;
int byte_cnt;
int n;
xfs_buf_t *bp;
int error = 0;
error = xfs_bmapi(NULL, ip, 0, XFS_B_TO_FSB(mp, pathlen), 0, NULL, 0,
mval, &nmaps, NULL, NULL);
if (error)
goto out;
for (n = 0; n < nmaps; n++) {
d = XFS_FSB_TO_DADDR(mp, mval[n].br_startblock);
byte_cnt = XFS_FSB_TO_B(mp, mval[n].br_blockcount);
bp = xfs_buf_read(mp->m_ddev_targp, d, BTOBB(byte_cnt),
XBF_LOCK | XBF_MAPPED | XBF_DONT_BLOCK);
error = XFS_BUF_GETERROR(bp);
if (error) {
xfs_ioerror_alert("xfs_readlink",
ip->i_mount, bp, XFS_BUF_ADDR(bp));
xfs_buf_relse(bp);
goto out;
}
if (pathlen < byte_cnt)
byte_cnt = pathlen;
pathlen -= byte_cnt;
memcpy(link, XFS_BUF_PTR(bp), byte_cnt);
xfs_buf_relse(bp);
}
link[ip->i_d.di_size] = '\0';
error = 0;
out:
return error;
}
int
xfs_readlink(
xfs_inode_t *ip,
char *link)
{
xfs_mount_t *mp = ip->i_mount;
int pathlen;
int error = 0;
xfs_itrace_entry(ip);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
xfs_ilock(ip, XFS_ILOCK_SHARED);
ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFLNK);
ASSERT(ip->i_d.di_size <= MAXPATHLEN);
pathlen = ip->i_d.di_size;
if (!pathlen)
goto out;
if (ip->i_df.if_flags & XFS_IFINLINE) {
memcpy(link, ip->i_df.if_u1.if_data, pathlen);
link[pathlen] = '\0';
} else {
error = xfs_readlink_bmap(ip, link);
}
out:
xfs_iunlock(ip, XFS_ILOCK_SHARED);
return error;
}
/*
* xfs_fsync
*
* This is called to sync the inode and its data out to disk. We need to hold
* the I/O lock while flushing the data, and the inode lock while flushing the
* inode. The inode lock CANNOT be held while flushing the data, so acquire
* after we're done with that.
*/
int
xfs_fsync(
xfs_inode_t *ip)
{
xfs_trans_t *tp;
int error = 0;
int log_flushed = 0;
xfs_itrace_entry(ip);
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
return XFS_ERROR(EIO);
/*
* We always need to make sure that the required inode state is safe on
* disk. The inode might be clean but we still might need to force the
* log because of committed transactions that haven't hit the disk yet.
* Likewise, there could be unflushed non-transactional changes to the
* inode core that have to go to disk and this requires us to issue
* a synchronous transaction to capture these changes correctly.
*
* This code relies on the assumption that if the update_* fields
* of the inode are clear and the inode is unpinned then it is clean
* and no action is required.
*/
xfs_ilock(ip, XFS_ILOCK_SHARED);
if (!ip->i_update_core) {
/*
* Timestamps/size haven't changed since last inode flush or
* inode transaction commit. That means either nothing got
* written or a transaction committed which caught the updates.
* If the latter happened and the transaction hasn't hit the
* disk yet, the inode will be still be pinned. If it is,
* force the log.
*/
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (xfs_ipincount(ip)) {
if (ip->i_itemp->ili_last_lsn) {
error = _xfs_log_force_lsn(ip->i_mount,
ip->i_itemp->ili_last_lsn,
XFS_LOG_SYNC, &log_flushed);
} else {
error = _xfs_log_force(ip->i_mount,
XFS_LOG_SYNC, &log_flushed);
}
}
} else {
/*
* Kick off a transaction to log the inode core to get the
* updates. The sync transaction will also force the log.
*/
xfs_iunlock(ip, XFS_ILOCK_SHARED);
tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
error = xfs_trans_reserve(tp, 0,
XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
if (error) {
xfs_trans_cancel(tp, 0);
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
/*
* Note - it's possible that we might have pushed ourselves out
* of the way during trans_reserve which would flush the inode.
* But there's no guarantee that the inode buffer has actually
* gone out yet (it's delwri). Plus the buffer could be pinned
* anyway if it's part of an inode in another recent
* transaction. So we play it safe and fire off the
* transaction anyway.
*/
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
xfs_trans_set_sync(tp);
error = _xfs_trans_commit(tp, 0, &log_flushed);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
/*
* If the log write didn't issue an ordered tag we need
* to flush the disk cache for the data device now.
*/
if (!log_flushed)
xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
/*
* If this inode is on the RT dev we need to flush that
* cache as well.
*/
if (XFS_IS_REALTIME_INODE(ip))
xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
}
return error;
}
/*
* Flags for xfs_free_eofblocks
*/
#define XFS_FREE_EOF_TRYLOCK (1<<0)
/*
* This is called by xfs_inactive to free any blocks beyond eof
* when the link count isn't zero and by xfs_dm_punch_hole() when
* punching a hole to EOF.
*/
STATIC int
xfs_free_eofblocks(
xfs_mount_t *mp,
xfs_inode_t *ip,
int flags)
{
xfs_trans_t *tp;
int error;
xfs_fileoff_t end_fsb;
xfs_fileoff_t last_fsb;
xfs_filblks_t map_len;
int nimaps;
xfs_bmbt_irec_t imap;
/*
* Figure out if there are any blocks beyond the end
* of the file. If not, then there is nothing to do.
*/
end_fsb = XFS_B_TO_FSB(mp, ((xfs_ufsize_t)ip->i_size));
last_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
map_len = last_fsb - end_fsb;
if (map_len <= 0)
return 0;
nimaps = 1;
xfs_ilock(ip, XFS_ILOCK_SHARED);
error = xfs_bmapi(NULL, ip, end_fsb, map_len, 0,
NULL, 0, &imap, &nimaps, NULL, NULL);
xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (!error && (nimaps != 0) &&
(imap.br_startblock != HOLESTARTBLOCK ||
ip->i_delayed_blks)) {
/*
* Attach the dquots to the inode up front.
*/
error = xfs_qm_dqattach(ip, 0);
if (error)
return error;
/*
* There are blocks after the end of file.
* Free them up now by truncating the file to
* its current size.
*/
tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
/*
* Do the xfs_itruncate_start() call before
* reserving any log space because
* itruncate_start will call into the buffer
* cache and we can't
* do that within a transaction.
*/
if (flags & XFS_FREE_EOF_TRYLOCK) {
if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
xfs_trans_cancel(tp, 0);
return 0;
}
} else {
xfs_ilock(ip, XFS_IOLOCK_EXCL);
}
error = xfs_itruncate_start(ip, XFS_ITRUNC_DEFINITE,
ip->i_size);
if (error) {
xfs_trans_cancel(tp, 0);
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return error;
}
error = xfs_trans_reserve(tp, 0,
XFS_ITRUNCATE_LOG_RES(mp),
0, XFS_TRANS_PERM_LOG_RES,
XFS_ITRUNCATE_LOG_COUNT);
if (error) {
ASSERT(XFS_FORCED_SHUTDOWN(mp));
xfs_trans_cancel(tp, 0);
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip,
XFS_IOLOCK_EXCL |
XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
error = xfs_itruncate_finish(&tp, ip,
ip->i_size,
XFS_DATA_FORK,
0);
/*
* If we get an error at this point we
* simply don't bother truncating the file.
*/
if (error) {
xfs_trans_cancel(tp,
(XFS_TRANS_RELEASE_LOG_RES |
XFS_TRANS_ABORT));
} else {
error = xfs_trans_commit(tp,
XFS_TRANS_RELEASE_LOG_RES);
}
xfs_iunlock(ip, XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL);
}
return error;
}
/*
* Free a symlink that has blocks associated with it.
*/
STATIC int
xfs_inactive_symlink_rmt(
xfs_inode_t *ip,
xfs_trans_t **tpp)
{
xfs_buf_t *bp;
int committed;
int done;
int error;
xfs_fsblock_t first_block;
xfs_bmap_free_t free_list;
int i;
xfs_mount_t *mp;
xfs_bmbt_irec_t mval[SYMLINK_MAPS];
int nmaps;
xfs_trans_t *ntp;
int size;
xfs_trans_t *tp;
tp = *tpp;
mp = ip->i_mount;
ASSERT(ip->i_d.di_size > XFS_IFORK_DSIZE(ip));
/*
* We're freeing a symlink that has some
* blocks allocated to it. Free the
* blocks here. We know that we've got
* either 1 or 2 extents and that we can
* free them all in one bunmapi call.
*/
ASSERT(ip->i_d.di_nextents > 0 && ip->i_d.di_nextents <= 2);
if ((error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES, XFS_ITRUNCATE_LOG_COUNT))) {
ASSERT(XFS_FORCED_SHUTDOWN(mp));
xfs_trans_cancel(tp, 0);
*tpp = NULL;
return error;
}
/*
* Lock the inode, fix the size, and join it to the transaction.
* Hold it so in the normal path, we still have it locked for
* the second transaction. In the error paths we need it
* held so the cancel won't rele it, see below.
*/
xfs_ilock(ip, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
size = (int)ip->i_d.di_size;
ip->i_d.di_size = 0;
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
xfs_trans_ihold(tp, ip);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
/*
* Find the block(s) so we can inval and unmap them.
*/
done = 0;
xfs_bmap_init(&free_list, &first_block);
nmaps = ARRAY_SIZE(mval);
if ((error = xfs_bmapi(tp, ip, 0, XFS_B_TO_FSB(mp, size),
XFS_BMAPI_METADATA, &first_block, 0, mval, &nmaps,
&free_list, NULL)))
goto error0;
/*
* Invalidate the block(s).
*/
for (i = 0; i < nmaps; i++) {
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp,
XFS_FSB_TO_DADDR(mp, mval[i].br_startblock),
XFS_FSB_TO_BB(mp, mval[i].br_blockcount), 0);
xfs_trans_binval(tp, bp);
}
/*
* Unmap the dead block(s) to the free_list.
*/
if ((error = xfs_bunmapi(tp, ip, 0, size, XFS_BMAPI_METADATA, nmaps,
&first_block, &free_list, NULL, &done)))
goto error1;
ASSERT(done);
/*
* Commit the first transaction. This logs the EFI and the inode.
*/
if ((error = xfs_bmap_finish(&tp, &free_list, &committed)))
goto error1;
/*
* The transaction must have been committed, since there were
* actually extents freed by xfs_bunmapi. See xfs_bmap_finish.
* The new tp has the extent freeing and EFDs.
*/
ASSERT(committed);
/*
* The first xact was committed, so add the inode to the new one.
* Mark it dirty so it will be logged and moved forward in the log as
* part of every commit.
*/
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
xfs_trans_ihold(tp, ip);
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
/*
* Get a new, empty transaction to return to our caller.
*/
ntp = xfs_trans_dup(tp);
/*
* Commit the transaction containing extent freeing and EFDs.
* If we get an error on the commit here or on the reserve below,
* we need to unlock the inode since the new transaction doesn't
* have the inode attached.
*/
error = xfs_trans_commit(tp, 0);
tp = ntp;
if (error) {
ASSERT(XFS_FORCED_SHUTDOWN(mp));
goto error0;
}
/*
* transaction commit worked ok so we can drop the extra ticket
* reference that we gained in xfs_trans_dup()
*/
xfs_log_ticket_put(tp->t_ticket);
/*
* Remove the memory for extent descriptions (just bookkeeping).
*/
if (ip->i_df.if_bytes)
xfs_idata_realloc(ip, -ip->i_df.if_bytes, XFS_DATA_FORK);
ASSERT(ip->i_df.if_bytes == 0);
/*
* Put an itruncate log reservation in the new transaction
* for our caller.
*/
if ((error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES, XFS_ITRUNCATE_LOG_COUNT))) {
ASSERT(XFS_FORCED_SHUTDOWN(mp));
goto error0;
}
/*
* Return with the inode locked but not joined to the transaction.
*/
*tpp = tp;
return 0;
error1:
xfs_bmap_cancel(&free_list);
error0:
/*
* Have to come here with the inode locked and either
* (held and in the transaction) or (not in the transaction).
* If the inode isn't held then cancel would iput it, but
* that's wrong since this is inactive and the vnode ref
* count is 0 already.
* Cancel won't do anything to the inode if held, but it still
* needs to be locked until the cancel is done, if it was
* joined to the transaction.
*/
xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
xfs_iunlock(ip, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
*tpp = NULL;
return error;
}
STATIC int
xfs_inactive_symlink_local(
xfs_inode_t *ip,
xfs_trans_t **tpp)
{
int error;
ASSERT(ip->i_d.di_size <= XFS_IFORK_DSIZE(ip));
/*
* We're freeing a symlink which fit into
* the inode. Just free the memory used
* to hold the old symlink.
*/
error = xfs_trans_reserve(*tpp, 0,
XFS_ITRUNCATE_LOG_RES(ip->i_mount),
0, XFS_TRANS_PERM_LOG_RES,
XFS_ITRUNCATE_LOG_COUNT);
if (error) {
xfs_trans_cancel(*tpp, 0);
*tpp = NULL;
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
/*
* Zero length symlinks _can_ exist.
*/
if (ip->i_df.if_bytes > 0) {
xfs_idata_realloc(ip,
-(ip->i_df.if_bytes),
XFS_DATA_FORK);
ASSERT(ip->i_df.if_bytes == 0);
}
return 0;
}
STATIC int
xfs_inactive_attrs(
xfs_inode_t *ip,
xfs_trans_t **tpp)
{
xfs_trans_t *tp;
int error;
xfs_mount_t *mp;
ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
tp = *tpp;
mp = ip->i_mount;
ASSERT(ip->i_d.di_forkoff != 0);
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error)
goto error_unlock;
error = xfs_attr_inactive(ip);
if (error)
goto error_unlock;
tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
error = xfs_trans_reserve(tp, 0,
XFS_IFREE_LOG_RES(mp),
0, XFS_TRANS_PERM_LOG_RES,
XFS_INACTIVE_LOG_COUNT);
if (error)
goto error_cancel;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
ASSERT(ip->i_d.di_anextents == 0);
*tpp = tp;
return 0;
error_cancel:
ASSERT(XFS_FORCED_SHUTDOWN(mp));
xfs_trans_cancel(tp, 0);
error_unlock:
*tpp = NULL;
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return error;
}
int
xfs_release(
xfs_inode_t *ip)
{
xfs_mount_t *mp = ip->i_mount;
int error;
if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
return 0;
/* If this is a read-only mount, don't do this (would generate I/O) */
if (mp->m_flags & XFS_MOUNT_RDONLY)
return 0;
if (!XFS_FORCED_SHUTDOWN(mp)) {
int truncated;
/*
* If we are using filestreams, and we have an unlinked
* file that we are processing the last close on, then nothing
* will be able to reopen and write to this file. Purge this
* inode from the filestreams cache so that it doesn't delay
* teardown of the inode.
*/
if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
xfs_filestream_deassociate(ip);
/*
* If we previously truncated this file and removed old data
* in the process, we want to initiate "early" writeout on
* the last close. This is an attempt to combat the notorious
* NULL files problem which is particularly noticable from a
* truncate down, buffered (re-)write (delalloc), followed by
* a crash. What we are effectively doing here is
* significantly reducing the time window where we'd otherwise
* be exposed to that problem.
*/
truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
if (truncated && VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0)
xfs_flush_pages(ip, 0, -1, XBF_ASYNC, FI_NONE);
}
if (ip->i_d.di_nlink != 0) {
if ((((ip->i_d.di_mode & S_IFMT) == S_IFREG) &&
((ip->i_size > 0) || (VN_CACHED(VFS_I(ip)) > 0 ||
ip->i_delayed_blks > 0)) &&
(ip->i_df.if_flags & XFS_IFEXTENTS)) &&
(!(ip->i_d.di_flags &
(XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)))) {
/*
* If we can't get the iolock just skip truncating
* the blocks past EOF because we could deadlock
* with the mmap_sem otherwise. We'll get another
* chance to drop them once the last reference to
* the inode is dropped, so we'll never leak blocks
* permanently.
*/
error = xfs_free_eofblocks(mp, ip,
XFS_FREE_EOF_TRYLOCK);
if (error)
return error;
}
}
return 0;
}
/*
* xfs_inactive
*
* This is called when the vnode reference count for the vnode
* goes to zero. If the file has been unlinked, then it must
* now be truncated. Also, we clear all of the read-ahead state
* kept for the inode here since the file is now closed.
*/
int
xfs_inactive(
xfs_inode_t *ip)
{
xfs_bmap_free_t free_list;
xfs_fsblock_t first_block;
int committed;
xfs_trans_t *tp;
xfs_mount_t *mp;
int error;
int truncate;
xfs_itrace_entry(ip);
/*
* If the inode is already free, then there can be nothing
* to clean up here.
*/
if (ip->i_d.di_mode == 0 || is_bad_inode(VFS_I(ip))) {
ASSERT(ip->i_df.if_real_bytes == 0);
ASSERT(ip->i_df.if_broot_bytes == 0);
return VN_INACTIVE_CACHE;
}
/*
* Only do a truncate if it's a regular file with
* some actual space in it. It's OK to look at the
* inode's fields without the lock because we're the
* only one with a reference to the inode.
*/
truncate = ((ip->i_d.di_nlink == 0) &&
((ip->i_d.di_size != 0) || (ip->i_size != 0) ||
(ip->i_d.di_nextents > 0) || (ip->i_delayed_blks > 0)) &&
((ip->i_d.di_mode & S_IFMT) == S_IFREG));
mp = ip->i_mount;
if (ip->i_d.di_nlink == 0 && DM_EVENT_ENABLED(ip, DM_EVENT_DESTROY))
XFS_SEND_DESTROY(mp, ip, DM_RIGHT_NULL);
error = 0;
/* If this is a read-only mount, don't do this (would generate I/O) */
if (mp->m_flags & XFS_MOUNT_RDONLY)
goto out;
if (ip->i_d.di_nlink != 0) {
if ((((ip->i_d.di_mode & S_IFMT) == S_IFREG) &&
((ip->i_size > 0) || (VN_CACHED(VFS_I(ip)) > 0 ||
ip->i_delayed_blks > 0)) &&
(ip->i_df.if_flags & XFS_IFEXTENTS) &&
(!(ip->i_d.di_flags &
(XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)) ||
(ip->i_delayed_blks != 0)))) {
error = xfs_free_eofblocks(mp, ip, 0);
if (error)
return VN_INACTIVE_CACHE;
}
goto out;
}
ASSERT(ip->i_d.di_nlink == 0);
error = xfs_qm_dqattach(ip, 0);
if (error)
return VN_INACTIVE_CACHE;
tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
if (truncate) {
/*
* Do the xfs_itruncate_start() call before
* reserving any log space because itruncate_start
* will call into the buffer cache and we can't
* do that within a transaction.
*/
xfs_ilock(ip, XFS_IOLOCK_EXCL);
error = xfs_itruncate_start(ip, XFS_ITRUNC_DEFINITE, 0);
if (error) {
xfs_trans_cancel(tp, 0);
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return VN_INACTIVE_CACHE;
}
error = xfs_trans_reserve(tp, 0,
XFS_ITRUNCATE_LOG_RES(mp),
0, XFS_TRANS_PERM_LOG_RES,
XFS_ITRUNCATE_LOG_COUNT);
if (error) {
/* Don't call itruncate_cleanup */
ASSERT(XFS_FORCED_SHUTDOWN(mp));
xfs_trans_cancel(tp, 0);
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return VN_INACTIVE_CACHE;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
/*
* normally, we have to run xfs_itruncate_finish sync.
* But if filesystem is wsync and we're in the inactive
* path, then we know that nlink == 0, and that the
* xaction that made nlink == 0 is permanently committed
* since xfs_remove runs as a synchronous transaction.
*/
error = xfs_itruncate_finish(&tp, ip, 0, XFS_DATA_FORK,
(!(mp->m_flags & XFS_MOUNT_WSYNC) ? 1 : 0));
if (error) {
xfs_trans_cancel(tp,
XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
xfs_iunlock(ip, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
return VN_INACTIVE_CACHE;
}
} else if ((ip->i_d.di_mode & S_IFMT) == S_IFLNK) {
/*
* If we get an error while cleaning up a
* symlink we bail out.
*/
error = (ip->i_d.di_size > XFS_IFORK_DSIZE(ip)) ?
xfs_inactive_symlink_rmt(ip, &tp) :
xfs_inactive_symlink_local(ip, &tp);
if (error) {
ASSERT(tp == NULL);
return VN_INACTIVE_CACHE;
}
xfs_trans_ijoin(tp, ip, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
} else {
error = xfs_trans_reserve(tp, 0,
XFS_IFREE_LOG_RES(mp),
0, XFS_TRANS_PERM_LOG_RES,
XFS_INACTIVE_LOG_COUNT);
if (error) {
ASSERT(XFS_FORCED_SHUTDOWN(mp));
xfs_trans_cancel(tp, 0);
return VN_INACTIVE_CACHE;
}
xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
}
/*
* If there are attributes associated with the file
* then blow them away now. The code calls a routine
* that recursively deconstructs the attribute fork.
* We need to just commit the current transaction
* because we can't use it for xfs_attr_inactive().
*/
if (ip->i_d.di_anextents > 0) {
error = xfs_inactive_attrs(ip, &tp);
/*
* If we got an error, the transaction is already
* cancelled, and the inode is unlocked. Just get out.
*/
if (error)
return VN_INACTIVE_CACHE;
} else if (ip->i_afp) {
xfs_idestroy_fork(ip, XFS_ATTR_FORK);
}
/*
* Free the inode.
*/
xfs_bmap_init(&free_list, &first_block);
error = xfs_ifree(tp, ip, &free_list);
if (error) {
/*
* If we fail to free the inode, shut down. The cancel
* might do that, we need to make sure. Otherwise the
* inode might be lost for a long time or forever.
*/
if (!XFS_FORCED_SHUTDOWN(mp)) {
cmn_err(CE_NOTE,
"xfs_inactive: xfs_ifree() returned an error = %d on %s",
error, mp->m_fsname);
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
}
xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
} else {
/*
* Credit the quota account(s). The inode is gone.
*/
xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
/*
* Just ignore errors at this point. There is nothing we can
* do except to try to keep going. Make sure it's not a silent
* error.
*/
error = xfs_bmap_finish(&tp, &free_list, &committed);
if (error)
xfs_fs_cmn_err(CE_NOTE, mp, "xfs_inactive: "
"xfs_bmap_finish() returned error %d", error);
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
if (error)
xfs_fs_cmn_err(CE_NOTE, mp, "xfs_inactive: "
"xfs_trans_commit() returned error %d", error);
}
/*
* Release the dquots held by inode, if any.
*/
xfs_qm_dqdetach(ip);
xfs_iunlock(ip, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
out:
return VN_INACTIVE_CACHE;
}
/*
* Lookups up an inode from "name". If ci_name is not NULL, then a CI match
* is allowed, otherwise it has to be an exact match. If a CI match is found,
* ci_name->name will point to a the actual name (caller must free) or
* will be set to NULL if an exact match is found.
*/
int
xfs_lookup(
xfs_inode_t *dp,
struct xfs_name *name,
xfs_inode_t **ipp,
struct xfs_name *ci_name)
{
xfs_ino_t inum;
int error;
uint lock_mode;
xfs_itrace_entry(dp);
if (XFS_FORCED_SHUTDOWN(dp->i_mount))
return XFS_ERROR(EIO);
lock_mode = xfs_ilock_map_shared(dp);
error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
xfs_iunlock_map_shared(dp, lock_mode);
if (error)
goto out;
error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp, 0);
if (error)
goto out_free_name;
return 0;
out_free_name:
if (ci_name)
kmem_free(ci_name->name);
out:
*ipp = NULL;
return error;
}
int
xfs_create(
xfs_inode_t *dp,
struct xfs_name *name,
mode_t mode,
xfs_dev_t rdev,
xfs_inode_t **ipp,
cred_t *credp)
{
int is_dir = S_ISDIR(mode);
struct xfs_mount *mp = dp->i_mount;
struct xfs_inode *ip = NULL;
struct xfs_trans *tp = NULL;
int error;
xfs_bmap_free_t free_list;
xfs_fsblock_t first_block;
boolean_t unlock_dp_on_error = B_FALSE;
uint cancel_flags;
int committed;
xfs_prid_t prid;
struct xfs_dquot *udqp = NULL;
struct xfs_dquot *gdqp = NULL;
uint resblks;
uint log_res;
uint log_count;
xfs_itrace_entry(dp);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
if (DM_EVENT_ENABLED(dp, DM_EVENT_CREATE)) {
error = XFS_SEND_NAMESP(mp, DM_EVENT_CREATE,
dp, DM_RIGHT_NULL, NULL,
DM_RIGHT_NULL, name->name, NULL,
mode, 0, 0);
if (error)
return error;
}
if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
prid = dp->i_d.di_projid;
else
prid = dfltprid;
/*
* Make sure that we have allocated dquot(s) on disk.
*/
error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, &udqp, &gdqp);
if (error)
goto std_return;
if (is_dir) {
rdev = 0;
resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
log_res = XFS_MKDIR_LOG_RES(mp);
log_count = XFS_MKDIR_LOG_COUNT;
tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
} else {
resblks = XFS_CREATE_SPACE_RES(mp, name->len);
log_res = XFS_CREATE_LOG_RES(mp);
log_count = XFS_CREATE_LOG_COUNT;
tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
}
cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
/*
* Initially assume that the file does not exist and
* reserve the resources for that case. If that is not
* the case we'll drop the one we have and get a more
* appropriate transaction later.
*/
error = xfs_trans_reserve(tp, resblks, log_res, 0,
XFS_TRANS_PERM_LOG_RES, log_count);
if (error == ENOSPC) {
/* flush outstanding delalloc blocks and retry */
xfs_flush_inodes(dp);
error = xfs_trans_reserve(tp, resblks, log_res, 0,
XFS_TRANS_PERM_LOG_RES, log_count);
}
if (error == ENOSPC) {
/* No space at all so try a "no-allocation" reservation */
resblks = 0;
error = xfs_trans_reserve(tp, 0, log_res, 0,
XFS_TRANS_PERM_LOG_RES, log_count);
}
if (error) {
cancel_flags = 0;
goto out_trans_cancel;
}
xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
unlock_dp_on_error = B_TRUE;
/*
* Check for directory link count overflow.
*/
if (is_dir && dp->i_d.di_nlink >= XFS_MAXLINK) {
error = XFS_ERROR(EMLINK);
goto out_trans_cancel;
}
xfs_bmap_init(&free_list, &first_block);
/*
* Reserve disk quota and the inode.
*/
error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, resblks, 1, 0);
if (error)
goto out_trans_cancel;
error = xfs_dir_canenter(tp, dp, name, resblks);
if (error)
goto out_trans_cancel;
/*
* A newly created regular or special file just has one directory
* entry pointing to them, but a directory also the "." entry
* pointing to itself.
*/
error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, credp,
prid, resblks > 0, &ip, &committed);
if (error) {
if (error == ENOSPC)
goto out_trans_cancel;
goto out_trans_abort;
}
/*
* At this point, we've gotten a newly allocated inode.
* It is locked (and joined to the transaction).
*/
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
/*
* Now we join the directory inode to the transaction. We do not do it
* earlier because xfs_dir_ialloc might commit the previous transaction
* (and release all the locks). An error from here on will result in
* the transaction cancel unlocking dp so don't do it explicitly in the
* error path.
*/
IHOLD(dp);
xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
unlock_dp_on_error = B_FALSE;
error = xfs_dir_createname(tp, dp, name, ip->i_ino,
&first_block, &free_list, resblks ?
resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
if (error) {
ASSERT(error != ENOSPC);
goto out_trans_abort;
}
xfs_ichgtime(dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
if (is_dir) {
error = xfs_dir_init(tp, ip, dp);
if (error)
goto out_bmap_cancel;
error = xfs_bumplink(tp, dp);
if (error)
goto out_bmap_cancel;
}
/*
* If this is a synchronous mount, make sure that the
* create transaction goes to disk before returning to
* the user.
*/
if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
xfs_trans_set_sync(tp);
/*
* Attach the dquot(s) to the inodes and modify them incore.
* These ids of the inode couldn't have changed since the new
* inode has been locked ever since it was created.
*/
xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp);
/*
* xfs_trans_commit normally decrements the vnode ref count
* when it unlocks the inode. Since we want to return the
* vnode to the caller, we bump the vnode ref count now.
*/
IHOLD(ip);
error = xfs_bmap_finish(&tp, &free_list, &committed);
if (error)
goto out_abort_rele;
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
if (error) {
IRELE(ip);
goto out_dqrele;
}
xfs_qm_dqrele(udqp);
xfs_qm_dqrele(gdqp);
*ipp = ip;
/* Fallthrough to std_return with error = 0 */
std_return:
if (DM_EVENT_ENABLED(dp, DM_EVENT_POSTCREATE)) {
XFS_SEND_NAMESP(mp, DM_EVENT_POSTCREATE, dp, DM_RIGHT_NULL,
ip, DM_RIGHT_NULL, name->name, NULL, mode,
error, 0);
}
return error;
out_bmap_cancel:
xfs_bmap_cancel(&free_list);
out_trans_abort:
cancel_flags |= XFS_TRANS_ABORT;
out_trans_cancel:
xfs_trans_cancel(tp, cancel_flags);
out_dqrele:
xfs_qm_dqrele(udqp);
xfs_qm_dqrele(gdqp);
if (unlock_dp_on_error)
xfs_iunlock(dp, XFS_ILOCK_EXCL);
goto std_return;
out_abort_rele:
/*
* Wait until after the current transaction is aborted to
* release the inode. This prevents recursive transactions
* and deadlocks from xfs_inactive.
*/
xfs_bmap_cancel(&free_list);
cancel_flags |= XFS_TRANS_ABORT;
xfs_trans_cancel(tp, cancel_flags);
IRELE(ip);
unlock_dp_on_error = B_FALSE;
goto out_dqrele;
}
#ifdef DEBUG
int xfs_locked_n;
int xfs_small_retries;
int xfs_middle_retries;
int xfs_lots_retries;
int xfs_lock_delays;
#endif
/*
* Bump the subclass so xfs_lock_inodes() acquires each lock with
* a different value
*/
static inline int
xfs_lock_inumorder(int lock_mode, int subclass)
{
if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
return lock_mode;
}
/*
* The following routine will lock n inodes in exclusive mode.
* We assume the caller calls us with the inodes in i_ino order.
*
* We need to detect deadlock where an inode that we lock
* is in the AIL and we start waiting for another inode that is locked
* by a thread in a long running transaction (such as truncate). This can
* result in deadlock since the long running trans might need to wait
* for the inode we just locked in order to push the tail and free space
* in the log.
*/
void
xfs_lock_inodes(
xfs_inode_t **ips,
int inodes,
uint lock_mode)
{
int attempts = 0, i, j, try_lock;
xfs_log_item_t *lp;
ASSERT(ips && (inodes >= 2)); /* we need at least two */
try_lock = 0;
i = 0;
again:
for (; i < inodes; i++) {
ASSERT(ips[i]);
if (i && (ips[i] == ips[i-1])) /* Already locked */
continue;
/*
* If try_lock is not set yet, make sure all locked inodes
* are not in the AIL.
* If any are, set try_lock to be used later.
*/
if (!try_lock) {
for (j = (i - 1); j >= 0 && !try_lock; j--) {
lp = (xfs_log_item_t *)ips[j]->i_itemp;
if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
try_lock++;
}
}
}
/*
* If any of the previous locks we have locked is in the AIL,
* we must TRY to get the second and subsequent locks. If
* we can't get any, we must release all we have
* and try again.
*/
if (try_lock) {
/* try_lock must be 0 if i is 0. */
/*
* try_lock means we have an inode locked
* that is in the AIL.
*/
ASSERT(i != 0);
if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
attempts++;
/*
* Unlock all previous guys and try again.
* xfs_iunlock will try to push the tail
* if the inode is in the AIL.
*/
for(j = i - 1; j >= 0; j--) {
/*
* Check to see if we've already
* unlocked this one.
* Not the first one going back,
* and the inode ptr is the same.
*/
if ((j != (i - 1)) && ips[j] ==
ips[j+1])
continue;
xfs_iunlock(ips[j], lock_mode);
}
if ((attempts % 5) == 0) {
delay(1); /* Don't just spin the CPU */
#ifdef DEBUG
xfs_lock_delays++;
#endif
}
i = 0;
try_lock = 0;
goto again;
}
} else {
xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
}
}
#ifdef DEBUG
if (attempts) {
if (attempts < 5) xfs_small_retries++;
else if (attempts < 100) xfs_middle_retries++;
else xfs_lots_retries++;
} else {
xfs_locked_n++;
}
#endif
}
/*
* xfs_lock_two_inodes() can only be used to lock one type of lock
* at a time - the iolock or the ilock, but not both at once. If
* we lock both at once, lockdep will report false positives saying
* we have violated locking orders.
*/
void
xfs_lock_two_inodes(
xfs_inode_t *ip0,
xfs_inode_t *ip1,
uint lock_mode)
{
xfs_inode_t *temp;
int attempts = 0;
xfs_log_item_t *lp;
if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
ASSERT(ip0->i_ino != ip1->i_ino);
if (ip0->i_ino > ip1->i_ino) {
temp = ip0;
ip0 = ip1;
ip1 = temp;
}
again:
xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
/*
* If the first lock we have locked is in the AIL, we must TRY to get
* the second lock. If we can't get it, we must release the first one
* and try again.
*/
lp = (xfs_log_item_t *)ip0->i_itemp;
if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
xfs_iunlock(ip0, lock_mode);
if ((++attempts % 5) == 0)
delay(1); /* Don't just spin the CPU */
goto again;
}
} else {
xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
}
}
int
xfs_remove(
xfs_inode_t *dp,
struct xfs_name *name,
xfs_inode_t *ip)
{
xfs_mount_t *mp = dp->i_mount;
xfs_trans_t *tp = NULL;
int is_dir = S_ISDIR(ip->i_d.di_mode);
int error = 0;
xfs_bmap_free_t free_list;
xfs_fsblock_t first_block;
int cancel_flags;
int committed;
int link_zero;
uint resblks;
uint log_count;
xfs_itrace_entry(dp);
xfs_itrace_entry(ip);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
if (DM_EVENT_ENABLED(dp, DM_EVENT_REMOVE)) {
error = XFS_SEND_NAMESP(mp, DM_EVENT_REMOVE, dp, DM_RIGHT_NULL,
NULL, DM_RIGHT_NULL, name->name, NULL,
ip->i_d.di_mode, 0, 0);
if (error)
return error;
}
error = xfs_qm_dqattach(dp, 0);
if (error)
goto std_return;
error = xfs_qm_dqattach(ip, 0);
if (error)
goto std_return;
if (is_dir) {
tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
log_count = XFS_DEFAULT_LOG_COUNT;
} else {
tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
log_count = XFS_REMOVE_LOG_COUNT;
}
cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
/*
* We try to get the real space reservation first,
* allowing for directory btree deletion(s) implying
* possible bmap insert(s). If we can't get the space
* reservation then we use 0 instead, and avoid the bmap
* btree insert(s) in the directory code by, if the bmap
* insert tries to happen, instead trimming the LAST
* block from the directory.
*/
resblks = XFS_REMOVE_SPACE_RES(mp);
error = xfs_trans_reserve(tp, resblks, XFS_REMOVE_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES, log_count);
if (error == ENOSPC) {
resblks = 0;
error = xfs_trans_reserve(tp, 0, XFS_REMOVE_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES, log_count);
}
if (error) {
ASSERT(error != ENOSPC);
cancel_flags = 0;
goto out_trans_cancel;
}
xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
/*
* At this point, we've gotten both the directory and the entry
* inodes locked.
*/
IHOLD(ip);
xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
IHOLD(dp);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
/*
* If we're removing a directory perform some additional validation.
*/
if (is_dir) {
ASSERT(ip->i_d.di_nlink >= 2);
if (ip->i_d.di_nlink != 2) {
error = XFS_ERROR(ENOTEMPTY);
goto out_trans_cancel;
}
if (!xfs_dir_isempty(ip)) {
error = XFS_ERROR(ENOTEMPTY);
goto out_trans_cancel;
}
}
xfs_bmap_init(&free_list, &first_block);
error = xfs_dir_removename(tp, dp, name, ip->i_ino,
&first_block, &free_list, resblks);
if (error) {
ASSERT(error != ENOENT);
goto out_bmap_cancel;
}
xfs_ichgtime(dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
if (is_dir) {
/*
* Drop the link from ip's "..".
*/
error = xfs_droplink(tp, dp);
if (error)
goto out_bmap_cancel;
/*
* Drop the "." link from ip to self.
*/
error = xfs_droplink(tp, ip);
if (error)
goto out_bmap_cancel;
} else {
/*
* When removing a non-directory we need to log the parent
* inode here. For a directory this is done implicitly
* by the xfs_droplink call for the ".." entry.
*/
xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
}
/*
* Drop the link from dp to ip.
*/
error = xfs_droplink(tp, ip);
if (error)
goto out_bmap_cancel;
/*
* Determine if this is the last link while
* we are in the transaction.
*/
link_zero = (ip->i_d.di_nlink == 0);
/*
* If this is a synchronous mount, make sure that the
* remove transaction goes to disk before returning to
* the user.
*/
if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
xfs_trans_set_sync(tp);
error = xfs_bmap_finish(&tp, &free_list, &committed);
if (error)
goto out_bmap_cancel;
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
if (error)
goto std_return;
/*
* If we are using filestreams, kill the stream association.
* If the file is still open it may get a new one but that
* will get killed on last close in xfs_close() so we don't
* have to worry about that.
*/
if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
xfs_filestream_deassociate(ip);
std_return:
if (DM_EVENT_ENABLED(dp, DM_EVENT_POSTREMOVE)) {
XFS_SEND_NAMESP(mp, DM_EVENT_POSTREMOVE, dp, DM_RIGHT_NULL,
NULL, DM_RIGHT_NULL, name->name, NULL,
ip->i_d.di_mode, error, 0);
}
return error;
out_bmap_cancel:
xfs_bmap_cancel(&free_list);
cancel_flags |= XFS_TRANS_ABORT;
out_trans_cancel:
xfs_trans_cancel(tp, cancel_flags);
goto std_return;
}
int
xfs_link(
xfs_inode_t *tdp,
xfs_inode_t *sip,
struct xfs_name *target_name)
{
xfs_mount_t *mp = tdp->i_mount;
xfs_trans_t *tp;
int error;
xfs_bmap_free_t free_list;
xfs_fsblock_t first_block;
int cancel_flags;
int committed;
int resblks;
xfs_itrace_entry(tdp);
xfs_itrace_entry(sip);
ASSERT(!S_ISDIR(sip->i_d.di_mode));
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
if (DM_EVENT_ENABLED(tdp, DM_EVENT_LINK)) {
error = XFS_SEND_NAMESP(mp, DM_EVENT_LINK,
tdp, DM_RIGHT_NULL,
sip, DM_RIGHT_NULL,
target_name->name, NULL, 0, 0, 0);
if (error)
return error;
}
/* Return through std_return after this point. */
error = xfs_qm_dqattach(sip, 0);
if (error)
goto std_return;
error = xfs_qm_dqattach(tdp, 0);
if (error)
goto std_return;
tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
error = xfs_trans_reserve(tp, resblks, XFS_LINK_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES, XFS_LINK_LOG_COUNT);
if (error == ENOSPC) {
resblks = 0;
error = xfs_trans_reserve(tp, 0, XFS_LINK_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES, XFS_LINK_LOG_COUNT);
}
if (error) {
cancel_flags = 0;
goto error_return;
}
xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
/*
* Increment vnode ref counts since xfs_trans_commit &
* xfs_trans_cancel will both unlock the inodes and
* decrement the associated ref counts.
*/
IHOLD(sip);
IHOLD(tdp);
xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
/*
* If the source has too many links, we can't make any more to it.
*/
if (sip->i_d.di_nlink >= XFS_MAXLINK) {
error = XFS_ERROR(EMLINK);
goto error_return;
}
/*
* If we are using project inheritance, we only allow hard link
* creation in our tree when the project IDs are the same; else
* the tree quota mechanism could be circumvented.
*/
if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
(tdp->i_d.di_projid != sip->i_d.di_projid))) {
error = XFS_ERROR(EXDEV);
goto error_return;
}
error = xfs_dir_canenter(tp, tdp, target_name, resblks);
if (error)
goto error_return;
xfs_bmap_init(&free_list, &first_block);
error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
&first_block, &free_list, resblks);
if (error)
goto abort_return;
xfs_ichgtime(tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
error = xfs_bumplink(tp, sip);
if (error)
goto abort_return;
/*
* If this is a synchronous mount, make sure that the
* link transaction goes to disk before returning to
* the user.
*/
if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
xfs_trans_set_sync(tp);
}
error = xfs_bmap_finish (&tp, &free_list, &committed);
if (error) {
xfs_bmap_cancel(&free_list);
goto abort_return;
}
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
if (error)
goto std_return;
/* Fall through to std_return with error = 0. */
std_return:
if (DM_EVENT_ENABLED(sip, DM_EVENT_POSTLINK)) {
(void) XFS_SEND_NAMESP(mp, DM_EVENT_POSTLINK,
tdp, DM_RIGHT_NULL,
sip, DM_RIGHT_NULL,
target_name->name, NULL, 0, error, 0);
}
return error;
abort_return:
cancel_flags |= XFS_TRANS_ABORT;
/* FALLTHROUGH */
error_return:
xfs_trans_cancel(tp, cancel_flags);
goto std_return;
}
int
xfs_symlink(
xfs_inode_t *dp,
struct xfs_name *link_name,
const char *target_path,
mode_t mode,
xfs_inode_t **ipp,
cred_t *credp)
{
xfs_mount_t *mp = dp->i_mount;
xfs_trans_t *tp;
xfs_inode_t *ip;
int error;
int pathlen;
xfs_bmap_free_t free_list;
xfs_fsblock_t first_block;
boolean_t unlock_dp_on_error = B_FALSE;
uint cancel_flags;
int committed;
xfs_fileoff_t first_fsb;
xfs_filblks_t fs_blocks;
int nmaps;
xfs_bmbt_irec_t mval[SYMLINK_MAPS];
xfs_daddr_t d;
const char *cur_chunk;
int byte_cnt;
int n;
xfs_buf_t *bp;
xfs_prid_t prid;
struct xfs_dquot *udqp, *gdqp;
uint resblks;
*ipp = NULL;
error = 0;
ip = NULL;
tp = NULL;
xfs_itrace_entry(dp);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
/*
* Check component lengths of the target path name.
*/
pathlen = strlen(target_path);
if (pathlen >= MAXPATHLEN) /* total string too long */
return XFS_ERROR(ENAMETOOLONG);
if (DM_EVENT_ENABLED(dp, DM_EVENT_SYMLINK)) {
error = XFS_SEND_NAMESP(mp, DM_EVENT_SYMLINK, dp,
DM_RIGHT_NULL, NULL, DM_RIGHT_NULL,
link_name->name,
(unsigned char *)target_path, 0, 0, 0);
if (error)
return error;
}
/* Return through std_return after this point. */
udqp = gdqp = NULL;
if (dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
prid = dp->i_d.di_projid;
else
prid = (xfs_prid_t)dfltprid;
/*
* Make sure that we have allocated dquot(s) on disk.
*/
error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT, &udqp, &gdqp);
if (error)
goto std_return;
tp = xfs_trans_alloc(mp, XFS_TRANS_SYMLINK);
cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
/*
* The symlink will fit into the inode data fork?
* There can't be any attributes so we get the whole variable part.
*/
if (pathlen <= XFS_LITINO(mp))
fs_blocks = 0;
else
fs_blocks = XFS_B_TO_FSB(mp, pathlen);
resblks = XFS_SYMLINK_SPACE_RES(mp, link_name->len, fs_blocks);
error = xfs_trans_reserve(tp, resblks, XFS_SYMLINK_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES, XFS_SYMLINK_LOG_COUNT);
if (error == ENOSPC && fs_blocks == 0) {
resblks = 0;
error = xfs_trans_reserve(tp, 0, XFS_SYMLINK_LOG_RES(mp), 0,
XFS_TRANS_PERM_LOG_RES, XFS_SYMLINK_LOG_COUNT);
}
if (error) {
cancel_flags = 0;
goto error_return;
}
xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
unlock_dp_on_error = B_TRUE;
/*
* Check whether the directory allows new symlinks or not.
*/
if (dp->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) {
error = XFS_ERROR(EPERM);
goto error_return;
}
/*
* Reserve disk quota : blocks and inode.
*/
error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp, resblks, 1, 0);
if (error)
goto error_return;
/*
* Check for ability to enter directory entry, if no space reserved.
*/
error = xfs_dir_canenter(tp, dp, link_name, resblks);
if (error)
goto error_return;
/*
* Initialize the bmap freelist prior to calling either
* bmapi or the directory create code.
*/
xfs_bmap_init(&free_list, &first_block);
/*
* Allocate an inode for the symlink.
*/
error = xfs_dir_ialloc(&tp, dp, S_IFLNK | (mode & ~S_IFMT),
1, 0, credp, prid, resblks > 0, &ip, NULL);
if (error) {
if (error == ENOSPC)
goto error_return;
goto error1;
}
/*
* An error after we've joined dp to the transaction will result in the
* transaction cancel unlocking dp so don't do it explicitly in the
* error path.
*/
IHOLD(dp);
xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
unlock_dp_on_error = B_FALSE;
/*
* Also attach the dquot(s) to it, if applicable.
*/
xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp);
if (resblks)
resblks -= XFS_IALLOC_SPACE_RES(mp);
/*
* If the symlink will fit into the inode, write it inline.
*/
if (pathlen <= XFS_IFORK_DSIZE(ip)) {
xfs_idata_realloc(ip, pathlen, XFS_DATA_FORK);
memcpy(ip->i_df.if_u1.if_data, target_path, pathlen);
ip->i_d.di_size = pathlen;
/*
* The inode was initially created in extent format.
*/
ip->i_df.if_flags &= ~(XFS_IFEXTENTS | XFS_IFBROOT);
ip->i_df.if_flags |= XFS_IFINLINE;
ip->i_d.di_format = XFS_DINODE_FMT_LOCAL;
xfs_trans_log_inode(tp, ip, XFS_ILOG_DDATA | XFS_ILOG_CORE);
} else {
first_fsb = 0;
nmaps = SYMLINK_MAPS;
error = xfs_bmapi(tp, ip, first_fsb, fs_blocks,
XFS_BMAPI_WRITE | XFS_BMAPI_METADATA,
&first_block, resblks, mval, &nmaps,
&free_list, NULL);
if (error) {
goto error1;
}
if (resblks)
resblks -= fs_blocks;
ip->i_d.di_size = pathlen;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
cur_chunk = target_path;
for (n = 0; n < nmaps; n++) {
d = XFS_FSB_TO_DADDR(mp, mval[n].br_startblock);
byte_cnt = XFS_FSB_TO_B(mp, mval[n].br_blockcount);
bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
BTOBB(byte_cnt), 0);
ASSERT(bp && !XFS_BUF_GETERROR(bp));
if (pathlen < byte_cnt) {
byte_cnt = pathlen;
}
pathlen -= byte_cnt;
memcpy(XFS_BUF_PTR(bp), cur_chunk, byte_cnt);
cur_chunk += byte_cnt;
xfs_trans_log_buf(tp, bp, 0, byte_cnt - 1);
}
}
/*
* Create the directory entry for the symlink.
*/
error = xfs_dir_createname(tp, dp, link_name, ip->i_ino,
&first_block, &free_list, resblks);
if (error)
goto error1;
xfs_ichgtime(dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
/*
* If this is a synchronous mount, make sure that the
* symlink transaction goes to disk before returning to
* the user.
*/
if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
xfs_trans_set_sync(tp);
}
/*
* xfs_trans_commit normally decrements the vnode ref count
* when it unlocks the inode. Since we want to return the
* vnode to the caller, we bump the vnode ref count now.
*/
IHOLD(ip);
error = xfs_bmap_finish(&tp, &free_list, &committed);
if (error) {
goto error2;
}
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
xfs_qm_dqrele(udqp);
xfs_qm_dqrele(gdqp);
/* Fall through to std_return with error = 0 or errno from
* xfs_trans_commit */
std_return:
if (DM_EVENT_ENABLED(dp, DM_EVENT_POSTSYMLINK)) {
(void) XFS_SEND_NAMESP(mp, DM_EVENT_POSTSYMLINK,
dp, DM_RIGHT_NULL,
error ? NULL : ip,
DM_RIGHT_NULL, link_name->name,
(unsigned char *)target_path,
0, error, 0);
}
if (!error)
*ipp = ip;
return error;
error2:
IRELE(ip);
error1:
xfs_bmap_cancel(&free_list);
cancel_flags |= XFS_TRANS_ABORT;
error_return:
xfs_trans_cancel(tp, cancel_flags);
xfs_qm_dqrele(udqp);
xfs_qm_dqrele(gdqp);
if (unlock_dp_on_error)
xfs_iunlock(dp, XFS_ILOCK_EXCL);
goto std_return;
}
int
xfs_set_dmattrs(
xfs_inode_t *ip,
u_int evmask,
u_int16_t state)
{
xfs_mount_t *mp = ip->i_mount;
xfs_trans_t *tp;
int error;
if (!capable(CAP_SYS_ADMIN))
return XFS_ERROR(EPERM);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
tp = xfs_trans_alloc(mp, XFS_TRANS_SET_DMATTRS);
error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES (mp), 0, 0, 0);
if (error) {
xfs_trans_cancel(tp, 0);
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
ip->i_d.di_dmevmask = evmask;
ip->i_d.di_dmstate = state;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
IHOLD(ip);
error = xfs_trans_commit(tp, 0);
return error;
}
/*
* xfs_alloc_file_space()
* This routine allocates disk space for the given file.
*
* If alloc_type == 0, this request is for an ALLOCSP type
* request which will change the file size. In this case, no
* DMAPI event will be generated by the call. A TRUNCATE event
* will be generated later by xfs_setattr.
*
* If alloc_type != 0, this request is for a RESVSP type
* request, and a DMAPI DM_EVENT_WRITE will be generated if the
* lower block boundary byte address is less than the file's
* length.
*
* RETURNS:
* 0 on success
* errno on error
*
*/
STATIC int
xfs_alloc_file_space(
xfs_inode_t *ip,
xfs_off_t offset,
xfs_off_t len,
int alloc_type,
int attr_flags)
{
xfs_mount_t *mp = ip->i_mount;
xfs_off_t count;
xfs_filblks_t allocated_fsb;
xfs_filblks_t allocatesize_fsb;
xfs_extlen_t extsz, temp;
xfs_fileoff_t startoffset_fsb;
xfs_fsblock_t firstfsb;
int nimaps;
int bmapi_flag;
int quota_flag;
int rt;
xfs_trans_t *tp;
xfs_bmbt_irec_t imaps[1], *imapp;
xfs_bmap_free_t free_list;
uint qblocks, resblks, resrtextents;
int committed;
int error;
xfs_itrace_entry(ip);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
error = xfs_qm_dqattach(ip, 0);
if (error)
return error;
if (len <= 0)
return XFS_ERROR(EINVAL);
rt = XFS_IS_REALTIME_INODE(ip);
extsz = xfs_get_extsz_hint(ip);
count = len;
imapp = &imaps[0];
nimaps = 1;
bmapi_flag = XFS_BMAPI_WRITE | (alloc_type ? XFS_BMAPI_PREALLOC : 0);
startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
allocatesize_fsb = XFS_B_TO_FSB(mp, count);
/* Generate a DMAPI event if needed. */
if (alloc_type != 0 && offset < ip->i_size &&
(attr_flags & XFS_ATTR_DMI) == 0 &&
DM_EVENT_ENABLED(ip, DM_EVENT_WRITE)) {
xfs_off_t end_dmi_offset;
end_dmi_offset = offset+len;
if (end_dmi_offset > ip->i_size)
end_dmi_offset = ip->i_size;
error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, ip, offset,
end_dmi_offset - offset, 0, NULL);
if (error)
return error;
}
/*
* Allocate file space until done or until there is an error
*/
retry:
while (allocatesize_fsb && !error) {
xfs_fileoff_t s, e;
/*
* Determine space reservations for data/realtime.
*/
if (unlikely(extsz)) {
s = startoffset_fsb;
do_div(s, extsz);
s *= extsz;
e = startoffset_fsb + allocatesize_fsb;
if ((temp = do_mod(startoffset_fsb, extsz)))
e += temp;
if ((temp = do_mod(e, extsz)))
e += extsz - temp;
} else {
s = 0;
e = allocatesize_fsb;
}
if (unlikely(rt)) {
resrtextents = qblocks = (uint)(e - s);
resrtextents /= mp->m_sb.sb_rextsize;
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
quota_flag = XFS_QMOPT_RES_RTBLKS;
} else {
resrtextents = 0;
resblks = qblocks = \
XFS_DIOSTRAT_SPACE_RES(mp, (uint)(e - s));
quota_flag = XFS_QMOPT_RES_REGBLKS;
}
/*
* Allocate and setup the transaction.
*/
tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
error = xfs_trans_reserve(tp, resblks,
XFS_WRITE_LOG_RES(mp), resrtextents,
XFS_TRANS_PERM_LOG_RES,
XFS_WRITE_LOG_COUNT);
/*
* Check for running out of space
*/
if (error) {
/*
* Free the transaction structure.
*/
ASSERT(error == ENOSPC || XFS_FORCED_SHUTDOWN(mp));
xfs_trans_cancel(tp, 0);
break;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
0, quota_flag);
if (error)
goto error1;
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
/*
* Issue the xfs_bmapi() call to allocate the blocks
*/
xfs_bmap_init(&free_list, &firstfsb);
error = xfs_bmapi(tp, ip, startoffset_fsb,
allocatesize_fsb, bmapi_flag,
&firstfsb, 0, imapp, &nimaps,
&free_list, NULL);
if (error) {
goto error0;
}
/*
* Complete the transaction
*/
error = xfs_bmap_finish(&tp, &free_list, &committed);
if (error) {
goto error0;
}
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
if (error) {
break;
}
allocated_fsb = imapp->br_blockcount;
if (nimaps == 0) {
error = XFS_ERROR(ENOSPC);
break;
}
startoffset_fsb += allocated_fsb;
allocatesize_fsb -= allocated_fsb;
}
dmapi_enospc_check:
if (error == ENOSPC && (attr_flags & XFS_ATTR_DMI) == 0 &&
DM_EVENT_ENABLED(ip, DM_EVENT_NOSPACE)) {
error = XFS_SEND_NAMESP(mp, DM_EVENT_NOSPACE,
ip, DM_RIGHT_NULL,
ip, DM_RIGHT_NULL,
NULL, NULL, 0, 0, 0); /* Delay flag intentionally unused */
if (error == 0)
goto retry; /* Maybe DMAPI app. has made space */
/* else fall through with error from XFS_SEND_DATA */
}
return error;
error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
xfs_bmap_cancel(&free_list);
xfs_trans_unreserve_quota_nblks(tp, ip, qblocks, 0, quota_flag);
error1: /* Just cancel transaction */
xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
goto dmapi_enospc_check;
}
/*
* Zero file bytes between startoff and endoff inclusive.
* The iolock is held exclusive and no blocks are buffered.
*
* This function is used by xfs_free_file_space() to zero
* partial blocks when the range to free is not block aligned.
* When unreserving space with boundaries that are not block
* aligned we round up the start and round down the end
* boundaries and then use this function to zero the parts of
* the blocks that got dropped during the rounding.
*/
STATIC int
xfs_zero_remaining_bytes(
xfs_inode_t *ip,
xfs_off_t startoff,
xfs_off_t endoff)
{
xfs_bmbt_irec_t imap;
xfs_fileoff_t offset_fsb;
xfs_off_t lastoffset;
xfs_off_t offset;
xfs_buf_t *bp;
xfs_mount_t *mp = ip->i_mount;
int nimap;
int error = 0;
/*
* Avoid doing I/O beyond eof - it's not necessary
* since nothing can read beyond eof. The space will
* be zeroed when the file is extended anyway.
*/
if (startoff >= ip->i_size)
return 0;
if (endoff > ip->i_size)
endoff = ip->i_size;
bp = xfs_buf_get_noaddr(mp->m_sb.sb_blocksize,
XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp);
if (!bp)
return XFS_ERROR(ENOMEM);
for (offset = startoff; offset <= endoff; offset = lastoffset + 1) {
offset_fsb = XFS_B_TO_FSBT(mp, offset);
nimap = 1;
error = xfs_bmapi(NULL, ip, offset_fsb, 1, 0,
NULL, 0, &imap, &nimap, NULL, NULL);
if (error || nimap < 1)
break;
ASSERT(imap.br_blockcount >= 1);
ASSERT(imap.br_startoff == offset_fsb);
lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff + 1) - 1;
if (lastoffset > endoff)
lastoffset = endoff;
if (imap.br_startblock == HOLESTARTBLOCK)
continue;
ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
if (imap.br_state == XFS_EXT_UNWRITTEN)
continue;
XFS_BUF_UNDONE(bp);
XFS_BUF_UNWRITE(bp);
XFS_BUF_READ(bp);
XFS_BUF_SET_ADDR(bp, xfs_fsb_to_db(ip, imap.br_startblock));
xfsbdstrat(mp, bp);
error = xfs_iowait(bp);
if (error) {
xfs_ioerror_alert("xfs_zero_remaining_bytes(read)",
mp, bp, XFS_BUF_ADDR(bp));
break;
}
memset(XFS_BUF_PTR(bp) +
(offset - XFS_FSB_TO_B(mp, imap.br_startoff)),
0, lastoffset - offset + 1);
XFS_BUF_UNDONE(bp);
XFS_BUF_UNREAD(bp);
XFS_BUF_WRITE(bp);
xfsbdstrat(mp, bp);
error = xfs_iowait(bp);
if (error) {
xfs_ioerror_alert("xfs_zero_remaining_bytes(write)",
mp, bp, XFS_BUF_ADDR(bp));
break;
}
}
xfs_buf_free(bp);
return error;
}
/*
* xfs_free_file_space()
* This routine frees disk space for the given file.
*
* This routine is only called by xfs_change_file_space
* for an UNRESVSP type call.
*
* RETURNS:
* 0 on success
* errno on error
*
*/
STATIC int
xfs_free_file_space(
xfs_inode_t *ip,
xfs_off_t offset,
xfs_off_t len,
int attr_flags)
{
int committed;
int done;
xfs_off_t end_dmi_offset;
xfs_fileoff_t endoffset_fsb;
int error;
xfs_fsblock_t firstfsb;
xfs_bmap_free_t free_list;
xfs_bmbt_irec_t imap;
xfs_off_t ioffset;
xfs_extlen_t mod=0;
xfs_mount_t *mp;
int nimap;
uint resblks;
uint rounding;
int rt;
xfs_fileoff_t startoffset_fsb;
xfs_trans_t *tp;
int need_iolock = 1;
mp = ip->i_mount;
xfs_itrace_entry(ip);
error = xfs_qm_dqattach(ip, 0);
if (error)
return error;
error = 0;
if (len <= 0) /* if nothing being freed */
return error;
rt = XFS_IS_REALTIME_INODE(ip);
startoffset_fsb = XFS_B_TO_FSB(mp, offset);
end_dmi_offset = offset + len;
endoffset_fsb = XFS_B_TO_FSBT(mp, end_dmi_offset);
if (offset < ip->i_size && (attr_flags & XFS_ATTR_DMI) == 0 &&
DM_EVENT_ENABLED(ip, DM_EVENT_WRITE)) {
if (end_dmi_offset > ip->i_size)
end_dmi_offset = ip->i_size;
error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, ip,
offset, end_dmi_offset - offset,
AT_DELAY_FLAG(attr_flags), NULL);
if (error)
return error;
}
if (attr_flags & XFS_ATTR_NOLOCK)
need_iolock = 0;
if (need_iolock) {
xfs_ilock(ip, XFS_IOLOCK_EXCL);
/* wait for the completion of any pending DIOs */
xfs_ioend_wait(ip);
}
rounding = max_t(uint, 1 << mp->m_sb.sb_blocklog, PAGE_CACHE_SIZE);
ioffset = offset & ~(rounding - 1);
if (VN_CACHED(VFS_I(ip)) != 0) {
error = xfs_flushinval_pages(ip, ioffset, -1, FI_REMAPF_LOCKED);
if (error)
goto out_unlock_iolock;
}
/*
* Need to zero the stuff we're not freeing, on disk.
* If it's a realtime file & can't use unwritten extents then we
* actually need to zero the extent edges. Otherwise xfs_bunmapi
* will take care of it for us.
*/
if (rt && !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
nimap = 1;
error = xfs_bmapi(NULL, ip, startoffset_fsb,
1, 0, NULL, 0, &imap, &nimap, NULL, NULL);
if (error)
goto out_unlock_iolock;
ASSERT(nimap == 0 || nimap == 1);
if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
xfs_daddr_t block;
ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
block = imap.br_startblock;
mod = do_div(block, mp->m_sb.sb_rextsize);
if (mod)
startoffset_fsb += mp->m_sb.sb_rextsize - mod;
}
nimap = 1;
error = xfs_bmapi(NULL, ip, endoffset_fsb - 1,
1, 0, NULL, 0, &imap, &nimap, NULL, NULL);
if (error)
goto out_unlock_iolock;
ASSERT(nimap == 0 || nimap == 1);
if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
mod++;
if (mod && (mod != mp->m_sb.sb_rextsize))
endoffset_fsb -= mod;
}
}
if ((done = (endoffset_fsb <= startoffset_fsb)))
/*
* One contiguous piece to clear
*/
error = xfs_zero_remaining_bytes(ip, offset, offset + len - 1);
else {
/*
* Some full blocks, possibly two pieces to clear
*/
if (offset < XFS_FSB_TO_B(mp, startoffset_fsb))
error = xfs_zero_remaining_bytes(ip, offset,
XFS_FSB_TO_B(mp, startoffset_fsb) - 1);
if (!error &&
XFS_FSB_TO_B(mp, endoffset_fsb) < offset + len)
error = xfs_zero_remaining_bytes(ip,
XFS_FSB_TO_B(mp, endoffset_fsb),
offset + len - 1);
}
/*
* free file space until done or until there is an error
*/
resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
while (!error && !done) {
/*
* allocate and setup the transaction. Allow this
* transaction to dip into the reserve blocks to ensure
* the freeing of the space succeeds at ENOSPC.
*/
tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
tp->t_flags |= XFS_TRANS_RESERVE;
error = xfs_trans_reserve(tp,
resblks,
XFS_WRITE_LOG_RES(mp),
0,
XFS_TRANS_PERM_LOG_RES,
XFS_WRITE_LOG_COUNT);
/*
* check for running out of space
*/
if (error) {
/*
* Free the transaction structure.
*/
ASSERT(error == ENOSPC || XFS_FORCED_SHUTDOWN(mp));
xfs_trans_cancel(tp, 0);
break;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
error = xfs_trans_reserve_quota(tp, mp,
ip->i_udquot, ip->i_gdquot,
resblks, 0, XFS_QMOPT_RES_REGBLKS);
if (error)
goto error1;
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
/*
* issue the bunmapi() call to free the blocks
*/
xfs_bmap_init(&free_list, &firstfsb);
error = xfs_bunmapi(tp, ip, startoffset_fsb,
endoffset_fsb - startoffset_fsb,
0, 2, &firstfsb, &free_list, NULL, &done);
if (error) {
goto error0;
}
/*
* complete the transaction
*/
error = xfs_bmap_finish(&tp, &free_list, &committed);
if (error) {
goto error0;
}
error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
}
out_unlock_iolock:
if (need_iolock)
xfs_iunlock(ip, XFS_IOLOCK_EXCL);
return error;
error0:
xfs_bmap_cancel(&free_list);
error1:
xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
xfs_iunlock(ip, need_iolock ? (XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL) :
XFS_ILOCK_EXCL);
return error;
}
/*
* xfs_change_file_space()
* This routine allocates or frees disk space for the given file.
* The user specified parameters are checked for alignment and size
* limitations.
*
* RETURNS:
* 0 on success
* errno on error
*
*/
int
xfs_change_file_space(
xfs_inode_t *ip,
int cmd,
xfs_flock64_t *bf,
xfs_off_t offset,
int attr_flags)
{
xfs_mount_t *mp = ip->i_mount;
int clrprealloc;
int error;
xfs_fsize_t fsize;
int setprealloc;
xfs_off_t startoffset;
xfs_off_t llen;
xfs_trans_t *tp;
struct iattr iattr;
xfs_itrace_entry(ip);
if (!S_ISREG(ip->i_d.di_mode))
return XFS_ERROR(EINVAL);
switch (bf->l_whence) {
case 0: /*SEEK_SET*/
break;
case 1: /*SEEK_CUR*/
bf->l_start += offset;
break;
case 2: /*SEEK_END*/
bf->l_start += ip->i_size;
break;
default:
return XFS_ERROR(EINVAL);
}
llen = bf->l_len > 0 ? bf->l_len - 1 : bf->l_len;
if ( (bf->l_start < 0)
|| (bf->l_start > XFS_MAXIOFFSET(mp))
|| (bf->l_start + llen < 0)
|| (bf->l_start + llen > XFS_MAXIOFFSET(mp)))
return XFS_ERROR(EINVAL);
bf->l_whence = 0;
startoffset = bf->l_start;
fsize = ip->i_size;
/*
* XFS_IOC_RESVSP and XFS_IOC_UNRESVSP will reserve or unreserve
* file space.
* These calls do NOT zero the data space allocated to the file,
* nor do they change the file size.
*
* XFS_IOC_ALLOCSP and XFS_IOC_FREESP will allocate and free file
* space.
* These calls cause the new file data to be zeroed and the file
* size to be changed.
*/
setprealloc = clrprealloc = 0;
switch (cmd) {
case XFS_IOC_RESVSP:
case XFS_IOC_RESVSP64:
error = xfs_alloc_file_space(ip, startoffset, bf->l_len,
1, attr_flags);
if (error)
return error;
setprealloc = 1;
break;
case XFS_IOC_UNRESVSP:
case XFS_IOC_UNRESVSP64:
if ((error = xfs_free_file_space(ip, startoffset, bf->l_len,
attr_flags)))
return error;
break;
case XFS_IOC_ALLOCSP:
case XFS_IOC_ALLOCSP64:
case XFS_IOC_FREESP:
case XFS_IOC_FREESP64:
if (startoffset > fsize) {
error = xfs_alloc_file_space(ip, fsize,
startoffset - fsize, 0, attr_flags);
if (error)
break;
}
iattr.ia_valid = ATTR_SIZE;
iattr.ia_size = startoffset;
error = xfs_setattr(ip, &iattr, attr_flags);
if (error)
return error;
clrprealloc = 1;
break;
default:
ASSERT(0);
return XFS_ERROR(EINVAL);
}
/*
* update the inode timestamp, mode, and prealloc flag bits
*/
tp = xfs_trans_alloc(mp, XFS_TRANS_WRITEID);
if ((error = xfs_trans_reserve(tp, 0, XFS_WRITEID_LOG_RES(mp),
0, 0, 0))) {
/* ASSERT(0); */
xfs_trans_cancel(tp, 0);
return error;
}
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_ihold(tp, ip);
if ((attr_flags & XFS_ATTR_DMI) == 0) {
ip->i_d.di_mode &= ~S_ISUID;
/*
* Note that we don't have to worry about mandatory
* file locking being disabled here because we only
* clear the S_ISGID bit if the Group execute bit is
* on, but if it was on then mandatory locking wouldn't
* have been enabled.
*/
if (ip->i_d.di_mode & S_IXGRP)
ip->i_d.di_mode &= ~S_ISGID;
xfs_ichgtime(ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
}
if (setprealloc)
ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
else if (clrprealloc)
ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
xfs_trans_set_sync(tp);
error = xfs_trans_commit(tp, 0);
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return error;
}