| /* |
| * usb-host.c: ETRAX 100LX USB Host Controller Driver (HCD) |
| * |
| * Copyright (c) 2002, 2003 Axis Communications AB. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/delay.h> |
| #include <linux/ioport.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/errno.h> |
| #include <linux/unistd.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/list.h> |
| #include <linux/spinlock.h> |
| |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/irq.h> |
| #include <asm/dma.h> |
| #include <asm/system.h> |
| #include <asm/arch/svinto.h> |
| |
| #include <linux/usb.h> |
| /* Ugly include because we don't live with the other host drivers. */ |
| #include <../drivers/usb/core/hcd.h> |
| #include <../drivers/usb/core/usb.h> |
| |
| #include "hc_crisv10.h" |
| |
| #define ETRAX_USB_HC_IRQ USB_HC_IRQ_NBR |
| #define ETRAX_USB_RX_IRQ USB_DMA_RX_IRQ_NBR |
| #define ETRAX_USB_TX_IRQ USB_DMA_TX_IRQ_NBR |
| |
| static const char *usb_hcd_version = "$Revision: 1.2 $"; |
| |
| #undef KERN_DEBUG |
| #define KERN_DEBUG "" |
| |
| |
| #undef USB_DEBUG_RH |
| #undef USB_DEBUG_EPID |
| #undef USB_DEBUG_SB |
| #undef USB_DEBUG_DESC |
| #undef USB_DEBUG_URB |
| #undef USB_DEBUG_TRACE |
| #undef USB_DEBUG_BULK |
| #undef USB_DEBUG_CTRL |
| #undef USB_DEBUG_INTR |
| #undef USB_DEBUG_ISOC |
| |
| #ifdef USB_DEBUG_RH |
| #define dbg_rh(format, arg...) printk(KERN_DEBUG __FILE__ ": (RH) " format "\n" , ## arg) |
| #else |
| #define dbg_rh(format, arg...) do {} while (0) |
| #endif |
| |
| #ifdef USB_DEBUG_EPID |
| #define dbg_epid(format, arg...) printk(KERN_DEBUG __FILE__ ": (EPID) " format "\n" , ## arg) |
| #else |
| #define dbg_epid(format, arg...) do {} while (0) |
| #endif |
| |
| #ifdef USB_DEBUG_SB |
| #define dbg_sb(format, arg...) printk(KERN_DEBUG __FILE__ ": (SB) " format "\n" , ## arg) |
| #else |
| #define dbg_sb(format, arg...) do {} while (0) |
| #endif |
| |
| #ifdef USB_DEBUG_CTRL |
| #define dbg_ctrl(format, arg...) printk(KERN_DEBUG __FILE__ ": (CTRL) " format "\n" , ## arg) |
| #else |
| #define dbg_ctrl(format, arg...) do {} while (0) |
| #endif |
| |
| #ifdef USB_DEBUG_BULK |
| #define dbg_bulk(format, arg...) printk(KERN_DEBUG __FILE__ ": (BULK) " format "\n" , ## arg) |
| #else |
| #define dbg_bulk(format, arg...) do {} while (0) |
| #endif |
| |
| #ifdef USB_DEBUG_INTR |
| #define dbg_intr(format, arg...) printk(KERN_DEBUG __FILE__ ": (INTR) " format "\n" , ## arg) |
| #else |
| #define dbg_intr(format, arg...) do {} while (0) |
| #endif |
| |
| #ifdef USB_DEBUG_ISOC |
| #define dbg_isoc(format, arg...) printk(KERN_DEBUG __FILE__ ": (ISOC) " format "\n" , ## arg) |
| #else |
| #define dbg_isoc(format, arg...) do {} while (0) |
| #endif |
| |
| #ifdef USB_DEBUG_TRACE |
| #define DBFENTER (printk(": Entering: %s\n", __FUNCTION__)) |
| #define DBFEXIT (printk(": Exiting: %s\n", __FUNCTION__)) |
| #else |
| #define DBFENTER do {} while (0) |
| #define DBFEXIT do {} while (0) |
| #endif |
| |
| #define usb_pipeslow(pipe) (((pipe) >> 26) & 1) |
| |
| /*------------------------------------------------------------------- |
| Virtual Root Hub |
| -------------------------------------------------------------------*/ |
| |
| static __u8 root_hub_dev_des[] = |
| { |
| 0x12, /* __u8 bLength; */ |
| 0x01, /* __u8 bDescriptorType; Device */ |
| 0x00, /* __le16 bcdUSB; v1.0 */ |
| 0x01, |
| 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ |
| 0x00, /* __u8 bDeviceSubClass; */ |
| 0x00, /* __u8 bDeviceProtocol; */ |
| 0x08, /* __u8 bMaxPacketSize0; 8 Bytes */ |
| 0x00, /* __le16 idVendor; */ |
| 0x00, |
| 0x00, /* __le16 idProduct; */ |
| 0x00, |
| 0x00, /* __le16 bcdDevice; */ |
| 0x00, |
| 0x00, /* __u8 iManufacturer; */ |
| 0x02, /* __u8 iProduct; */ |
| 0x01, /* __u8 iSerialNumber; */ |
| 0x01 /* __u8 bNumConfigurations; */ |
| }; |
| |
| /* Configuration descriptor */ |
| static __u8 root_hub_config_des[] = |
| { |
| 0x09, /* __u8 bLength; */ |
| 0x02, /* __u8 bDescriptorType; Configuration */ |
| 0x19, /* __le16 wTotalLength; */ |
| 0x00, |
| 0x01, /* __u8 bNumInterfaces; */ |
| 0x01, /* __u8 bConfigurationValue; */ |
| 0x00, /* __u8 iConfiguration; */ |
| 0x40, /* __u8 bmAttributes; Bit 7: Bus-powered */ |
| 0x00, /* __u8 MaxPower; */ |
| |
| /* interface */ |
| 0x09, /* __u8 if_bLength; */ |
| 0x04, /* __u8 if_bDescriptorType; Interface */ |
| 0x00, /* __u8 if_bInterfaceNumber; */ |
| 0x00, /* __u8 if_bAlternateSetting; */ |
| 0x01, /* __u8 if_bNumEndpoints; */ |
| 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ |
| 0x00, /* __u8 if_bInterfaceSubClass; */ |
| 0x00, /* __u8 if_bInterfaceProtocol; */ |
| 0x00, /* __u8 if_iInterface; */ |
| |
| /* endpoint */ |
| 0x07, /* __u8 ep_bLength; */ |
| 0x05, /* __u8 ep_bDescriptorType; Endpoint */ |
| 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ |
| 0x03, /* __u8 ep_bmAttributes; Interrupt */ |
| 0x08, /* __le16 ep_wMaxPacketSize; 8 Bytes */ |
| 0x00, |
| 0xff /* __u8 ep_bInterval; 255 ms */ |
| }; |
| |
| static __u8 root_hub_hub_des[] = |
| { |
| 0x09, /* __u8 bLength; */ |
| 0x29, /* __u8 bDescriptorType; Hub-descriptor */ |
| 0x02, /* __u8 bNbrPorts; */ |
| 0x00, /* __u16 wHubCharacteristics; */ |
| 0x00, |
| 0x01, /* __u8 bPwrOn2pwrGood; 2ms */ |
| 0x00, /* __u8 bHubContrCurrent; 0 mA */ |
| 0x00, /* __u8 DeviceRemovable; *** 7 Ports max *** */ |
| 0xff /* __u8 PortPwrCtrlMask; *** 7 ports max *** */ |
| }; |
| |
| static DEFINE_TIMER(bulk_start_timer, NULL, 0, 0); |
| static DEFINE_TIMER(bulk_eot_timer, NULL, 0, 0); |
| |
| /* We want the start timer to expire before the eot timer, because the former might start |
| traffic, thus making it unnecessary for the latter to time out. */ |
| #define BULK_START_TIMER_INTERVAL (HZ/10) /* 100 ms */ |
| #define BULK_EOT_TIMER_INTERVAL (HZ/10+2) /* 120 ms */ |
| |
| #define OK(x) len = (x); dbg_rh("OK(%d): line: %d", x, __LINE__); break |
| #define CHECK_ALIGN(x) if (((__u32)(x)) & 0x00000003) \ |
| {panic("Alignment check (DWORD) failed at %s:%s:%d\n", __FILE__, __FUNCTION__, __LINE__);} |
| |
| #define SLAB_FLAG (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL) |
| #define KMALLOC_FLAG (in_interrupt() ? GFP_ATOMIC : GFP_KERNEL) |
| |
| /* Most helpful debugging aid */ |
| #define assert(expr) ((void) ((expr) ? 0 : (err("assert failed at line %d",__LINE__)))) |
| |
| /* Alternative assert define which stops after a failed assert. */ |
| /* |
| #define assert(expr) \ |
| { \ |
| if (!(expr)) { \ |
| err("assert failed at line %d",__LINE__); \ |
| while (1); \ |
| } \ |
| } |
| */ |
| |
| |
| /* FIXME: Should RX_BUF_SIZE be a config option, or maybe we should adjust it dynamically? |
| To adjust it dynamically we would have to get an interrupt when we reach the end |
| of the rx descriptor list, or when we get close to the end, and then allocate more |
| descriptors. */ |
| |
| #define NBR_OF_RX_DESC 512 |
| #define RX_DESC_BUF_SIZE 1024 |
| #define RX_BUF_SIZE (NBR_OF_RX_DESC * RX_DESC_BUF_SIZE) |
| |
| /* The number of epids is, among other things, used for pre-allocating |
| ctrl, bulk and isoc EP descriptors (one for each epid). |
| Assumed to be > 1 when initiating the DMA lists. */ |
| #define NBR_OF_EPIDS 32 |
| |
| /* Support interrupt traffic intervals up to 128 ms. */ |
| #define MAX_INTR_INTERVAL 128 |
| |
| /* If periodic traffic (intr or isoc) is to be used, then one entry in the EP table |
| must be "invalid". By this we mean that we shouldn't care about epid attentions |
| for this epid, or at least handle them differently from epid attentions for "valid" |
| epids. This define determines which one to use (don't change it). */ |
| #define INVALID_EPID 31 |
| /* A special epid for the bulk dummys. */ |
| #define DUMMY_EPID 30 |
| |
| /* This is just a software cache for the valid entries in R_USB_EPT_DATA. */ |
| static __u32 epid_usage_bitmask; |
| |
| /* A bitfield to keep information on in/out traffic is needed to uniquely identify |
| an endpoint on a device, since the most significant bit which indicates traffic |
| direction is lacking in the ep_id field (ETRAX epids can handle both in and |
| out traffic on endpoints that are otherwise identical). The USB framework, however, |
| relies on them to be handled separately. For example, bulk IN and OUT urbs cannot |
| be queued in the same list, since they would block each other. */ |
| static __u32 epid_out_traffic; |
| |
| /* DMA IN cache bug. Align the DMA IN buffers to 32 bytes, i.e. a cache line. |
| Since RX_DESC_BUF_SIZE is 1024 is a multiple of 32, all rx buffers will be cache aligned. */ |
| static volatile unsigned char RxBuf[RX_BUF_SIZE] __attribute__ ((aligned (32))); |
| static volatile USB_IN_Desc_t RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned (4))); |
| |
| /* Pointers into RxDescList. */ |
| static volatile USB_IN_Desc_t *myNextRxDesc; |
| static volatile USB_IN_Desc_t *myLastRxDesc; |
| static volatile USB_IN_Desc_t *myPrevRxDesc; |
| |
| /* EP descriptors must be 32-bit aligned. */ |
| static volatile USB_EP_Desc_t TxCtrlEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| static volatile USB_EP_Desc_t TxBulkEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| /* After each enabled bulk EP (IN or OUT) we put two disabled EP descriptors with the eol flag set, |
| causing the DMA to stop the DMA channel. The first of these two has the intr flag set, which |
| gives us a dma8_sub0_descr interrupt. When we receive this, we advance the DMA one step in the |
| EP list and then restart the bulk channel, thus forcing a switch between bulk EP descriptors |
| in each frame. */ |
| static volatile USB_EP_Desc_t TxBulkDummyEPList[NBR_OF_EPIDS][2] __attribute__ ((aligned (4))); |
| |
| static volatile USB_EP_Desc_t TxIsocEPList[NBR_OF_EPIDS] __attribute__ ((aligned (4))); |
| static volatile USB_SB_Desc_t TxIsocSB_zout __attribute__ ((aligned (4))); |
| |
| static volatile USB_EP_Desc_t TxIntrEPList[MAX_INTR_INTERVAL] __attribute__ ((aligned (4))); |
| static volatile USB_SB_Desc_t TxIntrSB_zout __attribute__ ((aligned (4))); |
| |
| /* A zout transfer makes a memory access at the address of its buf pointer, which means that setting |
| this buf pointer to 0 will cause an access to the flash. In addition to this, setting sw_len to 0 |
| results in a 16/32 bytes (depending on DMA burst size) transfer. Instead, we set it to 1, and point |
| it to this buffer. */ |
| static int zout_buffer[4] __attribute__ ((aligned (4))); |
| |
| /* Cache for allocating new EP and SB descriptors. */ |
| static struct kmem_cache *usb_desc_cache; |
| |
| /* Cache for the registers allocated in the top half. */ |
| static struct kmem_cache *top_half_reg_cache; |
| |
| /* Cache for the data allocated in the isoc descr top half. */ |
| static struct kmem_cache *isoc_compl_cache; |
| |
| static struct usb_bus *etrax_usb_bus; |
| |
| /* This is a circular (double-linked) list of the active urbs for each epid. |
| The head is never removed, and new urbs are linked onto the list as |
| urb_entry_t elements. Don't reference urb_list directly; use the wrapper |
| functions instead. Note that working with these lists might require spinlock |
| protection. */ |
| static struct list_head urb_list[NBR_OF_EPIDS]; |
| |
| /* Read about the need and usage of this lock in submit_ctrl_urb. */ |
| static spinlock_t urb_list_lock; |
| |
| /* Used when unlinking asynchronously. */ |
| static struct list_head urb_unlink_list; |
| |
| /* for returning string descriptors in UTF-16LE */ |
| static int ascii2utf (char *ascii, __u8 *utf, int utfmax) |
| { |
| int retval; |
| |
| for (retval = 0; *ascii && utfmax > 1; utfmax -= 2, retval += 2) { |
| *utf++ = *ascii++ & 0x7f; |
| *utf++ = 0; |
| } |
| return retval; |
| } |
| |
| static int usb_root_hub_string (int id, int serial, char *type, __u8 *data, int len) |
| { |
| char buf [30]; |
| |
| // assert (len > (2 * (sizeof (buf) + 1))); |
| // assert (strlen (type) <= 8); |
| |
| // language ids |
| if (id == 0) { |
| *data++ = 4; *data++ = 3; /* 4 bytes data */ |
| *data++ = 0; *data++ = 0; /* some language id */ |
| return 4; |
| |
| // serial number |
| } else if (id == 1) { |
| sprintf (buf, "%x", serial); |
| |
| // product description |
| } else if (id == 2) { |
| sprintf (buf, "USB %s Root Hub", type); |
| |
| // id 3 == vendor description |
| |
| // unsupported IDs --> "stall" |
| } else |
| return 0; |
| |
| data [0] = 2 + ascii2utf (buf, data + 2, len - 2); |
| data [1] = 3; |
| return data [0]; |
| } |
| |
| /* Wrappers around the list functions (include/linux/list.h). */ |
| |
| static inline int urb_list_empty(int epid) |
| { |
| return list_empty(&urb_list[epid]); |
| } |
| |
| /* Returns first urb for this epid, or NULL if list is empty. */ |
| static inline struct urb *urb_list_first(int epid) |
| { |
| struct urb *first_urb = 0; |
| |
| if (!urb_list_empty(epid)) { |
| /* Get the first urb (i.e. head->next). */ |
| urb_entry_t *urb_entry = list_entry((&urb_list[epid])->next, urb_entry_t, list); |
| first_urb = urb_entry->urb; |
| } |
| return first_urb; |
| } |
| |
| /* Adds an urb_entry last in the list for this epid. */ |
| static inline void urb_list_add(struct urb *urb, int epid) |
| { |
| urb_entry_t *urb_entry = kmalloc(sizeof(urb_entry_t), KMALLOC_FLAG); |
| assert(urb_entry); |
| |
| urb_entry->urb = urb; |
| list_add_tail(&urb_entry->list, &urb_list[epid]); |
| } |
| |
| /* Search through the list for an element that contains this urb. (The list |
| is expected to be short and the one we are about to delete will often be |
| the first in the list.) */ |
| static inline urb_entry_t *__urb_list_entry(struct urb *urb, int epid) |
| { |
| struct list_head *entry; |
| struct list_head *tmp; |
| urb_entry_t *urb_entry; |
| |
| list_for_each_safe(entry, tmp, &urb_list[epid]) { |
| urb_entry = list_entry(entry, urb_entry_t, list); |
| assert(urb_entry); |
| assert(urb_entry->urb); |
| |
| if (urb_entry->urb == urb) { |
| return urb_entry; |
| } |
| } |
| return 0; |
| } |
| |
| /* Delete an urb from the list. */ |
| static inline void urb_list_del(struct urb *urb, int epid) |
| { |
| urb_entry_t *urb_entry = __urb_list_entry(urb, epid); |
| assert(urb_entry); |
| |
| /* Delete entry and free. */ |
| list_del(&urb_entry->list); |
| kfree(urb_entry); |
| } |
| |
| /* Move an urb to the end of the list. */ |
| static inline void urb_list_move_last(struct urb *urb, int epid) |
| { |
| urb_entry_t *urb_entry = __urb_list_entry(urb, epid); |
| assert(urb_entry); |
| |
| list_move_tail(&urb_entry->list, &urb_list[epid]); |
| } |
| |
| /* Get the next urb in the list. */ |
| static inline struct urb *urb_list_next(struct urb *urb, int epid) |
| { |
| urb_entry_t *urb_entry = __urb_list_entry(urb, epid); |
| |
| assert(urb_entry); |
| |
| if (urb_entry->list.next != &urb_list[epid]) { |
| struct list_head *elem = urb_entry->list.next; |
| urb_entry = list_entry(elem, urb_entry_t, list); |
| return urb_entry->urb; |
| } else { |
| return NULL; |
| } |
| } |
| |
| |
| |
| /* For debug purposes only. */ |
| static inline void urb_list_dump(int epid) |
| { |
| struct list_head *entry; |
| struct list_head *tmp; |
| urb_entry_t *urb_entry; |
| int i = 0; |
| |
| info("Dumping urb list for epid %d", epid); |
| |
| list_for_each_safe(entry, tmp, &urb_list[epid]) { |
| urb_entry = list_entry(entry, urb_entry_t, list); |
| info(" entry %d, urb = 0x%lx", i, (unsigned long)urb_entry->urb); |
| } |
| } |
| |
| static void init_rx_buffers(void); |
| static int etrax_rh_unlink_urb(struct urb *urb); |
| static void etrax_rh_send_irq(struct urb *urb); |
| static void etrax_rh_init_int_timer(struct urb *urb); |
| static void etrax_rh_int_timer_do(unsigned long ptr); |
| |
| static int etrax_usb_setup_epid(struct urb *urb); |
| static int etrax_usb_lookup_epid(struct urb *urb); |
| static int etrax_usb_allocate_epid(void); |
| static void etrax_usb_free_epid(int epid); |
| |
| static int etrax_remove_from_sb_list(struct urb *urb); |
| |
| static void* etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size, |
| unsigned mem_flags, dma_addr_t *dma); |
| static void etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma); |
| |
| static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid); |
| static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid); |
| static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid); |
| static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid); |
| |
| static int etrax_usb_submit_bulk_urb(struct urb *urb); |
| static int etrax_usb_submit_ctrl_urb(struct urb *urb); |
| static int etrax_usb_submit_intr_urb(struct urb *urb); |
| static int etrax_usb_submit_isoc_urb(struct urb *urb); |
| |
| static int etrax_usb_submit_urb(struct urb *urb, unsigned mem_flags); |
| static int etrax_usb_unlink_urb(struct urb *urb, int status); |
| static int etrax_usb_get_frame_number(struct usb_device *usb_dev); |
| |
| static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc); |
| static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc); |
| static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc); |
| static void etrax_usb_hc_interrupt_bottom_half(void *data); |
| |
| static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data); |
| |
| |
| /* The following is a list of interrupt handlers for the host controller interrupts we use. |
| They are called from etrax_usb_hc_interrupt_bottom_half. */ |
| static void etrax_usb_hc_isoc_eof_interrupt(void); |
| static void etrax_usb_hc_bulk_eot_interrupt(int timer_induced); |
| static void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg); |
| static void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg); |
| static void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg); |
| |
| static int etrax_rh_submit_urb (struct urb *urb); |
| |
| /* Forward declaration needed because they are used in the rx interrupt routine. */ |
| static void etrax_usb_complete_urb(struct urb *urb, int status); |
| static void etrax_usb_complete_bulk_urb(struct urb *urb, int status); |
| static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status); |
| static void etrax_usb_complete_intr_urb(struct urb *urb, int status); |
| static void etrax_usb_complete_isoc_urb(struct urb *urb, int status); |
| |
| static int etrax_usb_hc_init(void); |
| static void etrax_usb_hc_cleanup(void); |
| |
| static struct usb_operations etrax_usb_device_operations = |
| { |
| .get_frame_number = etrax_usb_get_frame_number, |
| .submit_urb = etrax_usb_submit_urb, |
| .unlink_urb = etrax_usb_unlink_urb, |
| .buffer_alloc = etrax_usb_buffer_alloc, |
| .buffer_free = etrax_usb_buffer_free |
| }; |
| |
| /* Note that these functions are always available in their "__" variants, for use in |
| error situations. The "__" missing variants are controlled by the USB_DEBUG_DESC/ |
| USB_DEBUG_URB macros. */ |
| static void __dump_urb(struct urb* purb) |
| { |
| printk("\nurb :0x%08lx\n", (unsigned long)purb); |
| printk("dev :0x%08lx\n", (unsigned long)purb->dev); |
| printk("pipe :0x%08x\n", purb->pipe); |
| printk("status :%d\n", purb->status); |
| printk("transfer_flags :0x%08x\n", purb->transfer_flags); |
| printk("transfer_buffer :0x%08lx\n", (unsigned long)purb->transfer_buffer); |
| printk("transfer_buffer_length:%d\n", purb->transfer_buffer_length); |
| printk("actual_length :%d\n", purb->actual_length); |
| printk("setup_packet :0x%08lx\n", (unsigned long)purb->setup_packet); |
| printk("start_frame :%d\n", purb->start_frame); |
| printk("number_of_packets :%d\n", purb->number_of_packets); |
| printk("interval :%d\n", purb->interval); |
| printk("error_count :%d\n", purb->error_count); |
| printk("context :0x%08lx\n", (unsigned long)purb->context); |
| printk("complete :0x%08lx\n\n", (unsigned long)purb->complete); |
| } |
| |
| static void __dump_in_desc(volatile USB_IN_Desc_t *in) |
| { |
| printk("\nUSB_IN_Desc at 0x%08lx\n", (unsigned long)in); |
| printk(" sw_len : 0x%04x (%d)\n", in->sw_len, in->sw_len); |
| printk(" command : 0x%04x\n", in->command); |
| printk(" next : 0x%08lx\n", in->next); |
| printk(" buf : 0x%08lx\n", in->buf); |
| printk(" hw_len : 0x%04x (%d)\n", in->hw_len, in->hw_len); |
| printk(" status : 0x%04x\n\n", in->status); |
| } |
| |
| static void __dump_sb_desc(volatile USB_SB_Desc_t *sb) |
| { |
| char tt = (sb->command & 0x30) >> 4; |
| char *tt_string; |
| |
| switch (tt) { |
| case 0: |
| tt_string = "zout"; |
| break; |
| case 1: |
| tt_string = "in"; |
| break; |
| case 2: |
| tt_string = "out"; |
| break; |
| case 3: |
| tt_string = "setup"; |
| break; |
| default: |
| tt_string = "unknown (weird)"; |
| } |
| |
| printk("\n USB_SB_Desc at 0x%08lx\n", (unsigned long)sb); |
| printk(" command : 0x%04x\n", sb->command); |
| printk(" rem : %d\n", (sb->command & 0x3f00) >> 8); |
| printk(" full : %d\n", (sb->command & 0x40) >> 6); |
| printk(" tt : %d (%s)\n", tt, tt_string); |
| printk(" intr : %d\n", (sb->command & 0x8) >> 3); |
| printk(" eot : %d\n", (sb->command & 0x2) >> 1); |
| printk(" eol : %d\n", sb->command & 0x1); |
| printk(" sw_len : 0x%04x (%d)\n", sb->sw_len, sb->sw_len); |
| printk(" next : 0x%08lx\n", sb->next); |
| printk(" buf : 0x%08lx\n\n", sb->buf); |
| } |
| |
| |
| static void __dump_ep_desc(volatile USB_EP_Desc_t *ep) |
| { |
| printk("\nUSB_EP_Desc at 0x%08lx\n", (unsigned long)ep); |
| printk(" command : 0x%04x\n", ep->command); |
| printk(" ep_id : %d\n", (ep->command & 0x1f00) >> 8); |
| printk(" enable : %d\n", (ep->command & 0x10) >> 4); |
| printk(" intr : %d\n", (ep->command & 0x8) >> 3); |
| printk(" eof : %d\n", (ep->command & 0x2) >> 1); |
| printk(" eol : %d\n", ep->command & 0x1); |
| printk(" hw_len : 0x%04x (%d)\n", ep->hw_len, ep->hw_len); |
| printk(" next : 0x%08lx\n", ep->next); |
| printk(" sub : 0x%08lx\n\n", ep->sub); |
| } |
| |
| static inline void __dump_ep_list(int pipe_type) |
| { |
| volatile USB_EP_Desc_t *ep; |
| volatile USB_EP_Desc_t *first_ep; |
| volatile USB_SB_Desc_t *sb; |
| |
| switch (pipe_type) |
| { |
| case PIPE_BULK: |
| first_ep = &TxBulkEPList[0]; |
| break; |
| case PIPE_CONTROL: |
| first_ep = &TxCtrlEPList[0]; |
| break; |
| case PIPE_INTERRUPT: |
| first_ep = &TxIntrEPList[0]; |
| break; |
| case PIPE_ISOCHRONOUS: |
| first_ep = &TxIsocEPList[0]; |
| break; |
| default: |
| warn("Cannot dump unknown traffic type"); |
| return; |
| } |
| ep = first_ep; |
| |
| printk("\n\nDumping EP list...\n\n"); |
| |
| do { |
| __dump_ep_desc(ep); |
| /* Cannot phys_to_virt on 0 as it turns into 80000000, which is != 0. */ |
| sb = ep->sub ? phys_to_virt(ep->sub) : 0; |
| while (sb) { |
| __dump_sb_desc(sb); |
| sb = sb->next ? phys_to_virt(sb->next) : 0; |
| } |
| ep = (volatile USB_EP_Desc_t *)(phys_to_virt(ep->next)); |
| |
| } while (ep != first_ep); |
| } |
| |
| static inline void __dump_ept_data(int epid) |
| { |
| unsigned long flags; |
| __u32 r_usb_ept_data; |
| |
| if (epid < 0 || epid > 31) { |
| printk("Cannot dump ept data for invalid epid %d\n", epid); |
| return; |
| } |
| |
| save_flags(flags); |
| cli(); |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| r_usb_ept_data = *R_USB_EPT_DATA; |
| restore_flags(flags); |
| |
| printk("\nR_USB_EPT_DATA = 0x%x for epid %d :\n", r_usb_ept_data, epid); |
| if (r_usb_ept_data == 0) { |
| /* No need for more detailed printing. */ |
| return; |
| } |
| printk(" valid : %d\n", (r_usb_ept_data & 0x80000000) >> 31); |
| printk(" hold : %d\n", (r_usb_ept_data & 0x40000000) >> 30); |
| printk(" error_count_in : %d\n", (r_usb_ept_data & 0x30000000) >> 28); |
| printk(" t_in : %d\n", (r_usb_ept_data & 0x08000000) >> 27); |
| printk(" low_speed : %d\n", (r_usb_ept_data & 0x04000000) >> 26); |
| printk(" port : %d\n", (r_usb_ept_data & 0x03000000) >> 24); |
| printk(" error_code : %d\n", (r_usb_ept_data & 0x00c00000) >> 22); |
| printk(" t_out : %d\n", (r_usb_ept_data & 0x00200000) >> 21); |
| printk(" error_count_out : %d\n", (r_usb_ept_data & 0x00180000) >> 19); |
| printk(" max_len : %d\n", (r_usb_ept_data & 0x0003f800) >> 11); |
| printk(" ep : %d\n", (r_usb_ept_data & 0x00000780) >> 7); |
| printk(" dev : %d\n", (r_usb_ept_data & 0x0000003f)); |
| } |
| |
| static inline void __dump_ept_data_list(void) |
| { |
| int i; |
| |
| printk("Dumping the whole R_USB_EPT_DATA list\n"); |
| |
| for (i = 0; i < 32; i++) { |
| __dump_ept_data(i); |
| } |
| } |
| #ifdef USB_DEBUG_DESC |
| #define dump_in_desc(...) __dump_in_desc(...) |
| #define dump_sb_desc(...) __dump_sb_desc(...) |
| #define dump_ep_desc(...) __dump_ep_desc(...) |
| #else |
| #define dump_in_desc(...) do {} while (0) |
| #define dump_sb_desc(...) do {} while (0) |
| #define dump_ep_desc(...) do {} while (0) |
| #endif |
| |
| #ifdef USB_DEBUG_URB |
| #define dump_urb(x) __dump_urb(x) |
| #else |
| #define dump_urb(x) do {} while (0) |
| #endif |
| |
| static void init_rx_buffers(void) |
| { |
| int i; |
| |
| DBFENTER; |
| |
| for (i = 0; i < (NBR_OF_RX_DESC - 1); i++) { |
| RxDescList[i].sw_len = RX_DESC_BUF_SIZE; |
| RxDescList[i].command = 0; |
| RxDescList[i].next = virt_to_phys(&RxDescList[i + 1]); |
| RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); |
| RxDescList[i].hw_len = 0; |
| RxDescList[i].status = 0; |
| |
| /* DMA IN cache bug. (struct etrax_dma_descr has the same layout as USB_IN_Desc |
| for the relevant fields.) */ |
| prepare_rx_descriptor((struct etrax_dma_descr*)&RxDescList[i]); |
| |
| } |
| |
| RxDescList[i].sw_len = RX_DESC_BUF_SIZE; |
| RxDescList[i].command = IO_STATE(USB_IN_command, eol, yes); |
| RxDescList[i].next = virt_to_phys(&RxDescList[0]); |
| RxDescList[i].buf = virt_to_phys(RxBuf + (i * RX_DESC_BUF_SIZE)); |
| RxDescList[i].hw_len = 0; |
| RxDescList[i].status = 0; |
| |
| myNextRxDesc = &RxDescList[0]; |
| myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; |
| myPrevRxDesc = &RxDescList[NBR_OF_RX_DESC - 1]; |
| |
| *R_DMA_CH9_FIRST = virt_to_phys(myNextRxDesc); |
| *R_DMA_CH9_CMD = IO_STATE(R_DMA_CH9_CMD, cmd, start); |
| |
| DBFEXIT; |
| } |
| |
| static void init_tx_bulk_ep(void) |
| { |
| int i; |
| |
| DBFENTER; |
| |
| for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| CHECK_ALIGN(&TxBulkEPList[i]); |
| TxBulkEPList[i].hw_len = 0; |
| TxBulkEPList[i].command = IO_FIELD(USB_EP_command, epid, i); |
| TxBulkEPList[i].sub = 0; |
| TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[i + 1]); |
| |
| /* Initiate two EPs, disabled and with the eol flag set. No need for any |
| preserved epid. */ |
| |
| /* The first one has the intr flag set so we get an interrupt when the DMA |
| channel is about to become disabled. */ |
| CHECK_ALIGN(&TxBulkDummyEPList[i][0]); |
| TxBulkDummyEPList[i][0].hw_len = 0; |
| TxBulkDummyEPList[i][0].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | |
| IO_STATE(USB_EP_command, eol, yes) | |
| IO_STATE(USB_EP_command, intr, yes)); |
| TxBulkDummyEPList[i][0].sub = 0; |
| TxBulkDummyEPList[i][0].next = virt_to_phys(&TxBulkDummyEPList[i][1]); |
| |
| /* The second one. */ |
| CHECK_ALIGN(&TxBulkDummyEPList[i][1]); |
| TxBulkDummyEPList[i][1].hw_len = 0; |
| TxBulkDummyEPList[i][1].command = (IO_FIELD(USB_EP_command, epid, DUMMY_EPID) | |
| IO_STATE(USB_EP_command, eol, yes)); |
| TxBulkDummyEPList[i][1].sub = 0; |
| /* The last dummy's next pointer is the same as the current EP's next pointer. */ |
| TxBulkDummyEPList[i][1].next = virt_to_phys(&TxBulkEPList[i + 1]); |
| } |
| |
| /* Configure the last one. */ |
| CHECK_ALIGN(&TxBulkEPList[i]); |
| TxBulkEPList[i].hw_len = 0; |
| TxBulkEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) | |
| IO_FIELD(USB_EP_command, epid, i)); |
| TxBulkEPList[i].sub = 0; |
| TxBulkEPList[i].next = virt_to_phys(&TxBulkEPList[0]); |
| |
| /* No need configuring dummy EPs for the last one as it will never be used for |
| bulk traffic (i == INVALD_EPID at this point). */ |
| |
| /* Set up to start on the last EP so we will enable it when inserting traffic |
| for the first time (imitating the situation where the DMA has stopped |
| because there was no more traffic). */ |
| *R_DMA_CH8_SUB0_EP = virt_to_phys(&TxBulkEPList[i]); |
| /* No point in starting the bulk channel yet. |
| *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); */ |
| DBFEXIT; |
| } |
| |
| static void init_tx_ctrl_ep(void) |
| { |
| int i; |
| |
| DBFENTER; |
| |
| for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| CHECK_ALIGN(&TxCtrlEPList[i]); |
| TxCtrlEPList[i].hw_len = 0; |
| TxCtrlEPList[i].command = IO_FIELD(USB_EP_command, epid, i); |
| TxCtrlEPList[i].sub = 0; |
| TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[i + 1]); |
| } |
| |
| CHECK_ALIGN(&TxCtrlEPList[i]); |
| TxCtrlEPList[i].hw_len = 0; |
| TxCtrlEPList[i].command = (IO_STATE(USB_EP_command, eol, yes) | |
| IO_FIELD(USB_EP_command, epid, i)); |
| |
| TxCtrlEPList[i].sub = 0; |
| TxCtrlEPList[i].next = virt_to_phys(&TxCtrlEPList[0]); |
| |
| *R_DMA_CH8_SUB1_EP = virt_to_phys(&TxCtrlEPList[0]); |
| *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); |
| |
| DBFEXIT; |
| } |
| |
| |
| static void init_tx_intr_ep(void) |
| { |
| int i; |
| |
| DBFENTER; |
| |
| /* Read comment at zout_buffer declaration for an explanation to this. */ |
| TxIntrSB_zout.sw_len = 1; |
| TxIntrSB_zout.next = 0; |
| TxIntrSB_zout.buf = virt_to_phys(&zout_buffer[0]); |
| TxIntrSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | |
| IO_STATE(USB_SB_command, tt, zout) | |
| IO_STATE(USB_SB_command, full, yes) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| |
| for (i = 0; i < (MAX_INTR_INTERVAL - 1); i++) { |
| CHECK_ALIGN(&TxIntrEPList[i]); |
| TxIntrEPList[i].hw_len = 0; |
| TxIntrEPList[i].command = |
| (IO_STATE(USB_EP_command, eof, yes) | |
| IO_STATE(USB_EP_command, enable, yes) | |
| IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); |
| TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[i + 1]); |
| } |
| |
| CHECK_ALIGN(&TxIntrEPList[i]); |
| TxIntrEPList[i].hw_len = 0; |
| TxIntrEPList[i].command = |
| (IO_STATE(USB_EP_command, eof, yes) | |
| IO_STATE(USB_EP_command, eol, yes) | |
| IO_STATE(USB_EP_command, enable, yes) | |
| IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| TxIntrEPList[i].sub = virt_to_phys(&TxIntrSB_zout); |
| TxIntrEPList[i].next = virt_to_phys(&TxIntrEPList[0]); |
| |
| *R_DMA_CH8_SUB2_EP = virt_to_phys(&TxIntrEPList[0]); |
| *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); |
| DBFEXIT; |
| } |
| |
| static void init_tx_isoc_ep(void) |
| { |
| int i; |
| |
| DBFENTER; |
| |
| /* Read comment at zout_buffer declaration for an explanation to this. */ |
| TxIsocSB_zout.sw_len = 1; |
| TxIsocSB_zout.next = 0; |
| TxIsocSB_zout.buf = virt_to_phys(&zout_buffer[0]); |
| TxIsocSB_zout.command = (IO_FIELD(USB_SB_command, rem, 0) | |
| IO_STATE(USB_SB_command, tt, zout) | |
| IO_STATE(USB_SB_command, full, yes) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| |
| /* The last isochronous EP descriptor is a dummy. */ |
| |
| for (i = 0; i < (NBR_OF_EPIDS - 1); i++) { |
| CHECK_ALIGN(&TxIsocEPList[i]); |
| TxIsocEPList[i].hw_len = 0; |
| TxIsocEPList[i].command = IO_FIELD(USB_EP_command, epid, i); |
| TxIsocEPList[i].sub = 0; |
| TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[i + 1]); |
| } |
| |
| CHECK_ALIGN(&TxIsocEPList[i]); |
| TxIsocEPList[i].hw_len = 0; |
| |
| /* Must enable the last EP descr to get eof interrupt. */ |
| TxIsocEPList[i].command = (IO_STATE(USB_EP_command, enable, yes) | |
| IO_STATE(USB_EP_command, eof, yes) | |
| IO_STATE(USB_EP_command, eol, yes) | |
| IO_FIELD(USB_EP_command, epid, INVALID_EPID)); |
| TxIsocEPList[i].sub = virt_to_phys(&TxIsocSB_zout); |
| TxIsocEPList[i].next = virt_to_phys(&TxIsocEPList[0]); |
| |
| *R_DMA_CH8_SUB3_EP = virt_to_phys(&TxIsocEPList[0]); |
| *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); |
| |
| DBFEXIT; |
| } |
| |
| static void etrax_usb_unlink_intr_urb(struct urb *urb) |
| { |
| volatile USB_EP_Desc_t *first_ep; /* First EP in the list. */ |
| volatile USB_EP_Desc_t *curr_ep; /* Current EP, the iterator. */ |
| volatile USB_EP_Desc_t *next_ep; /* The EP after current. */ |
| volatile USB_EP_Desc_t *unlink_ep; /* The one we should remove from the list. */ |
| |
| int epid; |
| |
| /* Read 8.8.4 in Designer's Reference, "Removing an EP Descriptor from the List". */ |
| |
| DBFENTER; |
| |
| epid = ((etrax_urb_priv_t *)urb->hcpriv)->epid; |
| |
| first_ep = &TxIntrEPList[0]; |
| curr_ep = first_ep; |
| |
| |
| /* Note that this loop removes all EP descriptors with this epid. This assumes |
| that all EP descriptors belong to the one and only urb for this epid. */ |
| |
| do { |
| next_ep = (USB_EP_Desc_t *)phys_to_virt(curr_ep->next); |
| |
| if (IO_EXTRACT(USB_EP_command, epid, next_ep->command) == epid) { |
| |
| dbg_intr("Found EP to unlink for epid %d", epid); |
| |
| /* This is the one we should unlink. */ |
| unlink_ep = next_ep; |
| |
| /* Actually unlink the EP from the DMA list. */ |
| curr_ep->next = unlink_ep->next; |
| |
| /* Wait until the DMA is no longer at this descriptor. */ |
| while (*R_DMA_CH8_SUB2_EP == virt_to_phys(unlink_ep)); |
| |
| /* Now we are free to remove it and its SB descriptor. |
| Note that it is assumed here that there is only one sb in the |
| sb list for this ep. */ |
| kmem_cache_free(usb_desc_cache, phys_to_virt(unlink_ep->sub)); |
| kmem_cache_free(usb_desc_cache, (USB_EP_Desc_t *)unlink_ep); |
| } |
| |
| curr_ep = phys_to_virt(curr_ep->next); |
| |
| } while (curr_ep != first_ep); |
| urb->hcpriv = NULL; |
| } |
| |
| void etrax_usb_do_intr_recover(int epid) |
| { |
| USB_EP_Desc_t *first_ep, *tmp_ep; |
| |
| DBFENTER; |
| |
| first_ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB2_EP); |
| tmp_ep = first_ep; |
| |
| /* What this does is simply to walk the list of interrupt |
| ep descriptors and enable those that are disabled. */ |
| |
| do { |
| if (IO_EXTRACT(USB_EP_command, epid, tmp_ep->command) == epid && |
| !(tmp_ep->command & IO_MASK(USB_EP_command, enable))) { |
| tmp_ep->command |= IO_STATE(USB_EP_command, enable, yes); |
| } |
| |
| tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next); |
| |
| } while (tmp_ep != first_ep); |
| |
| |
| DBFEXIT; |
| } |
| |
| static int etrax_rh_unlink_urb (struct urb *urb) |
| { |
| etrax_hc_t *hc; |
| |
| DBFENTER; |
| |
| hc = urb->dev->bus->hcpriv; |
| |
| if (hc->rh.urb == urb) { |
| hc->rh.send = 0; |
| del_timer(&hc->rh.rh_int_timer); |
| } |
| |
| DBFEXIT; |
| return 0; |
| } |
| |
| static void etrax_rh_send_irq(struct urb *urb) |
| { |
| __u16 data = 0; |
| etrax_hc_t *hc = urb->dev->bus->hcpriv; |
| DBFENTER; |
| |
| /* |
| dbg_rh("R_USB_FM_NUMBER : 0x%08X", *R_USB_FM_NUMBER); |
| dbg_rh("R_USB_FM_REMAINING: 0x%08X", *R_USB_FM_REMAINING); |
| */ |
| |
| data |= (hc->rh.wPortChange_1) ? (1 << 1) : 0; |
| data |= (hc->rh.wPortChange_2) ? (1 << 2) : 0; |
| |
| *((__u16 *)urb->transfer_buffer) = cpu_to_le16(data); |
| /* FIXME: Why is actual_length set to 1 when data is 2 bytes? |
| Since only 1 byte is used, why not declare data as __u8? */ |
| urb->actual_length = 1; |
| urb->status = 0; |
| |
| if (hc->rh.send && urb->complete) { |
| dbg_rh("wPortChange_1: 0x%04X", hc->rh.wPortChange_1); |
| dbg_rh("wPortChange_2: 0x%04X", hc->rh.wPortChange_2); |
| |
| urb->complete(urb, NULL); |
| } |
| |
| DBFEXIT; |
| } |
| |
| static void etrax_rh_init_int_timer(struct urb *urb) |
| { |
| etrax_hc_t *hc; |
| |
| DBFENTER; |
| |
| hc = urb->dev->bus->hcpriv; |
| hc->rh.interval = urb->interval; |
| init_timer(&hc->rh.rh_int_timer); |
| hc->rh.rh_int_timer.function = etrax_rh_int_timer_do; |
| hc->rh.rh_int_timer.data = (unsigned long)urb; |
| /* FIXME: Is the jiffies resolution enough? All intervals < 10 ms will be mapped |
| to 0, and the rest to the nearest lower 10 ms. */ |
| hc->rh.rh_int_timer.expires = jiffies + ((HZ * hc->rh.interval) / 1000); |
| add_timer(&hc->rh.rh_int_timer); |
| |
| DBFEXIT; |
| } |
| |
| static void etrax_rh_int_timer_do(unsigned long ptr) |
| { |
| struct urb *urb; |
| etrax_hc_t *hc; |
| |
| DBFENTER; |
| |
| urb = (struct urb*)ptr; |
| hc = urb->dev->bus->hcpriv; |
| |
| if (hc->rh.send) { |
| etrax_rh_send_irq(urb); |
| } |
| |
| DBFEXIT; |
| } |
| |
| static int etrax_usb_setup_epid(struct urb *urb) |
| { |
| int epid; |
| char devnum, endpoint, out_traffic, slow; |
| int maxlen; |
| unsigned long flags; |
| |
| DBFENTER; |
| |
| epid = etrax_usb_lookup_epid(urb); |
| if ((epid != -1)){ |
| /* An epid that fits this urb has been found. */ |
| DBFEXIT; |
| return epid; |
| } |
| |
| /* We must find and initiate a new epid for this urb. */ |
| epid = etrax_usb_allocate_epid(); |
| |
| if (epid == -1) { |
| /* Failed to allocate a new epid. */ |
| DBFEXIT; |
| return epid; |
| } |
| |
| /* We now have a new epid to use. Initiate it. */ |
| set_bit(epid, (void *)&epid_usage_bitmask); |
| |
| devnum = usb_pipedevice(urb->pipe); |
| endpoint = usb_pipeendpoint(urb->pipe); |
| slow = usb_pipeslow(urb->pipe); |
| maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| /* We want both IN and OUT control traffic to be put on the same EP/SB list. */ |
| out_traffic = 1; |
| } else { |
| out_traffic = usb_pipeout(urb->pipe); |
| } |
| |
| save_flags(flags); |
| cli(); |
| |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| |
| if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| *R_USB_EPT_DATA_ISO = IO_STATE(R_USB_EPT_DATA_ISO, valid, yes) | |
| /* FIXME: Change any to the actual port? */ |
| IO_STATE(R_USB_EPT_DATA_ISO, port, any) | |
| IO_FIELD(R_USB_EPT_DATA_ISO, max_len, maxlen) | |
| IO_FIELD(R_USB_EPT_DATA_ISO, ep, endpoint) | |
| IO_FIELD(R_USB_EPT_DATA_ISO, dev, devnum); |
| } else { |
| *R_USB_EPT_DATA = IO_STATE(R_USB_EPT_DATA, valid, yes) | |
| IO_FIELD(R_USB_EPT_DATA, low_speed, slow) | |
| /* FIXME: Change any to the actual port? */ |
| IO_STATE(R_USB_EPT_DATA, port, any) | |
| IO_FIELD(R_USB_EPT_DATA, max_len, maxlen) | |
| IO_FIELD(R_USB_EPT_DATA, ep, endpoint) | |
| IO_FIELD(R_USB_EPT_DATA, dev, devnum); |
| } |
| |
| restore_flags(flags); |
| |
| if (out_traffic) { |
| set_bit(epid, (void *)&epid_out_traffic); |
| } else { |
| clear_bit(epid, (void *)&epid_out_traffic); |
| } |
| |
| dbg_epid("Setting up epid %d with devnum %d, endpoint %d and max_len %d (%s)", |
| epid, devnum, endpoint, maxlen, out_traffic ? "OUT" : "IN"); |
| |
| DBFEXIT; |
| return epid; |
| } |
| |
| static void etrax_usb_free_epid(int epid) |
| { |
| unsigned long flags; |
| |
| DBFENTER; |
| |
| if (!test_bit(epid, (void *)&epid_usage_bitmask)) { |
| warn("Trying to free unused epid %d", epid); |
| DBFEXIT; |
| return; |
| } |
| |
| save_flags(flags); |
| cli(); |
| |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| while (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)); |
| /* This will, among other things, set the valid field to 0. */ |
| *R_USB_EPT_DATA = 0; |
| restore_flags(flags); |
| |
| clear_bit(epid, (void *)&epid_usage_bitmask); |
| |
| |
| dbg_epid("Freed epid %d", epid); |
| |
| DBFEXIT; |
| } |
| |
| static int etrax_usb_lookup_epid(struct urb *urb) |
| { |
| int i; |
| __u32 data; |
| char devnum, endpoint, slow, out_traffic; |
| int maxlen; |
| unsigned long flags; |
| |
| DBFENTER; |
| |
| devnum = usb_pipedevice(urb->pipe); |
| endpoint = usb_pipeendpoint(urb->pipe); |
| slow = usb_pipeslow(urb->pipe); |
| maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| /* We want both IN and OUT control traffic to be put on the same EP/SB list. */ |
| out_traffic = 1; |
| } else { |
| out_traffic = usb_pipeout(urb->pipe); |
| } |
| |
| /* Step through att epids. */ |
| for (i = 0; i < NBR_OF_EPIDS; i++) { |
| if (test_bit(i, (void *)&epid_usage_bitmask) && |
| test_bit(i, (void *)&epid_out_traffic) == out_traffic) { |
| |
| save_flags(flags); |
| cli(); |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, i); |
| nop(); |
| |
| if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| data = *R_USB_EPT_DATA_ISO; |
| restore_flags(flags); |
| |
| if ((IO_MASK(R_USB_EPT_DATA_ISO, valid) & data) && |
| (IO_EXTRACT(R_USB_EPT_DATA_ISO, dev, data) == devnum) && |
| (IO_EXTRACT(R_USB_EPT_DATA_ISO, ep, data) == endpoint) && |
| (IO_EXTRACT(R_USB_EPT_DATA_ISO, max_len, data) == maxlen)) { |
| dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)", |
| i, devnum, endpoint, out_traffic ? "OUT" : "IN"); |
| DBFEXIT; |
| return i; |
| } |
| } else { |
| data = *R_USB_EPT_DATA; |
| restore_flags(flags); |
| |
| if ((IO_MASK(R_USB_EPT_DATA, valid) & data) && |
| (IO_EXTRACT(R_USB_EPT_DATA, dev, data) == devnum) && |
| (IO_EXTRACT(R_USB_EPT_DATA, ep, data) == endpoint) && |
| (IO_EXTRACT(R_USB_EPT_DATA, low_speed, data) == slow) && |
| (IO_EXTRACT(R_USB_EPT_DATA, max_len, data) == maxlen)) { |
| dbg_epid("Found epid %d for devnum %d, endpoint %d (%s)", |
| i, devnum, endpoint, out_traffic ? "OUT" : "IN"); |
| DBFEXIT; |
| return i; |
| } |
| } |
| } |
| } |
| |
| DBFEXIT; |
| return -1; |
| } |
| |
| static int etrax_usb_allocate_epid(void) |
| { |
| int i; |
| |
| DBFENTER; |
| |
| for (i = 0; i < NBR_OF_EPIDS; i++) { |
| if (!test_bit(i, (void *)&epid_usage_bitmask)) { |
| dbg_epid("Found free epid %d", i); |
| DBFEXIT; |
| return i; |
| } |
| } |
| |
| dbg_epid("Found no free epids"); |
| DBFEXIT; |
| return -1; |
| } |
| |
| static int etrax_usb_submit_urb(struct urb *urb, unsigned mem_flags) |
| { |
| etrax_hc_t *hc; |
| int ret = -EINVAL; |
| |
| DBFENTER; |
| |
| if (!urb->dev || !urb->dev->bus) { |
| return -ENODEV; |
| } |
| if (usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)) <= 0) { |
| info("Submit urb to pipe with maxpacketlen 0, pipe 0x%X\n", urb->pipe); |
| return -EMSGSIZE; |
| } |
| |
| if (urb->timeout) { |
| /* FIXME. */ |
| warn("urb->timeout specified, ignoring."); |
| } |
| |
| hc = (etrax_hc_t*)urb->dev->bus->hcpriv; |
| |
| if (usb_pipedevice(urb->pipe) == hc->rh.devnum) { |
| /* This request is for the Virtual Root Hub. */ |
| ret = etrax_rh_submit_urb(urb); |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_BULK) { |
| |
| ret = etrax_usb_submit_bulk_urb(urb); |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| |
| ret = etrax_usb_submit_ctrl_urb(urb); |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { |
| int bustime; |
| |
| if (urb->bandwidth == 0) { |
| bustime = usb_check_bandwidth(urb->dev, urb); |
| if (bustime < 0) { |
| ret = bustime; |
| } else { |
| ret = etrax_usb_submit_intr_urb(urb); |
| if (ret == 0) |
| usb_claim_bandwidth(urb->dev, urb, bustime, 0); |
| } |
| } else { |
| /* Bandwidth already set. */ |
| ret = etrax_usb_submit_intr_urb(urb); |
| } |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| int bustime; |
| |
| if (urb->bandwidth == 0) { |
| bustime = usb_check_bandwidth(urb->dev, urb); |
| if (bustime < 0) { |
| ret = bustime; |
| } else { |
| ret = etrax_usb_submit_isoc_urb(urb); |
| if (ret == 0) |
| usb_claim_bandwidth(urb->dev, urb, bustime, 0); |
| } |
| } else { |
| /* Bandwidth already set. */ |
| ret = etrax_usb_submit_isoc_urb(urb); |
| } |
| } |
| |
| DBFEXIT; |
| |
| if (ret != 0) |
| printk("Submit URB error %d\n", ret); |
| |
| return ret; |
| } |
| |
| static int etrax_usb_unlink_urb(struct urb *urb, int status) |
| { |
| etrax_hc_t *hc; |
| etrax_urb_priv_t *urb_priv; |
| int epid; |
| unsigned int flags; |
| |
| DBFENTER; |
| |
| if (!urb) { |
| return -EINVAL; |
| } |
| |
| /* Disable interrupts here since a descriptor interrupt for the isoc epid |
| will modify the sb list. This could possibly be done more granular, but |
| unlink_urb should not be used frequently anyway. |
| */ |
| |
| save_flags(flags); |
| cli(); |
| |
| if (!urb->dev || !urb->dev->bus) { |
| restore_flags(flags); |
| return -ENODEV; |
| } |
| if (!urb->hcpriv) { |
| /* This happens if a device driver calls unlink on an urb that |
| was never submitted (lazy driver) or if the urb was completed |
| while unlink was being called. */ |
| restore_flags(flags); |
| return 0; |
| } |
| if (urb->transfer_flags & URB_ASYNC_UNLINK) { |
| /* FIXME. */ |
| /* If URB_ASYNC_UNLINK is set: |
| unlink |
| move to a separate urb list |
| call complete at next sof with ECONNRESET |
| |
| If not: |
| wait 1 ms |
| unlink |
| call complete with ENOENT |
| */ |
| warn("URB_ASYNC_UNLINK set, ignoring."); |
| } |
| |
| /* One might think that urb->status = -EINPROGRESS would be a requirement for unlinking, |
| but that doesn't work for interrupt and isochronous traffic since they are completed |
| repeatedly, and urb->status is set then. That may in itself be a bug though. */ |
| |
| hc = urb->dev->bus->hcpriv; |
| urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| epid = urb_priv->epid; |
| |
| /* Set the urb status (synchronous unlink). */ |
| urb->status = -ENOENT; |
| urb_priv->urb_state = UNLINK; |
| |
| if (usb_pipedevice(urb->pipe) == hc->rh.devnum) { |
| int ret; |
| ret = etrax_rh_unlink_urb(urb); |
| DBFEXIT; |
| restore_flags(flags); |
| return ret; |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_BULK) { |
| |
| dbg_bulk("Unlink of bulk urb (0x%lx)", (unsigned long)urb); |
| |
| if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| /* The EP was enabled, disable it and wait. */ |
| TxBulkEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| |
| /* Ah, the luxury of busy-wait. */ |
| while (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[epid])); |
| } |
| /* Kicking dummy list out of the party. */ |
| TxBulkEPList[epid].next = virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| |
| dbg_ctrl("Unlink of ctrl urb (0x%lx)", (unsigned long)urb); |
| |
| if (TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| /* The EP was enabled, disable it and wait. */ |
| TxCtrlEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| |
| /* Ah, the luxury of busy-wait. */ |
| while (*R_DMA_CH8_SUB1_EP == virt_to_phys(&TxCtrlEPList[epid])); |
| } |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { |
| |
| dbg_intr("Unlink of intr urb (0x%lx)", (unsigned long)urb); |
| |
| /* Separate function because it's a tad more complicated. */ |
| etrax_usb_unlink_intr_urb(urb); |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| |
| dbg_isoc("Unlink of isoc urb (0x%lx)", (unsigned long)urb); |
| |
| if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| /* The EP was enabled, disable it and wait. */ |
| TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| |
| /* Ah, the luxury of busy-wait. */ |
| while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])); |
| } |
| } |
| |
| /* Note that we need to remove the urb from the urb list *before* removing its SB |
| descriptors. (This means that the isoc eof handler might get a null urb when we |
| are unlinking the last urb.) */ |
| |
| if (usb_pipetype(urb->pipe) == PIPE_BULK) { |
| |
| urb_list_del(urb, epid); |
| TxBulkEPList[epid].sub = 0; |
| etrax_remove_from_sb_list(urb); |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| |
| urb_list_del(urb, epid); |
| TxCtrlEPList[epid].sub = 0; |
| etrax_remove_from_sb_list(urb); |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { |
| |
| urb_list_del(urb, epid); |
| /* Sanity check (should never happen). */ |
| assert(urb_list_empty(epid)); |
| |
| /* Release allocated bandwidth. */ |
| usb_release_bandwidth(urb->dev, urb, 0); |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| |
| if (usb_pipeout(urb->pipe)) { |
| |
| USB_SB_Desc_t *iter_sb, *prev_sb, *next_sb; |
| |
| if (__urb_list_entry(urb, epid)) { |
| |
| urb_list_del(urb, epid); |
| iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; |
| prev_sb = 0; |
| while (iter_sb && (iter_sb != urb_priv->first_sb)) { |
| prev_sb = iter_sb; |
| iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| } |
| |
| if (iter_sb == 0) { |
| /* Unlink of the URB currently being transmitted. */ |
| prev_sb = 0; |
| iter_sb = TxIsocEPList[epid].sub ? phys_to_virt(TxIsocEPList[epid].sub) : 0; |
| } |
| |
| while (iter_sb && (iter_sb != urb_priv->last_sb)) { |
| iter_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| } |
| if (iter_sb) { |
| next_sb = iter_sb->next ? phys_to_virt(iter_sb->next) : 0; |
| } else { |
| /* This should only happen if the DMA has completed |
| processing the SB list for this EP while interrupts |
| are disabled. */ |
| dbg_isoc("Isoc urb not found, already sent?"); |
| next_sb = 0; |
| } |
| if (prev_sb) { |
| prev_sb->next = next_sb ? virt_to_phys(next_sb) : 0; |
| } else { |
| TxIsocEPList[epid].sub = next_sb ? virt_to_phys(next_sb) : 0; |
| } |
| |
| etrax_remove_from_sb_list(urb); |
| if (urb_list_empty(epid)) { |
| TxIsocEPList[epid].sub = 0; |
| dbg_isoc("Last isoc out urb epid %d", epid); |
| } else if (next_sb || prev_sb) { |
| dbg_isoc("Re-enable isoc out epid %d", epid); |
| |
| TxIsocEPList[epid].hw_len = 0; |
| TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| } else { |
| TxIsocEPList[epid].sub = 0; |
| dbg_isoc("URB list non-empty and no SB list, EP disabled"); |
| } |
| } else { |
| dbg_isoc("Urb 0x%p not found, completed already?", urb); |
| } |
| } else { |
| |
| urb_list_del(urb, epid); |
| |
| /* For in traffic there is only one SB descriptor for each EP even |
| though there may be several urbs (all urbs point at the same SB). */ |
| if (urb_list_empty(epid)) { |
| /* No more urbs, remove the SB. */ |
| TxIsocEPList[epid].sub = 0; |
| etrax_remove_from_sb_list(urb); |
| } else { |
| TxIsocEPList[epid].hw_len = 0; |
| TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| } |
| } |
| /* Release allocated bandwidth. */ |
| usb_release_bandwidth(urb->dev, urb, 1); |
| } |
| /* Free the epid if urb list is empty. */ |
| if (urb_list_empty(epid)) { |
| etrax_usb_free_epid(epid); |
| } |
| restore_flags(flags); |
| |
| /* Must be done before calling completion handler. */ |
| kfree(urb_priv); |
| urb->hcpriv = 0; |
| |
| if (urb->complete) { |
| urb->complete(urb, NULL); |
| } |
| |
| DBFEXIT; |
| return 0; |
| } |
| |
| static int etrax_usb_get_frame_number(struct usb_device *usb_dev) |
| { |
| DBFENTER; |
| DBFEXIT; |
| return (*R_USB_FM_NUMBER & 0x7ff); |
| } |
| |
| static irqreturn_t etrax_usb_tx_interrupt(int irq, void *vhc) |
| { |
| DBFENTER; |
| |
| /* This interrupt handler could be used when unlinking EP descriptors. */ |
| |
| if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub0_descr)) { |
| USB_EP_Desc_t *ep; |
| |
| //dbg_bulk("dma8_sub0_descr (BULK) intr."); |
| |
| /* It should be safe clearing the interrupt here, since we don't expect to get a new |
| one until we restart the bulk channel. */ |
| *R_DMA_CH8_SUB0_CLR_INTR = IO_STATE(R_DMA_CH8_SUB0_CLR_INTR, clr_descr, do); |
| |
| /* Wait while the DMA is running (though we don't expect it to be). */ |
| while (*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd)); |
| |
| /* Advance the DMA to the next EP descriptor. */ |
| ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP); |
| |
| //dbg_bulk("descr intr: DMA is at 0x%lx", (unsigned long)ep); |
| |
| /* ep->next is already a physical address; no need for a virt_to_phys. */ |
| *R_DMA_CH8_SUB0_EP = ep->next; |
| |
| /* Start the DMA bulk channel again. */ |
| *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); |
| } |
| if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub1_descr)) { |
| struct urb *urb; |
| int epid; |
| etrax_urb_priv_t *urb_priv; |
| unsigned long int flags; |
| |
| dbg_ctrl("dma8_sub1_descr (CTRL) intr."); |
| *R_DMA_CH8_SUB1_CLR_INTR = IO_STATE(R_DMA_CH8_SUB1_CLR_INTR, clr_descr, do); |
| |
| /* The complete callback gets called so we cli. */ |
| save_flags(flags); |
| cli(); |
| |
| for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| if ((TxCtrlEPList[epid].sub == 0) || |
| (epid == DUMMY_EPID) || |
| (epid == INVALID_EPID)) { |
| /* Nothing here to see. */ |
| continue; |
| } |
| |
| /* Get the first urb (if any). */ |
| urb = urb_list_first(epid); |
| |
| if (urb) { |
| |
| /* Sanity check. */ |
| assert(usb_pipetype(urb->pipe) == PIPE_CONTROL); |
| |
| urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| assert(urb_priv); |
| |
| if (urb_priv->urb_state == WAITING_FOR_DESCR_INTR) { |
| assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); |
| |
| etrax_usb_complete_urb(urb, 0); |
| } |
| } |
| } |
| restore_flags(flags); |
| } |
| if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub2_descr)) { |
| dbg_intr("dma8_sub2_descr (INTR) intr."); |
| *R_DMA_CH8_SUB2_CLR_INTR = IO_STATE(R_DMA_CH8_SUB2_CLR_INTR, clr_descr, do); |
| } |
| if (*R_IRQ_READ2 & IO_MASK(R_IRQ_READ2, dma8_sub3_descr)) { |
| struct urb *urb; |
| int epid; |
| int epid_done; |
| etrax_urb_priv_t *urb_priv; |
| USB_SB_Desc_t *sb_desc; |
| |
| usb_isoc_complete_data_t *comp_data = NULL; |
| |
| /* One or more isoc out transfers are done. */ |
| dbg_isoc("dma8_sub3_descr (ISOC) intr."); |
| |
| /* For each isoc out EP search for the first sb_desc with the intr flag |
| set. This descriptor must be the last packet from an URB. Then |
| traverse the URB list for the EP until the URB with urb_priv->last_sb |
| matching the intr-marked sb_desc is found. All URBs before this have |
| been sent. |
| */ |
| |
| for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| /* Skip past epids with no SB lists, epids used for in traffic, |
| and special (dummy, invalid) epids. */ |
| if ((TxIsocEPList[epid].sub == 0) || |
| (test_bit(epid, (void *)&epid_out_traffic) == 0) || |
| (epid == DUMMY_EPID) || |
| (epid == INVALID_EPID)) { |
| /* Nothing here to see. */ |
| continue; |
| } |
| sb_desc = phys_to_virt(TxIsocEPList[epid].sub); |
| |
| /* Find the last descriptor of the currently active URB for this ep. |
| This is the first descriptor in the sub list marked for a descriptor |
| interrupt. */ |
| while (sb_desc && !IO_EXTRACT(USB_SB_command, intr, sb_desc->command)) { |
| sb_desc = sb_desc->next ? phys_to_virt(sb_desc->next) : 0; |
| } |
| assert(sb_desc); |
| |
| dbg_isoc("Check epid %d, sub 0x%p, SB 0x%p", |
| epid, |
| phys_to_virt(TxIsocEPList[epid].sub), |
| sb_desc); |
| |
| epid_done = 0; |
| |
| /* Get the first urb (if any). */ |
| urb = urb_list_first(epid); |
| assert(urb); |
| |
| while (urb && !epid_done) { |
| |
| /* Sanity check. */ |
| assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); |
| |
| if (!usb_pipeout(urb->pipe)) { |
| /* descr interrupts are generated only for out pipes. */ |
| epid_done = 1; |
| continue; |
| } |
| |
| urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| assert(urb_priv); |
| |
| if (sb_desc != urb_priv->last_sb) { |
| |
| /* This urb has been sent. */ |
| dbg_isoc("out URB 0x%p sent", urb); |
| |
| urb_priv->urb_state = TRANSFER_DONE; |
| |
| } else if ((sb_desc == urb_priv->last_sb) && |
| !(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { |
| |
| assert((sb_desc->command & IO_MASK(USB_SB_command, eol)) == IO_STATE(USB_SB_command, eol, yes)); |
| assert(sb_desc->next == 0); |
| |
| dbg_isoc("out URB 0x%p last in list, epid disabled", urb); |
| TxIsocEPList[epid].sub = 0; |
| TxIsocEPList[epid].hw_len = 0; |
| urb_priv->urb_state = TRANSFER_DONE; |
| |
| epid_done = 1; |
| |
| } else { |
| epid_done = 1; |
| } |
| if (!epid_done) { |
| urb = urb_list_next(urb, epid); |
| } |
| } |
| |
| } |
| |
| *R_DMA_CH8_SUB3_CLR_INTR = IO_STATE(R_DMA_CH8_SUB3_CLR_INTR, clr_descr, do); |
| |
| comp_data = (usb_isoc_complete_data_t*)kmem_cache_alloc(isoc_compl_cache, GFP_ATOMIC); |
| assert(comp_data != NULL); |
| |
| INIT_WORK(&comp_data->usb_bh, etrax_usb_isoc_descr_interrupt_bottom_half, comp_data); |
| schedule_work(&comp_data->usb_bh); |
| } |
| |
| DBFEXIT; |
| return IRQ_HANDLED; |
| } |
| |
| static void etrax_usb_isoc_descr_interrupt_bottom_half(void *data) |
| { |
| usb_isoc_complete_data_t *comp_data = (usb_isoc_complete_data_t*)data; |
| |
| struct urb *urb; |
| int epid; |
| int epid_done; |
| etrax_urb_priv_t *urb_priv; |
| |
| DBFENTER; |
| |
| dbg_isoc("dma8_sub3_descr (ISOC) bottom half."); |
| |
| for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| unsigned long flags; |
| |
| save_flags(flags); |
| cli(); |
| |
| epid_done = 0; |
| |
| /* The descriptor interrupt handler has marked all transmitted isoch. out |
| URBs with TRANSFER_DONE. Now we traverse all epids and for all that |
| have isoch. out traffic traverse its URB list and complete the |
| transmitted URB. |
| */ |
| |
| while (!epid_done) { |
| |
| /* Get the first urb (if any). */ |
| urb = urb_list_first(epid); |
| if (urb == 0) { |
| epid_done = 1; |
| continue; |
| } |
| |
| if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) { |
| epid_done = 1; |
| continue; |
| } |
| |
| if (!usb_pipeout(urb->pipe)) { |
| /* descr interrupts are generated only for out pipes. */ |
| epid_done = 1; |
| continue; |
| } |
| |
| dbg_isoc("Check epid %d, SB 0x%p", epid, (char*)TxIsocEPList[epid].sub); |
| |
| urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| assert(urb_priv); |
| |
| if (urb_priv->urb_state == TRANSFER_DONE) { |
| int i; |
| struct usb_iso_packet_descriptor *packet; |
| |
| /* This urb has been sent. */ |
| dbg_isoc("Completing isoc out URB 0x%p", urb); |
| |
| for (i = 0; i < urb->number_of_packets; i++) { |
| packet = &urb->iso_frame_desc[i]; |
| packet->status = 0; |
| packet->actual_length = packet->length; |
| } |
| |
| etrax_usb_complete_isoc_urb(urb, 0); |
| |
| if (urb_list_empty(epid)) { |
| etrax_usb_free_epid(epid); |
| epid_done = 1; |
| } |
| } else { |
| epid_done = 1; |
| } |
| } |
| restore_flags(flags); |
| |
| } |
| kmem_cache_free(isoc_compl_cache, comp_data); |
| |
| DBFEXIT; |
| } |
| |
| |
| |
| static irqreturn_t etrax_usb_rx_interrupt(int irq, void *vhc) |
| { |
| struct urb *urb; |
| etrax_urb_priv_t *urb_priv; |
| int epid = 0; |
| unsigned long flags; |
| |
| /* Isoc diagnostics. */ |
| static int curr_fm = 0; |
| static int prev_fm = 0; |
| |
| DBFENTER; |
| |
| /* Clear this interrupt. */ |
| *R_DMA_CH9_CLR_INTR = IO_STATE(R_DMA_CH9_CLR_INTR, clr_eop, do); |
| |
| /* Note that this while loop assumes that all packets span only |
| one rx descriptor. */ |
| |
| /* The reason we cli here is that we call the driver's callback functions. */ |
| save_flags(flags); |
| cli(); |
| |
| while (myNextRxDesc->status & IO_MASK(USB_IN_status, eop)) { |
| |
| epid = IO_EXTRACT(USB_IN_status, epid, myNextRxDesc->status); |
| urb = urb_list_first(epid); |
| |
| //printk("eop for epid %d, first urb 0x%lx\n", epid, (unsigned long)urb); |
| |
| if (!urb) { |
| err("No urb for epid %d in rx interrupt", epid); |
| __dump_ept_data(epid); |
| goto skip_out; |
| } |
| |
| /* Note that we cannot indescriminately assert(usb_pipein(urb->pipe)) since |
| ctrl pipes are not. */ |
| |
| if (myNextRxDesc->status & IO_MASK(USB_IN_status, error)) { |
| __u32 r_usb_ept_data; |
| int no_error = 0; |
| |
| assert(test_bit(epid, (void *)&epid_usage_bitmask)); |
| |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| r_usb_ept_data = *R_USB_EPT_DATA_ISO; |
| |
| if ((r_usb_ept_data & IO_MASK(R_USB_EPT_DATA_ISO, valid)) && |
| (IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data) == 0) && |
| (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata))) { |
| /* Not an error, just a failure to receive an expected iso |
| in packet in this frame. This is not documented |
| in the designers reference. |
| */ |
| no_error++; |
| } else { |
| warn("R_USB_EPT_DATA_ISO for epid %d = 0x%x", epid, r_usb_ept_data); |
| } |
| } else { |
| r_usb_ept_data = *R_USB_EPT_DATA; |
| warn("R_USB_EPT_DATA for epid %d = 0x%x", epid, r_usb_ept_data); |
| } |
| |
| if (!no_error){ |
| warn("error in rx desc->status, epid %d, first urb = 0x%lx", |
| epid, (unsigned long)urb); |
| __dump_in_desc(myNextRxDesc); |
| |
| warn("R_USB_STATUS = 0x%x", *R_USB_STATUS); |
| |
| /* Check that ept was disabled when error occurred. */ |
| switch (usb_pipetype(urb->pipe)) { |
| case PIPE_BULK: |
| assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| break; |
| case PIPE_CONTROL: |
| assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| break; |
| case PIPE_INTERRUPT: |
| assert(!(TxIntrEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| break; |
| case PIPE_ISOCHRONOUS: |
| assert(!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| break; |
| default: |
| warn("etrax_usb_rx_interrupt: bad pipetype %d in urb 0x%p", |
| usb_pipetype(urb->pipe), |
| urb); |
| } |
| etrax_usb_complete_urb(urb, -EPROTO); |
| goto skip_out; |
| } |
| } |
| |
| urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| assert(urb_priv); |
| |
| if ((usb_pipetype(urb->pipe) == PIPE_BULK) || |
| (usb_pipetype(urb->pipe) == PIPE_CONTROL) || |
| (usb_pipetype(urb->pipe) == PIPE_INTERRUPT)) { |
| |
| if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { |
| /* We get nodata for empty data transactions, and the rx descriptor's |
| hw_len field is not valid in that case. No data to copy in other |
| words. */ |
| } else { |
| /* Make sure the data fits in the buffer. */ |
| assert(urb_priv->rx_offset + myNextRxDesc->hw_len |
| <= urb->transfer_buffer_length); |
| |
| memcpy(urb->transfer_buffer + urb_priv->rx_offset, |
| phys_to_virt(myNextRxDesc->buf), myNextRxDesc->hw_len); |
| urb_priv->rx_offset += myNextRxDesc->hw_len; |
| } |
| |
| if (myNextRxDesc->status & IO_MASK(USB_IN_status, eot)) { |
| if ((usb_pipetype(urb->pipe) == PIPE_CONTROL) && |
| ((TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable)) == |
| IO_STATE(USB_EP_command, enable, yes))) { |
| /* The EP is still enabled, so the OUT packet used to ack |
| the in data is probably not processed yet. If the EP |
| sub pointer has not moved beyond urb_priv->last_sb mark |
| it for a descriptor interrupt and complete the urb in |
| the descriptor interrupt handler. |
| */ |
| USB_SB_Desc_t *sub = TxCtrlEPList[urb_priv->epid].sub ? phys_to_virt(TxCtrlEPList[urb_priv->epid].sub) : 0; |
| |
| while ((sub != NULL) && (sub != urb_priv->last_sb)) { |
| sub = sub->next ? phys_to_virt(sub->next) : 0; |
| } |
| if (sub != NULL) { |
| /* The urb has not been fully processed. */ |
| urb_priv->urb_state = WAITING_FOR_DESCR_INTR; |
| } else { |
| warn("(CTRL) epid enabled and urb (0x%p) processed, ep->sub=0x%p", urb, (char*)TxCtrlEPList[urb_priv->epid].sub); |
| etrax_usb_complete_urb(urb, 0); |
| } |
| } else { |
| etrax_usb_complete_urb(urb, 0); |
| } |
| } |
| |
| } else if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| |
| struct usb_iso_packet_descriptor *packet; |
| |
| if (urb_priv->urb_state == UNLINK) { |
| info("Ignoring rx data for urb being unlinked."); |
| goto skip_out; |
| } else if (urb_priv->urb_state == NOT_STARTED) { |
| info("What? Got rx data for urb that isn't started?"); |
| goto skip_out; |
| } |
| |
| packet = &urb->iso_frame_desc[urb_priv->isoc_packet_counter]; |
| packet->status = 0; |
| |
| if (myNextRxDesc->status & IO_MASK(USB_IN_status, nodata)) { |
| /* We get nodata for empty data transactions, and the rx descriptor's |
| hw_len field is not valid in that case. We copy 0 bytes however to |
| stay in synch. */ |
| packet->actual_length = 0; |
| } else { |
| packet->actual_length = myNextRxDesc->hw_len; |
| /* Make sure the data fits in the buffer. */ |
| assert(packet->actual_length <= packet->length); |
| memcpy(urb->transfer_buffer + packet->offset, |
| phys_to_virt(myNextRxDesc->buf), packet->actual_length); |
| } |
| |
| /* Increment the packet counter. */ |
| urb_priv->isoc_packet_counter++; |
| |
| /* Note that we don't care about the eot field in the rx descriptor's status. |
| It will always be set for isoc traffic. */ |
| if (urb->number_of_packets == urb_priv->isoc_packet_counter) { |
| |
| /* Out-of-synch diagnostics. */ |
| curr_fm = (*R_USB_FM_NUMBER & 0x7ff); |
| if (((prev_fm + urb_priv->isoc_packet_counter) % (0x7ff + 1)) != curr_fm) { |
| /* This test is wrong, if there is more than one isoc |
| in endpoint active it will always calculate wrong |
| since prev_fm is shared by all endpoints. |
| |
| FIXME Make this check per URB using urb->start_frame. |
| */ |
| dbg_isoc("Out of synch? Previous frame = %d, current frame = %d", |
| prev_fm, curr_fm); |
| |
| } |
| prev_fm = curr_fm; |
| |
| /* Complete the urb with status OK. */ |
| etrax_usb_complete_isoc_urb(urb, 0); |
| } |
| } |
| |
| skip_out: |
| |
| /* DMA IN cache bug. Flush the DMA IN buffer from the cache. (struct etrax_dma_descr |
| has the same layout as USB_IN_Desc for the relevant fields.) */ |
| prepare_rx_descriptor((struct etrax_dma_descr*)myNextRxDesc); |
| |
| myPrevRxDesc = myNextRxDesc; |
| myPrevRxDesc->command |= IO_MASK(USB_IN_command, eol); |
| myLastRxDesc->command &= ~IO_MASK(USB_IN_command, eol); |
| myLastRxDesc = myPrevRxDesc; |
| |
| myNextRxDesc->status = 0; |
| myNextRxDesc = phys_to_virt(myNextRxDesc->next); |
| } |
| |
| restore_flags(flags); |
| |
| DBFEXIT; |
| |
| return IRQ_HANDLED; |
| } |
| |
| |
| /* This function will unlink the SB descriptors associated with this urb. */ |
| static int etrax_remove_from_sb_list(struct urb *urb) |
| { |
| USB_SB_Desc_t *next_sb, *first_sb, *last_sb; |
| etrax_urb_priv_t *urb_priv; |
| int i = 0; |
| |
| DBFENTER; |
| |
| urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| assert(urb_priv); |
| |
| /* Just a sanity check. Since we don't fiddle with the DMA list the EP descriptor |
| doesn't really need to be disabled, it's just that we expect it to be. */ |
| if (usb_pipetype(urb->pipe) == PIPE_BULK) { |
| assert(!(TxBulkEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); |
| } else if (usb_pipetype(urb->pipe) == PIPE_CONTROL) { |
| assert(!(TxCtrlEPList[urb_priv->epid].command & IO_MASK(USB_EP_command, enable))); |
| } |
| |
| first_sb = urb_priv->first_sb; |
| last_sb = urb_priv->last_sb; |
| |
| assert(first_sb); |
| assert(last_sb); |
| |
| while (first_sb != last_sb) { |
| next_sb = (USB_SB_Desc_t *)phys_to_virt(first_sb->next); |
| kmem_cache_free(usb_desc_cache, first_sb); |
| first_sb = next_sb; |
| i++; |
| } |
| kmem_cache_free(usb_desc_cache, last_sb); |
| i++; |
| dbg_sb("%d SB descriptors freed", i); |
| /* Compare i with urb->number_of_packets for Isoc traffic. |
| Should be same when calling unlink_urb */ |
| |
| DBFEXIT; |
| |
| return i; |
| } |
| |
| static int etrax_usb_submit_bulk_urb(struct urb *urb) |
| { |
| int epid; |
| int empty; |
| unsigned long flags; |
| etrax_urb_priv_t *urb_priv; |
| |
| DBFENTER; |
| |
| /* Epid allocation, empty check and list add must be protected. |
| Read about this in etrax_usb_submit_ctrl_urb. */ |
| |
| spin_lock_irqsave(&urb_list_lock, flags); |
| epid = etrax_usb_setup_epid(urb); |
| if (epid == -1) { |
| DBFEXIT; |
| spin_unlock_irqrestore(&urb_list_lock, flags); |
| return -ENOMEM; |
| } |
| empty = urb_list_empty(epid); |
| urb_list_add(urb, epid); |
| spin_unlock_irqrestore(&urb_list_lock, flags); |
| |
| dbg_bulk("Adding bulk %s urb 0x%lx to %s list, epid %d", |
| usb_pipein(urb->pipe) ? "IN" : "OUT", (unsigned long)urb, empty ? "empty" : "", epid); |
| |
| /* Mark the urb as being in progress. */ |
| urb->status = -EINPROGRESS; |
| |
| /* Setup the hcpriv data. */ |
| urb_priv = kzalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); |
| assert(urb_priv != NULL); |
| /* This sets rx_offset to 0. */ |
| urb_priv->urb_state = NOT_STARTED; |
| urb->hcpriv = urb_priv; |
| |
| if (empty) { |
| etrax_usb_add_to_bulk_sb_list(urb, epid); |
| } |
| |
| DBFEXIT; |
| |
| return 0; |
| } |
| |
| static void etrax_usb_add_to_bulk_sb_list(struct urb *urb, int epid) |
| { |
| USB_SB_Desc_t *sb_desc; |
| etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| unsigned long flags; |
| char maxlen; |
| |
| DBFENTER; |
| |
| dbg_bulk("etrax_usb_add_to_bulk_sb_list, urb 0x%lx", (unsigned long)urb); |
| |
| maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| |
| sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| assert(sb_desc != NULL); |
| memset(sb_desc, 0, sizeof(USB_SB_Desc_t)); |
| |
| |
| if (usb_pipeout(urb->pipe)) { |
| |
| dbg_bulk("Grabbing bulk OUT, urb 0x%lx, epid %d", (unsigned long)urb, epid); |
| |
| /* This is probably a sanity check of the bulk transaction length |
| not being larger than 64 kB. */ |
| if (urb->transfer_buffer_length > 0xffff) { |
| panic("urb->transfer_buffer_length > 0xffff"); |
| } |
| |
| sb_desc->sw_len = urb->transfer_buffer_length; |
| |
| /* The rem field is don't care if it's not a full-length transfer, so setting |
| it shouldn't hurt. Also, rem isn't used for OUT traffic. */ |
| sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| IO_STATE(USB_SB_command, tt, out) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| |
| /* The full field is set to yes, even if we don't actually check that this is |
| a full-length transfer (i.e., that transfer_buffer_length % maxlen = 0). |
| Setting full prevents the USB controller from sending an empty packet in |
| that case. However, if URB_ZERO_PACKET was set we want that. */ |
| if (!(urb->transfer_flags & URB_ZERO_PACKET)) { |
| sb_desc->command |= IO_STATE(USB_SB_command, full, yes); |
| } |
| |
| sb_desc->buf = virt_to_phys(urb->transfer_buffer); |
| sb_desc->next = 0; |
| |
| } else if (usb_pipein(urb->pipe)) { |
| |
| dbg_bulk("Grabbing bulk IN, urb 0x%lx, epid %d", (unsigned long)urb, epid); |
| |
| sb_desc->sw_len = urb->transfer_buffer_length ? |
| (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; |
| |
| /* The rem field is don't care if it's not a full-length transfer, so setting |
| it shouldn't hurt. */ |
| sb_desc->command = |
| (IO_FIELD(USB_SB_command, rem, |
| urb->transfer_buffer_length % maxlen) | |
| IO_STATE(USB_SB_command, tt, in) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| |
| sb_desc->buf = 0; |
| sb_desc->next = 0; |
| } |
| |
| urb_priv->first_sb = sb_desc; |
| urb_priv->last_sb = sb_desc; |
| urb_priv->epid = epid; |
| |
| urb->hcpriv = urb_priv; |
| |
| /* Reset toggle bits and reset error count. */ |
| save_flags(flags); |
| cli(); |
| |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| |
| /* FIXME: Is this a special case since the hold field is checked, |
| or should we check hold in a lot of other cases as well? */ |
| if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) { |
| panic("Hold was set in %s", __FUNCTION__); |
| } |
| |
| /* Reset error counters (regardless of which direction this traffic is). */ |
| *R_USB_EPT_DATA &= |
| ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | |
| IO_MASK(R_USB_EPT_DATA, error_count_out)); |
| |
| /* Software must preset the toggle bits. */ |
| if (usb_pipeout(urb->pipe)) { |
| char toggle = |
| usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); |
| *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_out); |
| *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_out, toggle); |
| } else { |
| char toggle = |
| usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), usb_pipeout(urb->pipe)); |
| *R_USB_EPT_DATA &= ~IO_MASK(R_USB_EPT_DATA, t_in); |
| *R_USB_EPT_DATA |= IO_FIELD(R_USB_EPT_DATA, t_in, toggle); |
| } |
| |
| /* Assert that the EP descriptor is disabled. */ |
| assert(!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| |
| /* The reason we set the EP's sub pointer directly instead of |
| walking the SB list and linking it last in the list is that we only |
| have one active urb at a time (the rest are queued). */ |
| |
| /* Note that we cannot have interrupts running when we have set the SB descriptor |
| but the EP is not yet enabled. If a bulk eot happens for another EP, we will |
| find this EP disabled and with a SB != 0, which will make us think that it's done. */ |
| TxBulkEPList[epid].sub = virt_to_phys(sb_desc); |
| TxBulkEPList[epid].hw_len = 0; |
| /* Note that we don't have to fill in the ep_id field since this |
| was done when we allocated the EP descriptors in init_tx_bulk_ep. */ |
| |
| /* Check if the dummy list is already with us (if several urbs were queued). */ |
| if (TxBulkEPList[epid].next != virt_to_phys(&TxBulkDummyEPList[epid][0])) { |
| |
| dbg_bulk("Inviting dummy list to the party for urb 0x%lx, epid %d", |
| (unsigned long)urb, epid); |
| |
| /* The last EP in the dummy list already has its next pointer set to |
| TxBulkEPList[epid].next. */ |
| |
| /* We don't need to check if the DMA is at this EP or not before changing the |
| next pointer, since we will do it in one 32-bit write (EP descriptors are |
| 32-bit aligned). */ |
| TxBulkEPList[epid].next = virt_to_phys(&TxBulkDummyEPList[epid][0]); |
| } |
| /* Enable the EP descr. */ |
| dbg_bulk("Enabling bulk EP for urb 0x%lx, epid %d", (unsigned long)urb, epid); |
| TxBulkEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| |
| /* Everything is set up, safe to enable interrupts again. */ |
| restore_flags(flags); |
| |
| /* If the DMA bulk channel isn't running, we need to restart it if it |
| has stopped at the last EP descriptor (DMA stopped because there was |
| no more traffic) or if it has stopped at a dummy EP with the intr flag |
| set (DMA stopped because we were too slow in inserting new traffic). */ |
| if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { |
| |
| USB_EP_Desc_t *ep; |
| ep = (USB_EP_Desc_t *)phys_to_virt(*R_DMA_CH8_SUB0_EP); |
| dbg_bulk("DMA channel not running in add"); |
| dbg_bulk("DMA is at 0x%lx", (unsigned long)ep); |
| |
| if (*R_DMA_CH8_SUB0_EP == virt_to_phys(&TxBulkEPList[NBR_OF_EPIDS - 1]) || |
| (ep->command & 0x8) >> 3) { |
| *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); |
| /* Update/restart the bulk start timer since we just started the channel. */ |
| mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); |
| /* Update/restart the bulk eot timer since we just inserted traffic. */ |
| mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| } |
| } |
| |
| DBFEXIT; |
| } |
| |
| static void etrax_usb_complete_bulk_urb(struct urb *urb, int status) |
| { |
| etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| int epid = urb_priv->epid; |
| unsigned long flags; |
| |
| DBFENTER; |
| |
| if (status) |
| warn("Completing bulk urb with status %d.", status); |
| |
| dbg_bulk("Completing bulk urb 0x%lx for epid %d", (unsigned long)urb, epid); |
| |
| /* Update the urb list. */ |
| urb_list_del(urb, epid); |
| |
| /* For an IN pipe, we always set the actual length, regardless of whether there was |
| an error or not (which means the device driver can use the data if it wants to). */ |
| if (usb_pipein(urb->pipe)) { |
| urb->actual_length = urb_priv->rx_offset; |
| } else { |
| /* Set actual_length for OUT urbs also; the USB mass storage driver seems |
| to want that. We wouldn't know of any partial writes if there was an error. */ |
| if (status == 0) { |
| urb->actual_length = urb->transfer_buffer_length; |
| } else { |
| urb->actual_length = 0; |
| } |
| } |
| |
| /* FIXME: Is there something of the things below we shouldn't do if there was an error? |
| Like, maybe we shouldn't toggle the toggle bits, or maybe we shouldn't insert more traffic. */ |
| |
| save_flags(flags); |
| cli(); |
| |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| |
| /* We need to fiddle with the toggle bits because the hardware doesn't do it for us. */ |
| if (usb_pipeout(urb->pipe)) { |
| char toggle = |
| IO_EXTRACT(R_USB_EPT_DATA, t_out, *R_USB_EPT_DATA); |
| usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| usb_pipeout(urb->pipe), toggle); |
| } else { |
| char toggle = |
| IO_EXTRACT(R_USB_EPT_DATA, t_in, *R_USB_EPT_DATA); |
| usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), |
| usb_pipeout(urb->pipe), toggle); |
| } |
| restore_flags(flags); |
| |
| /* Remember to free the SBs. */ |
| etrax_remove_from_sb_list(urb); |
| kfree(urb_priv); |
| urb->hcpriv = 0; |
| |
| /* If there are any more urb's in the list we'd better start sending */ |
| if (!urb_list_empty(epid)) { |
| |
| struct urb *new_urb; |
| |
| /* Get the first urb. */ |
| new_urb = urb_list_first(epid); |
| assert(new_urb); |
| |
| dbg_bulk("More bulk for epid %d", epid); |
| |
| etrax_usb_add_to_bulk_sb_list(new_urb, epid); |
| } |
| |
| urb->status = status; |
| |
| /* We let any non-zero status from the layer above have precedence. */ |
| if (status == 0) { |
| /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) |
| is to be treated as an error. */ |
| if (urb->transfer_flags & URB_SHORT_NOT_OK) { |
| if (usb_pipein(urb->pipe) && |
| (urb->actual_length != |
| usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) { |
| urb->status = -EREMOTEIO; |
| } |
| } |
| } |
| |
| if (urb->complete) { |
| urb->complete(urb, NULL); |
| } |
| |
| if (urb_list_empty(epid)) { |
| /* This means that this EP is now free, deconfigure it. */ |
| etrax_usb_free_epid(epid); |
| |
| /* No more traffic; time to clean up. |
| Must set sub pointer to 0, since we look at the sub pointer when handling |
| the bulk eot interrupt. */ |
| |
| dbg_bulk("No bulk for epid %d", epid); |
| |
| TxBulkEPList[epid].sub = 0; |
| |
| /* Unlink the dummy list. */ |
| |
| dbg_bulk("Kicking dummy list out of party for urb 0x%lx, epid %d", |
| (unsigned long)urb, epid); |
| |
| /* No need to wait for the DMA before changing the next pointer. |
| The modulo NBR_OF_EPIDS isn't actually necessary, since we will never use |
| the last one (INVALID_EPID) for actual traffic. */ |
| TxBulkEPList[epid].next = |
| virt_to_phys(&TxBulkEPList[(epid + 1) % NBR_OF_EPIDS]); |
| } |
| |
| DBFEXIT; |
| } |
| |
| static int etrax_usb_submit_ctrl_urb(struct urb *urb) |
| { |
| int epid; |
| int empty; |
| unsigned long flags; |
| etrax_urb_priv_t *urb_priv; |
| |
| DBFENTER; |
| |
| /* FIXME: Return -ENXIO if there is already a queued urb for this endpoint? */ |
| |
| /* Epid allocation, empty check and list add must be protected. |
| |
| Epid allocation because if we find an existing epid for this endpoint an urb might be |
| completed (emptying the list) before we add the new urb to the list, causing the epid |
| to be de-allocated. We would then start the transfer with an invalid epid -> epid attn. |
| |
| Empty check and add because otherwise we might conclude that the list is not empty, |
| after which it becomes empty before we add the new urb to the list, causing us not to |
| insert the new traffic into the SB list. */ |
| |
| spin_lock_irqsave(&urb_list_lock, flags); |
| epid = etrax_usb_setup_epid(urb); |
| if (epid == -1) { |
| spin_unlock_irqrestore(&urb_list_lock, flags); |
| DBFEXIT; |
| return -ENOMEM; |
| } |
| empty = urb_list_empty(epid); |
| urb_list_add(urb, epid); |
| spin_unlock_irqrestore(&urb_list_lock, flags); |
| |
| dbg_ctrl("Adding ctrl urb 0x%lx to %s list, epid %d", |
| (unsigned long)urb, empty ? "empty" : "", epid); |
| |
| /* Mark the urb as being in progress. */ |
| urb->status = -EINPROGRESS; |
| |
| /* Setup the hcpriv data. */ |
| urb_priv = kzalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); |
| assert(urb_priv != NULL); |
| /* This sets rx_offset to 0. */ |
| urb_priv->urb_state = NOT_STARTED; |
| urb->hcpriv = urb_priv; |
| |
| if (empty) { |
| etrax_usb_add_to_ctrl_sb_list(urb, epid); |
| } |
| |
| DBFEXIT; |
| |
| return 0; |
| } |
| |
| static void etrax_usb_add_to_ctrl_sb_list(struct urb *urb, int epid) |
| { |
| USB_SB_Desc_t *sb_desc_setup; |
| USB_SB_Desc_t *sb_desc_data; |
| USB_SB_Desc_t *sb_desc_status; |
| |
| etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| |
| unsigned long flags; |
| char maxlen; |
| |
| DBFENTER; |
| |
| maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| |
| sb_desc_setup = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| assert(sb_desc_setup != NULL); |
| sb_desc_status = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| assert(sb_desc_status != NULL); |
| |
| /* Initialize the mandatory setup SB descriptor (used only in control transfers) */ |
| sb_desc_setup->sw_len = 8; |
| sb_desc_setup->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| IO_STATE(USB_SB_command, tt, setup) | |
| IO_STATE(USB_SB_command, full, yes) | |
| IO_STATE(USB_SB_command, eot, yes)); |
| |
| sb_desc_setup->buf = virt_to_phys(urb->setup_packet); |
| |
| if (usb_pipeout(urb->pipe)) { |
| dbg_ctrl("Transfer for epid %d is OUT", epid); |
| |
| /* If this Control OUT transfer has an optional data stage we add an OUT token |
| before the mandatory IN (status) token, hence the reordered SB list */ |
| |
| sb_desc_setup->next = virt_to_phys(sb_desc_status); |
| if (urb->transfer_buffer) { |
| |
| dbg_ctrl("This OUT transfer has an extra data stage"); |
| |
| sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| assert(sb_desc_data != NULL); |
| |
| sb_desc_setup->next = virt_to_phys(sb_desc_data); |
| |
| sb_desc_data->sw_len = urb->transfer_buffer_length; |
| sb_desc_data->command = (IO_STATE(USB_SB_command, tt, out) | |
| IO_STATE(USB_SB_command, full, yes) | |
| IO_STATE(USB_SB_command, eot, yes)); |
| sb_desc_data->buf = virt_to_phys(urb->transfer_buffer); |
| sb_desc_data->next = virt_to_phys(sb_desc_status); |
| } |
| |
| sb_desc_status->sw_len = 1; |
| sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| IO_STATE(USB_SB_command, tt, in) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, intr, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| |
| sb_desc_status->buf = 0; |
| sb_desc_status->next = 0; |
| |
| } else if (usb_pipein(urb->pipe)) { |
| |
| dbg_ctrl("Transfer for epid %d is IN", epid); |
| dbg_ctrl("transfer_buffer_length = %d", urb->transfer_buffer_length); |
| dbg_ctrl("rem is calculated to %d", urb->transfer_buffer_length % maxlen); |
| |
| sb_desc_data = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| assert(sb_desc_data != NULL); |
| |
| sb_desc_setup->next = virt_to_phys(sb_desc_data); |
| |
| sb_desc_data->sw_len = urb->transfer_buffer_length ? |
| (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; |
| dbg_ctrl("sw_len got %d", sb_desc_data->sw_len); |
| |
| sb_desc_data->command = |
| (IO_FIELD(USB_SB_command, rem, |
| urb->transfer_buffer_length % maxlen) | |
| IO_STATE(USB_SB_command, tt, in) | |
| IO_STATE(USB_SB_command, eot, yes)); |
| |
| sb_desc_data->buf = 0; |
| sb_desc_data->next = virt_to_phys(sb_desc_status); |
| |
| /* Read comment at zout_buffer declaration for an explanation to this. */ |
| sb_desc_status->sw_len = 1; |
| sb_desc_status->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| IO_STATE(USB_SB_command, tt, zout) | |
| IO_STATE(USB_SB_command, full, yes) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, intr, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| |
| sb_desc_status->buf = virt_to_phys(&zout_buffer[0]); |
| sb_desc_status->next = 0; |
| } |
| |
| urb_priv->first_sb = sb_desc_setup; |
| urb_priv->last_sb = sb_desc_status; |
| urb_priv->epid = epid; |
| |
| urb_priv->urb_state = STARTED; |
| |
| /* Reset toggle bits and reset error count, remember to di and ei */ |
| /* Warning: it is possible that this locking doesn't work with bottom-halves */ |
| |
| save_flags(flags); |
| cli(); |
| |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| if (*R_USB_EPT_DATA & IO_MASK(R_USB_EPT_DATA, hold)) { |
| panic("Hold was set in %s", __FUNCTION__); |
| } |
| |
| |
| /* FIXME: Compare with etrax_usb_add_to_bulk_sb_list where the toggle bits |
| are set to a specific value. Why the difference? Read "Transfer and Toggle Bits |
| in Designer's Reference, p. 8 - 11. */ |
| *R_USB_EPT_DATA &= |
| ~(IO_MASK(R_USB_EPT_DATA, error_count_in) | |
| IO_MASK(R_USB_EPT_DATA, error_count_out) | |
| IO_MASK(R_USB_EPT_DATA, t_in) | |
| IO_MASK(R_USB_EPT_DATA, t_out)); |
| |
| /* Since we use the rx interrupt to complete ctrl urbs, we can enable interrupts now |
| (i.e. we don't check the sub pointer on an eot interrupt like we do for bulk traffic). */ |
| restore_flags(flags); |
| |
| /* Assert that the EP descriptor is disabled. */ |
| assert(!(TxCtrlEPList[epid].command & IO_MASK(USB_EP_command, enable))); |
| |
| /* Set up and enable the EP descriptor. */ |
| TxCtrlEPList[epid].sub = virt_to_phys(sb_desc_setup); |
| TxCtrlEPList[epid].hw_len = 0; |
| TxCtrlEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| |
| /* We start the DMA sub channel without checking if it's running or not, because: |
| 1) If it's already running, issuing the start command is a nop. |
| 2) We avoid a test-and-set race condition. */ |
| *R_DMA_CH8_SUB1_CMD = IO_STATE(R_DMA_CH8_SUB1_CMD, cmd, start); |
| |
| DBFEXIT; |
| } |
| |
| static void etrax_usb_complete_ctrl_urb(struct urb *urb, int status) |
| { |
| etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| int epid = urb_priv->epid; |
| |
| DBFENTER; |
| |
| if (status) |
| warn("Completing ctrl urb with status %d.", status); |
| |
| dbg_ctrl("Completing ctrl epid %d, urb 0x%lx", epid, (unsigned long)urb); |
| |
| /* Remove this urb from the list. */ |
| urb_list_del(urb, epid); |
| |
| /* For an IN pipe, we always set the actual length, regardless of whether there was |
| an error or not (which means the device driver can use the data if it wants to). */ |
| if (usb_pipein(urb->pipe)) { |
| urb->actual_length = urb_priv->rx_offset; |
| } |
| |
| /* FIXME: Is there something of the things below we shouldn't do if there was an error? |
| Like, maybe we shouldn't insert more traffic. */ |
| |
| /* Remember to free the SBs. */ |
| etrax_remove_from_sb_list(urb); |
| kfree(urb_priv); |
| urb->hcpriv = 0; |
| |
| /* If there are any more urbs in the list we'd better start sending. */ |
| if (!urb_list_empty(epid)) { |
| struct urb *new_urb; |
| |
| /* Get the first urb. */ |
| new_urb = urb_list_first(epid); |
| assert(new_urb); |
| |
| dbg_ctrl("More ctrl for epid %d, first urb = 0x%lx", epid, (unsigned long)new_urb); |
| |
| etrax_usb_add_to_ctrl_sb_list(new_urb, epid); |
| } |
| |
| urb->status = status; |
| |
| /* We let any non-zero status from the layer above have precedence. */ |
| if (status == 0) { |
| /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) |
| is to be treated as an error. */ |
| if (urb->transfer_flags & URB_SHORT_NOT_OK) { |
| if (usb_pipein(urb->pipe) && |
| (urb->actual_length != |
| usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)))) { |
| urb->status = -EREMOTEIO; |
| } |
| } |
| } |
| |
| if (urb->complete) { |
| urb->complete(urb, NULL); |
| } |
| |
| if (urb_list_empty(epid)) { |
| /* No more traffic. Time to clean up. */ |
| etrax_usb_free_epid(epid); |
| /* Must set sub pointer to 0. */ |
| dbg_ctrl("No ctrl for epid %d", epid); |
| TxCtrlEPList[epid].sub = 0; |
| } |
| |
| DBFEXIT; |
| } |
| |
| static int etrax_usb_submit_intr_urb(struct urb *urb) |
| { |
| |
| int epid; |
| |
| DBFENTER; |
| |
| if (usb_pipeout(urb->pipe)) { |
| /* Unsupported transfer type. |
| We don't support interrupt out traffic. (If we do, we can't support |
| intervals for neither in or out traffic, but are forced to schedule all |
| interrupt traffic in one frame.) */ |
| return -EINVAL; |
| } |
| |
| epid = etrax_usb_setup_epid(urb); |
| if (epid == -1) { |
| DBFEXIT; |
| return -ENOMEM; |
| } |
| |
| if (!urb_list_empty(epid)) { |
| /* There is already a queued urb for this endpoint. */ |
| etrax_usb_free_epid(epid); |
| return -ENXIO; |
| } |
| |
| urb->status = -EINPROGRESS; |
| |
| dbg_intr("Add intr urb 0x%lx, to list, epid %d", (unsigned long)urb, epid); |
| |
| urb_list_add(urb, epid); |
| etrax_usb_add_to_intr_sb_list(urb, epid); |
| |
| return 0; |
| |
| DBFEXIT; |
| } |
| |
| static void etrax_usb_add_to_intr_sb_list(struct urb *urb, int epid) |
| { |
| |
| volatile USB_EP_Desc_t *tmp_ep; |
| volatile USB_EP_Desc_t *first_ep; |
| |
| char maxlen; |
| int interval; |
| int i; |
| |
| etrax_urb_priv_t *urb_priv; |
| |
| DBFENTER; |
| |
| maxlen = usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)); |
| interval = urb->interval; |
| |
| urb_priv = kzalloc(sizeof(etrax_urb_priv_t), KMALLOC_FLAG); |
| assert(urb_priv != NULL); |
| urb->hcpriv = urb_priv; |
| |
| first_ep = &TxIntrEPList[0]; |
| |
| /* Round of the interval to 2^n, it is obvious that this code favours |
| smaller numbers, but that is actually a good thing */ |
| /* FIXME: The "rounding error" for larger intervals will be quite |
| large. For in traffic this shouldn't be a problem since it will only |
| mean that we "poll" more often. */ |
| for (i = 0; interval; i++) { |
| interval = interval >> 1; |
| } |
| interval = 1 << (i - 1); |
| |
| dbg_intr("Interval rounded to %d", interval); |
| |
| tmp_ep = first_ep; |
| i = 0; |
| do { |
| if (tmp_ep->command & IO_MASK(USB_EP_command, eof)) { |
| if ((i % interval) == 0) { |
| /* Insert the traffic ep after tmp_ep */ |
| USB_EP_Desc_t *ep_desc; |
| USB_SB_Desc_t *sb_desc; |
| |
| dbg_intr("Inserting EP for epid %d", epid); |
| |
| ep_desc = (USB_EP_Desc_t *) |
| kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| sb_desc = (USB_SB_Desc_t *) |
| kmem_cache_alloc(usb_desc_cache, SLAB_FLAG); |
| assert(ep_desc != NULL); |
| CHECK_ALIGN(ep_desc); |
| assert(sb_desc != NULL); |
| |
| ep_desc->sub = virt_to_phys(sb_desc); |
| ep_desc->hw_len = 0; |
| ep_desc->command = (IO_FIELD(USB_EP_command, epid, epid) | |
| IO_STATE(USB_EP_command, enable, yes)); |
| |
| |
| /* Round upwards the number of packets of size maxlen |
| that this SB descriptor should receive. */ |
| sb_desc->sw_len = urb->transfer_buffer_length ? |
| (urb->transfer_buffer_length - 1) / maxlen + 1 : 0; |
| sb_desc->next = 0; |
| sb_desc->buf = 0; |
| sb_desc->command = |
| (IO_FIELD(USB_SB_command, rem, urb->transfer_buffer_length % maxlen) | |
| IO_STATE(USB_SB_command, tt, in) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| |
| ep_desc->next = tmp_ep->next; |
| tmp_ep->next = virt_to_phys(ep_desc); |
| } |
| i++; |
| } |
| tmp_ep = (USB_EP_Desc_t *)phys_to_virt(tmp_ep->next); |
| } while (tmp_ep != first_ep); |
| |
| |
| /* Note that first_sb/last_sb doesn't apply to interrupt traffic. */ |
| urb_priv->epid = epid; |
| |
| /* We start the DMA sub channel without checking if it's running or not, because: |
| 1) If it's already running, issuing the start command is a nop. |
| 2) We avoid a test-and-set race condition. */ |
| *R_DMA_CH8_SUB2_CMD = IO_STATE(R_DMA_CH8_SUB2_CMD, cmd, start); |
| |
| DBFEXIT; |
| } |
| |
| |
| |
| static void etrax_usb_complete_intr_urb(struct urb *urb, int status) |
| { |
| etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| int epid = urb_priv->epid; |
| |
| DBFENTER; |
| |
| if (status) |
| warn("Completing intr urb with status %d.", status); |
| |
| dbg_intr("Completing intr epid %d, urb 0x%lx", epid, (unsigned long)urb); |
| |
| urb->status = status; |
| urb->actual_length = urb_priv->rx_offset; |
| |
| dbg_intr("interrupt urb->actual_length = %d", urb->actual_length); |
| |
| /* We let any non-zero status from the layer above have precedence. */ |
| if (status == 0) { |
| /* URB_SHORT_NOT_OK means that short reads (shorter than the endpoint's max length) |
| is to be treated as an error. */ |
| if (urb->transfer_flags & URB_SHORT_NOT_OK) { |
| if (urb->actual_length != |
| usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { |
| urb->status = -EREMOTEIO; |
| } |
| } |
| } |
| |
| /* The driver will resubmit the URB so we need to remove it first */ |
| etrax_usb_unlink_urb(urb, 0); |
| if (urb->complete) { |
| urb->complete(urb, NULL); |
| } |
| |
| DBFEXIT; |
| } |
| |
| |
| static int etrax_usb_submit_isoc_urb(struct urb *urb) |
| { |
| int epid; |
| unsigned long flags; |
| |
| DBFENTER; |
| |
| dbg_isoc("Submitting isoc urb = 0x%lx", (unsigned long)urb); |
| |
| /* Epid allocation, empty check and list add must be protected. |
| Read about this in etrax_usb_submit_ctrl_urb. */ |
| |
| spin_lock_irqsave(&urb_list_lock, flags); |
| /* Is there an active epid for this urb ? */ |
| epid = etrax_usb_setup_epid(urb); |
| if (epid == -1) { |
| DBFEXIT; |
| spin_unlock_irqrestore(&urb_list_lock, flags); |
| return -ENOMEM; |
| } |
| |
| /* Ok, now we got valid endpoint, lets insert some traffic */ |
| |
| urb->status = -EINPROGRESS; |
| |
| /* Find the last urb in the URB_List and add this urb after that one. |
| Also add the traffic, that is do an etrax_usb_add_to_isoc_sb_list. This |
| is important to make this in "real time" since isochronous traffic is |
| time sensitive. */ |
| |
| dbg_isoc("Adding isoc urb to (possibly empty) list"); |
| urb_list_add(urb, epid); |
| etrax_usb_add_to_isoc_sb_list(urb, epid); |
| spin_unlock_irqrestore(&urb_list_lock, flags); |
| |
| DBFEXIT; |
| |
| return 0; |
| } |
| |
| static void etrax_usb_check_error_isoc_ep(const int epid) |
| { |
| unsigned long int flags; |
| int error_code; |
| __u32 r_usb_ept_data; |
| |
| /* We can't read R_USB_EPID_ATTN here since it would clear the iso_eof, |
| bulk_eot and epid_attn interrupts. So we just check the status of |
| the epid without testing if for it in R_USB_EPID_ATTN. */ |
| |
| |
| save_flags(flags); |
| cli(); |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| /* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO |
| registers, they are located at the same address and are of the same size. |
| In other words, this read should be ok for isoc also. */ |
| r_usb_ept_data = *R_USB_EPT_DATA; |
| restore_flags(flags); |
| |
| error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data); |
| |
| if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) { |
| warn("Hold was set for epid %d.", epid); |
| return; |
| } |
| |
| if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, no_error)) { |
| |
| /* This indicates that the SB list of the ept was completed before |
| new data was appended to it. This is not an error, but indicates |
| large system or USB load and could possibly cause trouble for |
| very timing sensitive USB device drivers so we log it. |
| */ |
| info("Isoc. epid %d disabled with no error", epid); |
| return; |
| |
| } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, stall)) { |
| /* Not really a protocol error, just says that the endpoint gave |
| a stall response. Note that error_code cannot be stall for isoc. */ |
| panic("Isoc traffic cannot stall"); |
| |
| } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA_ISO, error_code, bus_error)) { |
| /* Two devices responded to a transaction request. Must be resolved |
| by software. FIXME: Reset ports? */ |
| panic("Bus error for epid %d." |
| " Two devices responded to transaction request", |
| epid); |
| |
| } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) { |
| /* DMA overrun or underrun. */ |
| warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid); |
| |
| /* It seems that error_code = buffer_error in |
| R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS |
| are the same error. */ |
| } |
| } |
| |
| |
| static void etrax_usb_add_to_isoc_sb_list(struct urb *urb, int epid) |
| { |
| |
| int i = 0; |
| |
| etrax_urb_priv_t *urb_priv; |
| USB_SB_Desc_t *prev_sb_desc, *next_sb_desc, *temp_sb_desc; |
| |
| DBFENTER; |
| |
| prev_sb_desc = next_sb_desc = temp_sb_desc = NULL; |
| |
| urb_priv = kzalloc(sizeof(etrax_urb_priv_t), GFP_ATOMIC); |
| assert(urb_priv != NULL); |
| |
| urb->hcpriv = urb_priv; |
| urb_priv->epid = epid; |
| |
| if (usb_pipeout(urb->pipe)) { |
| |
| if (urb->number_of_packets == 0) panic("etrax_usb_add_to_isoc_sb_list 0 packets\n"); |
| |
| dbg_isoc("Transfer for epid %d is OUT", epid); |
| dbg_isoc("%d packets in URB", urb->number_of_packets); |
| |
| /* Create one SB descriptor for each packet and link them together. */ |
| for (i = 0; i < urb->number_of_packets; i++) { |
| if (!urb->iso_frame_desc[i].length) |
| continue; |
| |
| next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, GFP_ATOMIC); |
| assert(next_sb_desc != NULL); |
| |
| if (urb->iso_frame_desc[i].length > 0) { |
| |
| next_sb_desc->command = (IO_STATE(USB_SB_command, tt, out) | |
| IO_STATE(USB_SB_command, eot, yes)); |
| |
| next_sb_desc->sw_len = urb->iso_frame_desc[i].length; |
| next_sb_desc->buf = virt_to_phys((char*)urb->transfer_buffer + urb->iso_frame_desc[i].offset); |
| |
| /* Check if full length transfer. */ |
| if (urb->iso_frame_desc[i].length == |
| usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe))) { |
| next_sb_desc->command |= IO_STATE(USB_SB_command, full, yes); |
| } |
| } else { |
| dbg_isoc("zero len packet"); |
| next_sb_desc->command = (IO_FIELD(USB_SB_command, rem, 0) | |
| IO_STATE(USB_SB_command, tt, zout) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, full, yes)); |
| |
| next_sb_desc->sw_len = 1; |
| next_sb_desc->buf = virt_to_phys(&zout_buffer[0]); |
| } |
| |
| /* First SB descriptor that belongs to this urb */ |
| if (i == 0) |
| urb_priv->first_sb = next_sb_desc; |
| else |
| prev_sb_desc->next = virt_to_phys(next_sb_desc); |
| |
| prev_sb_desc = next_sb_desc; |
| } |
| |
| next_sb_desc->command |= (IO_STATE(USB_SB_command, intr, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| next_sb_desc->next = 0; |
| urb_priv->last_sb = next_sb_desc; |
| |
| } else if (usb_pipein(urb->pipe)) { |
| |
| dbg_isoc("Transfer for epid %d is IN", epid); |
| dbg_isoc("transfer_buffer_length = %d", urb->transfer_buffer_length); |
| dbg_isoc("rem is calculated to %d", urb->iso_frame_desc[urb->number_of_packets - 1].length); |
| |
| /* Note that in descriptors for periodic traffic are not consumed. This means that |
| the USB controller never propagates in the SB list. In other words, if there already |
| is an SB descriptor in the list for this EP we don't have to do anything. */ |
| if (TxIsocEPList[epid].sub == 0) { |
| dbg_isoc("Isoc traffic not already running, allocating SB"); |
| |
| next_sb_desc = (USB_SB_Desc_t*)kmem_cache_alloc(usb_desc_cache, GFP_ATOMIC); |
| assert(next_sb_desc != NULL); |
| |
| next_sb_desc->command = (IO_STATE(USB_SB_command, tt, in) | |
| IO_STATE(USB_SB_command, eot, yes) | |
| IO_STATE(USB_SB_command, eol, yes)); |
| |
| next_sb_desc->next = 0; |
| next_sb_desc->sw_len = 1; /* Actual number of packets is not relevant |
| for periodic in traffic as long as it is more |
| than zero. Set to 1 always. */ |
| next_sb_desc->buf = 0; |
| |
| /* The rem field is don't care for isoc traffic, so we don't set it. */ |
| |
| /* Only one SB descriptor that belongs to this urb. */ |
| urb_priv->first_sb = next_sb_desc; |
| urb_priv->last_sb = next_sb_desc; |
| |
| } else { |
| |
| dbg_isoc("Isoc traffic already running, just setting first/last_sb"); |
| |
| /* Each EP for isoc in will have only one SB descriptor, setup when submitting the |
| already active urb. Note that even though we may have several first_sb/last_sb |
| pointing at the same SB descriptor, they are freed only once (when the list has |
| become empty). */ |
| urb_priv->first_sb = phys_to_virt(TxIsocEPList[epid].sub); |
| urb_priv->last_sb = phys_to_virt(TxIsocEPList[epid].sub); |
| return; |
| } |
| |
| } |
| |
| /* Find the spot to insert this urb and add it. */ |
| if (TxIsocEPList[epid].sub == 0) { |
| /* First SB descriptor inserted in this list (in or out). */ |
| dbg_isoc("Inserting SB desc first in list"); |
| TxIsocEPList[epid].hw_len = 0; |
| TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); |
| |
| } else { |
| /* Isochronous traffic is already running, insert new traffic last (only out). */ |
| dbg_isoc("Inserting SB desc last in list"); |
| temp_sb_desc = phys_to_virt(TxIsocEPList[epid].sub); |
| while ((temp_sb_desc->command & IO_MASK(USB_SB_command, eol)) != |
| IO_STATE(USB_SB_command, eol, yes)) { |
| assert(temp_sb_desc->next); |
| temp_sb_desc = phys_to_virt(temp_sb_desc->next); |
| } |
| dbg_isoc("Appending list on desc 0x%p", temp_sb_desc); |
| |
| /* Next pointer must be set before eol is removed. */ |
| temp_sb_desc->next = virt_to_phys(urb_priv->first_sb); |
| /* Clear the previous end of list flag since there is a new in the |
| added SB descriptor list. */ |
| temp_sb_desc->command &= ~IO_MASK(USB_SB_command, eol); |
| |
| if (!(TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable))) { |
| /* 8.8.5 in Designer's Reference says we should check for and correct |
| any errors in the EP here. That should not be necessary if epid_attn |
| is handled correctly, so we assume all is ok. */ |
| dbg_isoc("EP disabled"); |
| etrax_usb_check_error_isoc_ep(epid); |
| |
| /* The SB list was exhausted. */ |
| if (virt_to_phys(urb_priv->last_sb) != TxIsocEPList[epid].sub) { |
| /* The new sublist did not get processed before the EP was |
| disabled. Setup the EP again. */ |
| dbg_isoc("Set EP sub to new list"); |
| TxIsocEPList[epid].hw_len = 0; |
| TxIsocEPList[epid].sub = virt_to_phys(urb_priv->first_sb); |
| } |
| } |
| } |
| |
| if (urb->transfer_flags & URB_ISO_ASAP) { |
| /* The isoc transfer should be started as soon as possible. The start_frame |
| field is a return value if URB_ISO_ASAP was set. Comparing R_USB_FM_NUMBER |
| with a USB Chief trace shows that the first isoc IN token is sent 2 frames |
| later. I'm not sure how this affects usage of the start_frame field by the |
| device driver, or how it affects things when USB_ISO_ASAP is not set, so |
| therefore there's no compensation for the 2 frame "lag" here. */ |
| urb->start_frame = (*R_USB_FM_NUMBER & 0x7ff); |
| TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| urb_priv->urb_state = STARTED; |
| dbg_isoc("URB_ISO_ASAP set, urb->start_frame set to %d", urb->start_frame); |
| } else { |
| /* Not started yet. */ |
| urb_priv->urb_state = NOT_STARTED; |
| dbg_isoc("urb_priv->urb_state set to NOT_STARTED"); |
| } |
| |
| /* We start the DMA sub channel without checking if it's running or not, because: |
| 1) If it's already running, issuing the start command is a nop. |
| 2) We avoid a test-and-set race condition. */ |
| *R_DMA_CH8_SUB3_CMD = IO_STATE(R_DMA_CH8_SUB3_CMD, cmd, start); |
| |
| DBFEXIT; |
| } |
| |
| static void etrax_usb_complete_isoc_urb(struct urb *urb, int status) |
| { |
| etrax_urb_priv_t *urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| int epid = urb_priv->epid; |
| int auto_resubmit = 0; |
| |
| DBFENTER; |
| dbg_isoc("complete urb 0x%p, status %d", urb, status); |
| |
| if (status) |
| warn("Completing isoc urb with status %d.", status); |
| |
| if (usb_pipein(urb->pipe)) { |
| int i; |
| |
| /* Make that all isoc packets have status and length set before |
| completing the urb. */ |
| for (i = urb_priv->isoc_packet_counter; i < urb->number_of_packets; i++) { |
| urb->iso_frame_desc[i].actual_length = 0; |
| urb->iso_frame_desc[i].status = -EPROTO; |
| } |
| |
| urb_list_del(urb, epid); |
| |
| if (!list_empty(&urb_list[epid])) { |
| ((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED; |
| } else { |
| unsigned long int flags; |
| if (TxIsocEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| /* The EP was enabled, disable it and wait. */ |
| TxIsocEPList[epid].command &= ~IO_MASK(USB_EP_command, enable); |
| |
| /* Ah, the luxury of busy-wait. */ |
| while (*R_DMA_CH8_SUB3_EP == virt_to_phys(&TxIsocEPList[epid])); |
| } |
| |
| etrax_remove_from_sb_list(urb); |
| TxIsocEPList[epid].sub = 0; |
| TxIsocEPList[epid].hw_len = 0; |
| |
| save_flags(flags); |
| cli(); |
| etrax_usb_free_epid(epid); |
| restore_flags(flags); |
| } |
| |
| urb->hcpriv = 0; |
| kfree(urb_priv); |
| |
| /* Release allocated bandwidth. */ |
| usb_release_bandwidth(urb->dev, urb, 0); |
| } else if (usb_pipeout(urb->pipe)) { |
| int freed_descr; |
| |
| dbg_isoc("Isoc out urb complete 0x%p", urb); |
| |
| /* Update the urb list. */ |
| urb_list_del(urb, epid); |
| |
| freed_descr = etrax_remove_from_sb_list(urb); |
| dbg_isoc("freed %d descriptors of %d packets", freed_descr, urb->number_of_packets); |
| assert(freed_descr == urb->number_of_packets); |
| urb->hcpriv = 0; |
| kfree(urb_priv); |
| |
| /* Release allocated bandwidth. */ |
| usb_release_bandwidth(urb->dev, urb, 0); |
| } |
| |
| urb->status = status; |
| if (urb->complete) { |
| urb->complete(urb, NULL); |
| } |
| |
| if (auto_resubmit) { |
| /* Check that urb was not unlinked by the complete callback. */ |
| if (__urb_list_entry(urb, epid)) { |
| /* Move this one down the list. */ |
| urb_list_move_last(urb, epid); |
| |
| /* Mark the now first urb as started (may already be). */ |
| ((etrax_urb_priv_t *)(urb_list_first(epid)->hcpriv))->urb_state = STARTED; |
| |
| /* Must set this to 0 since this urb is still active after |
| completion. */ |
| urb_priv->isoc_packet_counter = 0; |
| } else { |
| warn("(ISOC) automatic resubmit urb 0x%p removed by complete.", urb); |
| } |
| } |
| |
| DBFEXIT; |
| } |
| |
| static void etrax_usb_complete_urb(struct urb *urb, int status) |
| { |
| switch (usb_pipetype(urb->pipe)) { |
| case PIPE_BULK: |
| etrax_usb_complete_bulk_urb(urb, status); |
| break; |
| case PIPE_CONTROL: |
| etrax_usb_complete_ctrl_urb(urb, status); |
| break; |
| case PIPE_INTERRUPT: |
| etrax_usb_complete_intr_urb(urb, status); |
| break; |
| case PIPE_ISOCHRONOUS: |
| etrax_usb_complete_isoc_urb(urb, status); |
| break; |
| default: |
| err("Unknown pipetype"); |
| } |
| } |
| |
| |
| |
| static irqreturn_t etrax_usb_hc_interrupt_top_half(int irq, void *vhc) |
| { |
| usb_interrupt_registers_t *reg; |
| unsigned long flags; |
| __u32 irq_mask; |
| __u8 status; |
| __u32 epid_attn; |
| __u16 port_status_1; |
| __u16 port_status_2; |
| __u32 fm_number; |
| |
| DBFENTER; |
| |
| /* Read critical registers into local variables, do kmalloc afterwards. */ |
| save_flags(flags); |
| cli(); |
| |
| irq_mask = *R_USB_IRQ_MASK_READ; |
| /* Reading R_USB_STATUS clears the ctl_status interrupt. Note that R_USB_STATUS |
| must be read before R_USB_EPID_ATTN since reading the latter clears the |
| ourun and perror fields of R_USB_STATUS. */ |
| status = *R_USB_STATUS; |
| |
| /* Reading R_USB_EPID_ATTN clears the iso_eof, bulk_eot and epid_attn interrupts. */ |
| epid_attn = *R_USB_EPID_ATTN; |
| |
| /* Reading R_USB_RH_PORT_STATUS_1 and R_USB_RH_PORT_STATUS_2 clears the |
| port_status interrupt. */ |
| port_status_1 = *R_USB_RH_PORT_STATUS_1; |
| port_status_2 = *R_USB_RH_PORT_STATUS_2; |
| |
| /* Reading R_USB_FM_NUMBER clears the sof interrupt. */ |
| /* Note: the lower 11 bits contain the actual frame number, sent with each sof. */ |
| fm_number = *R_USB_FM_NUMBER; |
| |
| restore_flags(flags); |
| |
| reg = (usb_interrupt_registers_t *)kmem_cache_alloc(top_half_reg_cache, GFP_ATOMIC); |
| |
| assert(reg != NULL); |
| |
| reg->hc = (etrax_hc_t *)vhc; |
| |
| /* Now put register values into kmalloc'd area. */ |
| reg->r_usb_irq_mask_read = irq_mask; |
| reg->r_usb_status = status; |
| reg->r_usb_epid_attn = epid_attn; |
| reg->r_usb_rh_port_status_1 = port_status_1; |
| reg->r_usb_rh_port_status_2 = port_status_2; |
| reg->r_usb_fm_number = fm_number; |
| |
| INIT_WORK(®->usb_bh, etrax_usb_hc_interrupt_bottom_half, reg); |
| schedule_work(®->usb_bh); |
| |
| DBFEXIT; |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void etrax_usb_hc_interrupt_bottom_half(void *data) |
| { |
| usb_interrupt_registers_t *reg = (usb_interrupt_registers_t *)data; |
| __u32 irq_mask = reg->r_usb_irq_mask_read; |
| |
| DBFENTER; |
| |
| /* Interrupts are handled in order of priority. */ |
| if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, epid_attn)) { |
| etrax_usb_hc_epid_attn_interrupt(reg); |
| } |
| if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, port_status)) { |
| etrax_usb_hc_port_status_interrupt(reg); |
| } |
| if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, ctl_status)) { |
| etrax_usb_hc_ctl_status_interrupt(reg); |
| } |
| if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, iso_eof)) { |
| etrax_usb_hc_isoc_eof_interrupt(); |
| } |
| if (irq_mask & IO_MASK(R_USB_IRQ_MASK_READ, bulk_eot)) { |
| /* Update/restart the bulk start timer since obviously the channel is running. */ |
| mod_timer(&bulk_start_timer, jiffies + BULK_START_TIMER_INTERVAL); |
| /* Update/restart the bulk eot timer since we just received an bulk eot interrupt. */ |
| mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| |
| etrax_usb_hc_bulk_eot_interrupt(0); |
| } |
| |
| kmem_cache_free(top_half_reg_cache, reg); |
| |
| DBFEXIT; |
| } |
| |
| |
| void etrax_usb_hc_isoc_eof_interrupt(void) |
| { |
| struct urb *urb; |
| etrax_urb_priv_t *urb_priv; |
| int epid; |
| unsigned long flags; |
| |
| DBFENTER; |
| |
| /* Do not check the invalid epid (it has a valid sub pointer). */ |
| for (epid = 0; epid < NBR_OF_EPIDS - 1; epid++) { |
| |
| /* Do not check the invalid epid (it has a valid sub pointer). */ |
| if ((epid == DUMMY_EPID) || (epid == INVALID_EPID)) |
| continue; |
| |
| /* Disable interrupts to block the isoc out descriptor interrupt handler |
| from being called while the isoc EPID list is being checked. |
| */ |
| save_flags(flags); |
| cli(); |
| |
| if (TxIsocEPList[epid].sub == 0) { |
| /* Nothing here to see. */ |
| restore_flags(flags); |
| continue; |
| } |
| |
| /* Get the first urb (if any). */ |
| urb = urb_list_first(epid); |
| if (urb == 0) { |
| warn("Ignoring NULL urb"); |
| restore_flags(flags); |
| continue; |
| } |
| if (usb_pipein(urb->pipe)) { |
| |
| /* Sanity check. */ |
| assert(usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS); |
| |
| urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| assert(urb_priv); |
| |
| if (urb_priv->urb_state == NOT_STARTED) { |
| |
| /* If ASAP is not set and urb->start_frame is the current frame, |
| start the transfer. */ |
| if (!(urb->transfer_flags & URB_ISO_ASAP) && |
| (urb->start_frame == (*R_USB_FM_NUMBER & 0x7ff))) { |
| |
| dbg_isoc("Enabling isoc IN EP descr for epid %d", epid); |
| TxIsocEPList[epid].command |= IO_STATE(USB_EP_command, enable, yes); |
| |
| /* This urb is now active. */ |
| urb_priv->urb_state = STARTED; |
| continue; |
| } |
| } |
| } |
| restore_flags(flags); |
| } |
| |
| DBFEXIT; |
| |
| } |
| |
| void etrax_usb_hc_bulk_eot_interrupt(int timer_induced) |
| { |
| int epid; |
| |
| /* The technique is to run one urb at a time, wait for the eot interrupt at which |
| point the EP descriptor has been disabled. */ |
| |
| DBFENTER; |
| dbg_bulk("bulk eot%s", timer_induced ? ", called by timer" : ""); |
| |
| for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| |
| if (!(TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) && |
| (TxBulkEPList[epid].sub != 0)) { |
| |
| struct urb *urb; |
| etrax_urb_priv_t *urb_priv; |
| unsigned long flags; |
| __u32 r_usb_ept_data; |
| |
| /* Found a disabled EP descriptor which has a non-null sub pointer. |
| Verify that this ctrl EP descriptor got disabled no errors. |
| FIXME: Necessary to check error_code? */ |
| dbg_bulk("for epid %d?", epid); |
| |
| /* Get the first urb. */ |
| urb = urb_list_first(epid); |
| |
| /* FIXME: Could this happen for valid reasons? Why did it disappear? Because of |
| wrong unlinking? */ |
| if (!urb) { |
| warn("NULL urb for epid %d", epid); |
| continue; |
| } |
| |
| assert(urb); |
| urb_priv = (etrax_urb_priv_t *)urb->hcpriv; |
| assert(urb_priv); |
| |
| /* Sanity checks. */ |
| assert(usb_pipetype(urb->pipe) == PIPE_BULK); |
| if (phys_to_virt(TxBulkEPList[epid].sub) != urb_priv->last_sb) { |
| err("bulk endpoint got disabled before reaching last sb"); |
| } |
| |
| /* For bulk IN traffic, there seems to be a race condition between |
| between the bulk eot and eop interrupts, or rather an uncertainty regarding |
| the order in which they happen. Normally we expect the eop interrupt from |
| DMA channel 9 to happen before the eot interrupt. |
| |
| Therefore, we complete the bulk IN urb in the rx interrupt handler instead. */ |
| |
| if (usb_pipein(urb->pipe)) { |
| dbg_bulk("in urb, continuing"); |
| continue; |
| } |
| |
| save_flags(flags); |
| cli(); |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| r_usb_ept_data = *R_USB_EPT_DATA; |
| restore_flags(flags); |
| |
| if (IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data) == |
| IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { |
| /* This means that the endpoint has no error, is disabled |
| and had inserted traffic, i.e. transfer successfully completed. */ |
| etrax_usb_complete_bulk_urb(urb, 0); |
| } else { |
| /* Shouldn't happen. We expect errors to be caught by epid attention. */ |
| err("Found disabled bulk EP desc, error_code != no_error"); |
| } |
| } |
| } |
| |
| /* Normally, we should find (at least) one disabled EP descriptor with a valid sub pointer. |
| However, because of the uncertainty in the deliverance of the eop/eot interrupts, we may |
| not. Also, we might find two disabled EPs when handling an eot interrupt, and then find |
| none the next time. */ |
| |
| DBFEXIT; |
| |
| } |
| |
| void etrax_usb_hc_epid_attn_interrupt(usb_interrupt_registers_t *reg) |
| { |
| /* This function handles the epid attention interrupt. There are a variety of reasons |
| for this interrupt to happen (Designer's Reference, p. 8 - 22 for the details): |
| |
| invalid ep_id - Invalid epid in an EP (EP disabled). |
| stall - Not strictly an error condition (EP disabled). |
| 3rd error - Three successive transaction errors (EP disabled). |
| buffer ourun - Buffer overrun or underrun (EP disabled). |
| past eof1 - Intr or isoc transaction proceeds past EOF1. |
| near eof - Intr or isoc transaction would not fit inside the frame. |
| zout transfer - If zout transfer for a bulk endpoint (EP disabled). |
| setup transfer - If setup transfer for a non-ctrl endpoint (EP disabled). */ |
| |
| int epid; |
| |
| |
| DBFENTER; |
| |
| assert(reg != NULL); |
| |
| /* Note that we loop through all epids. We still want to catch errors for |
| the invalid one, even though we might handle them differently. */ |
| for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| |
| if (test_bit(epid, (void *)®->r_usb_epid_attn)) { |
| |
| struct urb *urb; |
| __u32 r_usb_ept_data; |
| unsigned long flags; |
| int error_code; |
| |
| save_flags(flags); |
| cli(); |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, epid); |
| nop(); |
| /* Note that although there are separate R_USB_EPT_DATA and R_USB_EPT_DATA_ISO |
| registers, they are located at the same address and are of the same size. |
| In other words, this read should be ok for isoc also. */ |
| r_usb_ept_data = *R_USB_EPT_DATA; |
| restore_flags(flags); |
| |
| /* First some sanity checks. */ |
| if (epid == INVALID_EPID) { |
| /* FIXME: What if it became disabled? Could seriously hurt interrupt |
| traffic. (Use do_intr_recover.) */ |
| warn("Got epid_attn for INVALID_EPID (%d).", epid); |
| err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data); |
| err("R_USB_STATUS = 0x%x", reg->r_usb_status); |
| continue; |
| } else if (epid == DUMMY_EPID) { |
| /* We definitely don't care about these ones. Besides, they are |
| always disabled, so any possible disabling caused by the |
| epid attention interrupt is irrelevant. */ |
| warn("Got epid_attn for DUMMY_EPID (%d).", epid); |
| continue; |
| } |
| |
| /* Get the first urb in the urb list for this epid. We blatantly assume |
| that only the first urb could have caused the epid attention. |
| (For bulk and ctrl, only one urb is active at any one time. For intr |
| and isoc we remove them once they are completed.) */ |
| urb = urb_list_first(epid); |
| |
| if (urb == NULL) { |
| err("Got epid_attn for epid %i with no urb.", epid); |
| err("R_USB_EPT_DATA = 0x%x", r_usb_ept_data); |
| err("R_USB_STATUS = 0x%x", reg->r_usb_status); |
| continue; |
| } |
| |
| switch (usb_pipetype(urb->pipe)) { |
| case PIPE_BULK: |
| warn("Got epid attn for bulk endpoint, epid %d", epid); |
| break; |
| case PIPE_CONTROL: |
| warn("Got epid attn for control endpoint, epid %d", epid); |
| break; |
| case PIPE_INTERRUPT: |
| warn("Got epid attn for interrupt endpoint, epid %d", epid); |
| break; |
| case PIPE_ISOCHRONOUS: |
| warn("Got epid attn for isochronous endpoint, epid %d", epid); |
| break; |
| } |
| |
| if (usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) { |
| if (r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, hold)) { |
| warn("Hold was set for epid %d.", epid); |
| continue; |
| } |
| } |
| |
| /* Even though error_code occupies bits 22 - 23 in both R_USB_EPT_DATA and |
| R_USB_EPT_DATA_ISOC, we separate them here so we don't forget in other places. */ |
| if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| error_code = IO_EXTRACT(R_USB_EPT_DATA_ISO, error_code, r_usb_ept_data); |
| } else { |
| error_code = IO_EXTRACT(R_USB_EPT_DATA, error_code, r_usb_ept_data); |
| } |
| |
| /* Using IO_STATE_VALUE on R_USB_EPT_DATA should be ok for isoc also. */ |
| if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, no_error)) { |
| |
| /* Isoc traffic doesn't have error_count_in/error_count_out. */ |
| if ((usb_pipetype(urb->pipe) != PIPE_ISOCHRONOUS) && |
| (IO_EXTRACT(R_USB_EPT_DATA, error_count_in, r_usb_ept_data) == 3 || |
| IO_EXTRACT(R_USB_EPT_DATA, error_count_out, r_usb_ept_data) == 3)) { |
| /* 3rd error. */ |
| warn("3rd error for epid %i", epid); |
| etrax_usb_complete_urb(urb, -EPROTO); |
| |
| } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { |
| |
| warn("Perror for epid %d", epid); |
| |
| if (!(r_usb_ept_data & IO_MASK(R_USB_EPT_DATA, valid))) { |
| /* invalid ep_id */ |
| panic("Perror because of invalid epid." |
| " Deconfigured too early?"); |
| } else { |
| /* past eof1, near eof, zout transfer, setup transfer */ |
| |
| /* Dump the urb and the relevant EP descriptor list. */ |
| |
| __dump_urb(urb); |
| __dump_ept_data(epid); |
| __dump_ep_list(usb_pipetype(urb->pipe)); |
| |
| panic("Something wrong with DMA descriptor contents." |
| " Too much traffic inserted?"); |
| } |
| } else if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { |
| /* buffer ourun */ |
| panic("Buffer overrun/underrun for epid %d. DMA too busy?", epid); |
| } |
| |
| } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, stall)) { |
| /* Not really a protocol error, just says that the endpoint gave |
| a stall response. Note that error_code cannot be stall for isoc. */ |
| if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { |
| panic("Isoc traffic cannot stall"); |
| } |
| |
| warn("Stall for epid %d", epid); |
| etrax_usb_complete_urb(urb, -EPIPE); |
| |
| } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, bus_error)) { |
| /* Two devices responded to a transaction request. Must be resolved |
| by software. FIXME: Reset ports? */ |
| panic("Bus error for epid %d." |
| " Two devices responded to transaction request", |
| epid); |
| |
| } else if (error_code == IO_STATE_VALUE(R_USB_EPT_DATA, error_code, buffer_error)) { |
| /* DMA overrun or underrun. */ |
| warn("Buffer overrun/underrun for epid %d. DMA too busy?", epid); |
| |
| /* It seems that error_code = buffer_error in |
| R_USB_EPT_DATA/R_USB_EPT_DATA_ISO and ourun = yes in R_USB_STATUS |
| are the same error. */ |
| etrax_usb_complete_urb(urb, -EPROTO); |
| } |
| } |
| } |
| |
| DBFEXIT; |
| |
| } |
| |
| void etrax_usb_bulk_start_timer_func(unsigned long dummy) |
| { |
| |
| /* We might enable an EP descriptor behind the current DMA position when it's about |
| to decide that there are no more bulk traffic and it should stop the bulk channel. |
| Therefore we periodically check if the bulk channel is stopped and there is an |
| enabled bulk EP descriptor, in which case we start the bulk channel. */ |
| dbg_bulk("bulk_start_timer timed out."); |
| |
| if (!(*R_DMA_CH8_SUB0_CMD & IO_MASK(R_DMA_CH8_SUB0_CMD, cmd))) { |
| int epid; |
| |
| dbg_bulk("Bulk DMA channel not running."); |
| |
| for (epid = 0; epid < NBR_OF_EPIDS; epid++) { |
| if (TxBulkEPList[epid].command & IO_MASK(USB_EP_command, enable)) { |
| dbg_bulk("Found enabled EP for epid %d, starting bulk channel.\n", |
| epid); |
| *R_DMA_CH8_SUB0_CMD = IO_STATE(R_DMA_CH8_SUB0_CMD, cmd, start); |
| |
| /* Restart the bulk eot timer since we just started the bulk channel. */ |
| mod_timer(&bulk_eot_timer, jiffies + BULK_EOT_TIMER_INTERVAL); |
| |
| /* No need to search any further. */ |
| break; |
| } |
| } |
| } else { |
| dbg_bulk("Bulk DMA channel running."); |
| } |
| } |
| |
| void etrax_usb_hc_port_status_interrupt(usb_interrupt_registers_t *reg) |
| { |
| etrax_hc_t *hc = reg->hc; |
| __u16 r_usb_rh_port_status_1 = reg->r_usb_rh_port_status_1; |
| __u16 r_usb_rh_port_status_2 = reg->r_usb_rh_port_status_2; |
| |
| DBFENTER; |
| |
| /* The Etrax RH does not include a wPortChange register, so this has to be handled in software |
| (by saving the old port status value for comparison when the port status interrupt happens). |
| See section 11.16.2.6.2 in the USB 1.1 spec for details. */ |
| |
| dbg_rh("hc->rh.prev_wPortStatus_1 = 0x%x", hc->rh.prev_wPortStatus_1); |
| dbg_rh("hc->rh.prev_wPortStatus_2 = 0x%x", hc->rh.prev_wPortStatus_2); |
| dbg_rh("r_usb_rh_port_status_1 = 0x%x", r_usb_rh_port_status_1); |
| dbg_rh("r_usb_rh_port_status_2 = 0x%x", r_usb_rh_port_status_2); |
| |
| /* C_PORT_CONNECTION is set on any transition. */ |
| hc->rh.wPortChange_1 |= |
| ((r_usb_rh_port_status_1 & (1 << RH_PORT_CONNECTION)) != |
| (hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_CONNECTION))) ? |
| (1 << RH_PORT_CONNECTION) : 0; |
| |
| hc->rh.wPortChange_2 |= |
| ((r_usb_rh_port_status_2 & (1 << RH_PORT_CONNECTION)) != |
| (hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_CONNECTION))) ? |
| (1 << RH_PORT_CONNECTION) : 0; |
| |
| /* C_PORT_ENABLE is _only_ set on a one to zero transition, i.e. when |
| the port is disabled, not when it's enabled. */ |
| hc->rh.wPortChange_1 |= |
| ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_ENABLE)) |
| && !(r_usb_rh_port_status_1 & (1 << RH_PORT_ENABLE))) ? |
| (1 << RH_PORT_ENABLE) : 0; |
| |
| hc->rh.wPortChange_2 |= |
| ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_ENABLE)) |
| && !(r_usb_rh_port_status_2 & (1 << RH_PORT_ENABLE))) ? |
| (1 << RH_PORT_ENABLE) : 0; |
| |
| /* C_PORT_SUSPEND is set to one when the device has transitioned out |
| of the suspended state, i.e. when suspend goes from one to zero. */ |
| hc->rh.wPortChange_1 |= |
| ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_SUSPEND)) |
| && !(r_usb_rh_port_status_1 & (1 << RH_PORT_SUSPEND))) ? |
| (1 << RH_PORT_SUSPEND) : 0; |
| |
| hc->rh.wPortChange_2 |= |
| ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_SUSPEND)) |
| && !(r_usb_rh_port_status_2 & (1 << RH_PORT_SUSPEND))) ? |
| (1 << RH_PORT_SUSPEND) : 0; |
| |
| |
| /* C_PORT_RESET is set when reset processing on this port is complete. */ |
| hc->rh.wPortChange_1 |= |
| ((hc->rh.prev_wPortStatus_1 & (1 << RH_PORT_RESET)) |
| && !(r_usb_rh_port_status_1 & (1 << RH_PORT_RESET))) ? |
| (1 << RH_PORT_RESET) : 0; |
| |
| hc->rh.wPortChange_2 |= |
| ((hc->rh.prev_wPortStatus_2 & (1 << RH_PORT_RESET)) |
| && !(r_usb_rh_port_status_2 & (1 << RH_PORT_RESET))) ? |
| (1 << RH_PORT_RESET) : 0; |
| |
| /* Save the new values for next port status change. */ |
| hc->rh.prev_wPortStatus_1 = r_usb_rh_port_status_1; |
| hc->rh.prev_wPortStatus_2 = r_usb_rh_port_status_2; |
| |
| dbg_rh("hc->rh.wPortChange_1 set to 0x%x", hc->rh.wPortChange_1); |
| dbg_rh("hc->rh.wPortChange_2 set to 0x%x", hc->rh.wPortChange_2); |
| |
| DBFEXIT; |
| |
| } |
| |
| void etrax_usb_hc_ctl_status_interrupt(usb_interrupt_registers_t *reg) |
| { |
| DBFENTER; |
| |
| /* FIXME: What should we do if we get ourun or perror? Dump the EP and SB |
| list for the corresponding epid? */ |
| if (reg->r_usb_status & IO_MASK(R_USB_STATUS, ourun)) { |
| panic("USB controller got ourun."); |
| } |
| if (reg->r_usb_status & IO_MASK(R_USB_STATUS, perror)) { |
| |
| /* Before, etrax_usb_do_intr_recover was called on this epid if it was |
| an interrupt pipe. I don't see how re-enabling all EP descriptors |
| will help if there was a programming error. */ |
| panic("USB controller got perror."); |
| } |
| |
| if (reg->r_usb_status & IO_MASK(R_USB_STATUS, device_mode)) { |
| /* We should never operate in device mode. */ |
| panic("USB controller in device mode."); |
| } |
| |
| /* These if-statements could probably be nested. */ |
| if (reg->r_usb_status & IO_MASK(R_USB_STATUS, host_mode)) { |
| info("USB controller in host mode."); |
| } |
| if (reg->r_usb_status & IO_MASK(R_USB_STATUS, started)) { |
| info("USB controller started."); |
| } |
| if (reg->r_usb_status & IO_MASK(R_USB_STATUS, running)) { |
| info("USB controller running."); |
| } |
| |
| DBFEXIT; |
| |
| } |
| |
| |
| static int etrax_rh_submit_urb(struct urb *urb) |
| { |
| struct usb_device *usb_dev = urb->dev; |
| etrax_hc_t *hc = usb_dev->bus->hcpriv; |
| unsigned int pipe = urb->pipe; |
| struct usb_ctrlrequest *cmd = (struct usb_ctrlrequest *) urb->setup_packet; |
| void *data = urb->transfer_buffer; |
| int leni = urb->transfer_buffer_length; |
| int len = 0; |
| int stat = 0; |
| |
| __u16 bmRType_bReq; |
| __u16 wValue; |
| __u16 wIndex; |
| __u16 wLength; |
| |
| DBFENTER; |
| |
| /* FIXME: What is this interrupt urb that is sent to the root hub? */ |
| if (usb_pipetype (pipe) == PIPE_INTERRUPT) { |
| dbg_rh("Root-Hub submit IRQ: every %d ms", urb->interval); |
| hc->rh.urb = urb; |
| hc->rh.send = 1; |
| /* FIXME: We could probably remove this line since it's done |
| in etrax_rh_init_int_timer. (Don't remove it from |
| etrax_rh_init_int_timer though.) */ |
| hc->rh.interval = urb->interval; |
| etrax_rh_init_int_timer(urb); |
| DBFEXIT; |
| |
| return 0; |
| } |
| |
| bmRType_bReq = cmd->bRequestType | (cmd->bRequest << 8); |
| wValue = le16_to_cpu(cmd->wValue); |
| wIndex = le16_to_cpu(cmd->wIndex); |
| wLength = le16_to_cpu(cmd->wLength); |
| |
| dbg_rh("bmRType_bReq : 0x%04x (%d)", bmRType_bReq, bmRType_bReq); |
| dbg_rh("wValue : 0x%04x (%d)", wValue, wValue); |
| dbg_rh("wIndex : 0x%04x (%d)", wIndex, wIndex); |
| dbg_rh("wLength : 0x%04x (%d)", wLength, wLength); |
| |
| switch (bmRType_bReq) { |
| |
| /* Request Destination: |
| without flags: Device, |
| RH_INTERFACE: interface, |
| RH_ENDPOINT: endpoint, |
| RH_CLASS means HUB here, |
| RH_OTHER | RH_CLASS almost ever means HUB_PORT here |
| */ |
| |
| case RH_GET_STATUS: |
| *(__u16 *) data = cpu_to_le16 (1); |
| OK (2); |
| |
| case RH_GET_STATUS | RH_INTERFACE: |
| *(__u16 *) data = cpu_to_le16 (0); |
| OK (2); |
| |
| case RH_GET_STATUS | RH_ENDPOINT: |
| *(__u16 *) data = cpu_to_le16 (0); |
| OK (2); |
| |
| case RH_GET_STATUS | RH_CLASS: |
| *(__u32 *) data = cpu_to_le32 (0); |
| OK (4); /* hub power ** */ |
| |
| case RH_GET_STATUS | RH_OTHER | RH_CLASS: |
| if (wIndex == 1) { |
| *((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_1); |
| *((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_1); |
| } else if (wIndex == 2) { |
| *((__u16*)data) = cpu_to_le16(hc->rh.prev_wPortStatus_2); |
| *((__u16*)data + 1) = cpu_to_le16(hc->rh.wPortChange_2); |
| } else { |
| dbg_rh("RH_GET_STATUS whith invalid wIndex!"); |
| OK(0); |
| } |
| |
| OK(4); |
| |
| case RH_CLEAR_FEATURE | RH_ENDPOINT: |
| switch (wValue) { |
| case (RH_ENDPOINT_STALL): |
| OK (0); |
| } |
| break; |
| |
| case RH_CLEAR_FEATURE | RH_CLASS: |
| switch (wValue) { |
| case (RH_C_HUB_OVER_CURRENT): |
| OK (0); /* hub power over current ** */ |
| } |
| break; |
| |
| case RH_CLEAR_FEATURE | RH_OTHER | RH_CLASS: |
| switch (wValue) { |
| case (RH_PORT_ENABLE): |
| if (wIndex == 1) { |
| |
| dbg_rh("trying to do disable port 1"); |
| |
| *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, yes); |
| |
| while (hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes)); |
| *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); |
| dbg_rh("Port 1 is disabled"); |
| |
| } else if (wIndex == 2) { |
| |
| dbg_rh("trying to do disable port 2"); |
| |
| *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, yes); |
| |
| while (hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes)); |
| *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); |
| dbg_rh("Port 2 is disabled"); |
| |
| } else { |
| dbg_rh("RH_CLEAR_FEATURE->RH_PORT_ENABLE " |
| "with invalid wIndex == %d!", wIndex); |
| } |
| |
| OK (0); |
| case (RH_PORT_SUSPEND): |
| /* Opposite to suspend should be resume, so we'll do a resume. */ |
| /* FIXME: USB 1.1, 11.16.2.2 says: |
| "Clearing the PORT_SUSPEND feature causes a host-initiated resume |
| on the specified port. If the port is not in the Suspended state, |
| the hub should treat this request as a functional no-operation." |
| Shouldn't we check if the port is in a suspended state before |
| resuming? */ |
| |
| /* Make sure the controller isn't busy. */ |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| if (wIndex == 1) { |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, port1) | |
| IO_STATE(R_USB_COMMAND, port_cmd, resume) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| } else if (wIndex == 2) { |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, port2) | |
| IO_STATE(R_USB_COMMAND, port_cmd, resume) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| } else { |
| dbg_rh("RH_CLEAR_FEATURE->RH_PORT_SUSPEND " |
| "with invalid wIndex == %d!", wIndex); |
| } |
| |
| OK (0); |
| case (RH_PORT_POWER): |
| OK (0); /* port power ** */ |
| case (RH_C_PORT_CONNECTION): |
| if (wIndex == 1) { |
| hc->rh.wPortChange_1 &= ~(1 << RH_PORT_CONNECTION); |
| } else if (wIndex == 2) { |
| hc->rh.wPortChange_2 &= ~(1 << RH_PORT_CONNECTION); |
| } else { |
| dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_CONNECTION " |
| "with invalid wIndex == %d!", wIndex); |
| } |
| |
| OK (0); |
| case (RH_C_PORT_ENABLE): |
| if (wIndex == 1) { |
| hc->rh.wPortChange_1 &= ~(1 << RH_PORT_ENABLE); |
| } else if (wIndex == 2) { |
| hc->rh.wPortChange_2 &= ~(1 << RH_PORT_ENABLE); |
| } else { |
| dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_ENABLE " |
| "with invalid wIndex == %d!", wIndex); |
| } |
| OK (0); |
| case (RH_C_PORT_SUSPEND): |
| /*** WR_RH_PORTSTAT(RH_PS_PSSC); */ |
| OK (0); |
| case (RH_C_PORT_OVER_CURRENT): |
| OK (0); /* port power over current ** */ |
| case (RH_C_PORT_RESET): |
| if (wIndex == 1) { |
| hc->rh.wPortChange_1 &= ~(1 << RH_PORT_RESET); |
| } else if (wIndex == 2) { |
| hc->rh.wPortChange_2 &= ~(1 << RH_PORT_RESET); |
| } else { |
| dbg_rh("RH_CLEAR_FEATURE->RH_C_PORT_RESET " |
| "with invalid index == %d!", wIndex); |
| } |
| |
| OK (0); |
| |
| } |
| break; |
| |
| case RH_SET_FEATURE | RH_OTHER | RH_CLASS: |
| switch (wValue) { |
| case (RH_PORT_SUSPEND): |
| |
| /* Make sure the controller isn't busy. */ |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| if (wIndex == 1) { |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, port1) | |
| IO_STATE(R_USB_COMMAND, port_cmd, suspend) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| } else if (wIndex == 2) { |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, port2) | |
| IO_STATE(R_USB_COMMAND, port_cmd, suspend) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| } else { |
| dbg_rh("RH_SET_FEATURE->RH_PORT_SUSPEND " |
| "with invalid wIndex == %d!", wIndex); |
| } |
| |
| OK (0); |
| case (RH_PORT_RESET): |
| if (wIndex == 1) { |
| |
| port_1_reset: |
| dbg_rh("Doing reset of port 1"); |
| |
| /* Make sure the controller isn't busy. */ |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, port1) | |
| IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| |
| /* We must wait at least 10 ms for the device to recover. |
| 15 ms should be enough. */ |
| udelay(15000); |
| |
| /* Wait for reset bit to go low (should be done by now). */ |
| while (hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, reset, yes)); |
| |
| /* If the port status is |
| 1) connected and enabled then there is a device and everything is fine |
| 2) neither connected nor enabled then there is no device, also fine |
| 3) connected and not enabled then we try again |
| (Yes, there are other port status combinations besides these.) */ |
| |
| if ((hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) && |
| (hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) { |
| dbg_rh("Connected device on port 1, but port not enabled?" |
| " Trying reset again."); |
| goto port_2_reset; |
| } |
| |
| /* Diagnostic printouts. */ |
| if ((hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, connected, no)) && |
| (hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no))) { |
| dbg_rh("No connected device on port 1"); |
| } else if ((hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, connected, yes)) && |
| (hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, yes))) { |
| dbg_rh("Connected device on port 1, port 1 enabled"); |
| } |
| |
| } else if (wIndex == 2) { |
| |
| port_2_reset: |
| dbg_rh("Doing reset of port 2"); |
| |
| /* Make sure the controller isn't busy. */ |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| /* Issue the reset command. */ |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, port2) | |
| IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, nop); |
| |
| /* We must wait at least 10 ms for the device to recover. |
| 15 ms should be enough. */ |
| udelay(15000); |
| |
| /* Wait for reset bit to go low (should be done by now). */ |
| while (hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, reset, yes)); |
| |
| /* If the port status is |
| 1) connected and enabled then there is a device and everything is fine |
| 2) neither connected nor enabled then there is no device, also fine |
| 3) connected and not enabled then we try again |
| (Yes, there are other port status combinations besides these.) */ |
| |
| if ((hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) && |
| (hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) { |
| dbg_rh("Connected device on port 2, but port not enabled?" |
| " Trying reset again."); |
| goto port_2_reset; |
| } |
| |
| /* Diagnostic printouts. */ |
| if ((hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, connected, no)) && |
| (hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no))) { |
| dbg_rh("No connected device on port 2"); |
| } else if ((hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, connected, yes)) && |
| (hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, yes))) { |
| dbg_rh("Connected device on port 2, port 2 enabled"); |
| } |
| |
| } else { |
| dbg_rh("RH_SET_FEATURE->RH_PORT_RESET with invalid wIndex = %d", wIndex); |
| } |
| |
| /* Make sure the controller isn't busy. */ |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| /* If all enabled ports were disabled the host controller goes down into |
| started mode, so we need to bring it back into the running state. |
| (This is safe even if it's already in the running state.) */ |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); |
| |
| dbg_rh("...Done"); |
| OK(0); |
| |
| case (RH_PORT_POWER): |
| OK (0); /* port power ** */ |
| case (RH_PORT_ENABLE): |
| /* There is no port enable command in the host controller, so if the |
| port is already enabled, we do nothing. If not, we reset the port |
| (with an ugly goto). */ |
| |
| if (wIndex == 1) { |
| if (hc->rh.prev_wPortStatus_1 & |
| IO_STATE(R_USB_RH_PORT_STATUS_1, enabled, no)) { |
| goto port_1_reset; |
| } |
| } else if (wIndex == 2) { |
| if (hc->rh.prev_wPortStatus_2 & |
| IO_STATE(R_USB_RH_PORT_STATUS_2, enabled, no)) { |
| goto port_2_reset; |
| } |
| } else { |
| dbg_rh("RH_SET_FEATURE->RH_GET_STATUS with invalid wIndex = %d", wIndex); |
| } |
| OK (0); |
| } |
| break; |
| |
| case RH_SET_ADDRESS: |
| hc->rh.devnum = wValue; |
| dbg_rh("RH address set to: %d", hc->rh.devnum); |
| OK (0); |
| |
| case RH_GET_DESCRIPTOR: |
| switch ((wValue & 0xff00) >> 8) { |
| case (0x01): /* device descriptor */ |
| len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_dev_des), wLength)); |
| memcpy (data, root_hub_dev_des, len); |
| OK (len); |
| case (0x02): /* configuration descriptor */ |
| len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_config_des), wLength)); |
| memcpy (data, root_hub_config_des, len); |
| OK (len); |
| case (0x03): /* string descriptors */ |
| len = usb_root_hub_string (wValue & 0xff, |
| 0xff, "ETRAX 100LX", |
| data, wLength); |
| if (len > 0) { |
| OK(min(leni, len)); |
| } else { |
| stat = -EPIPE; |
| } |
| |
| } |
| break; |
| |
| case RH_GET_DESCRIPTOR | RH_CLASS: |
| root_hub_hub_des[2] = hc->rh.numports; |
| len = min_t(unsigned int, leni, min_t(unsigned int, sizeof (root_hub_hub_des), wLength)); |
| memcpy (data, root_hub_hub_des, len); |
| OK (len); |
| |
| case RH_GET_CONFIGURATION: |
| *(__u8 *) data = 0x01; |
| OK (1); |
| |
| case RH_SET_CONFIGURATION: |
| OK (0); |
| |
| default: |
| stat = -EPIPE; |
| } |
| |
| urb->actual_length = len; |
| urb->status = stat; |
| urb->dev = NULL; |
| if (urb->complete) { |
| urb->complete(urb, NULL); |
| } |
| DBFEXIT; |
| |
| return 0; |
| } |
| |
| static void |
| etrax_usb_bulk_eot_timer_func(unsigned long dummy) |
| { |
| /* Because of a race condition in the top half, we might miss a bulk eot. |
| This timer "simulates" a bulk eot if we don't get one for a while, hopefully |
| correcting the situation. */ |
| dbg_bulk("bulk_eot_timer timed out."); |
| etrax_usb_hc_bulk_eot_interrupt(1); |
| } |
| |
| static void* |
| etrax_usb_buffer_alloc(struct usb_bus* bus, size_t size, |
| unsigned mem_flags, dma_addr_t *dma) |
| { |
| return kmalloc(size, mem_flags); |
| } |
| |
| static void |
| etrax_usb_buffer_free(struct usb_bus *bus, size_t size, void *addr, dma_addr_t dma) |
| { |
| kfree(addr); |
| } |
| |
| |
| static struct device fake_device; |
| |
| static int __init etrax_usb_hc_init(void) |
| { |
| static etrax_hc_t *hc; |
| struct usb_bus *bus; |
| struct usb_device *usb_rh; |
| int i; |
| |
| DBFENTER; |
| |
| info("ETRAX 100LX USB-HCD %s (c) 2001-2003 Axis Communications AB\n", usb_hcd_version); |
| |
| hc = kmalloc(sizeof(etrax_hc_t), GFP_KERNEL); |
| assert(hc != NULL); |
| |
| /* We use kmem_cache_* to make sure that all DMA desc. are dword aligned */ |
| /* Note that we specify sizeof(USB_EP_Desc_t) as the size, but also allocate |
| SB descriptors from this cache. This is ok since sizeof(USB_EP_Desc_t) == |
| sizeof(USB_SB_Desc_t). */ |
| |
| usb_desc_cache = kmem_cache_create("usb_desc_cache", sizeof(USB_EP_Desc_t), 0, |
| SLAB_HWCACHE_ALIGN, 0, 0); |
| assert(usb_desc_cache != NULL); |
| |
| top_half_reg_cache = kmem_cache_create("top_half_reg_cache", |
| sizeof(usb_interrupt_registers_t), |
| 0, SLAB_HWCACHE_ALIGN, 0, 0); |
| assert(top_half_reg_cache != NULL); |
| |
| isoc_compl_cache = kmem_cache_create("isoc_compl_cache", |
| sizeof(usb_isoc_complete_data_t), |
| 0, SLAB_HWCACHE_ALIGN, 0, 0); |
| assert(isoc_compl_cache != NULL); |
| |
| etrax_usb_bus = bus = usb_alloc_bus(&etrax_usb_device_operations); |
| hc->bus = bus; |
| bus->bus_name="ETRAX 100LX"; |
| bus->hcpriv = hc; |
| |
| /* Initialize RH to the default address. |
| And make sure that we have no status change indication */ |
| hc->rh.numports = 2; /* The RH has two ports */ |
| hc->rh.devnum = 1; |
| hc->rh.wPortChange_1 = 0; |
| hc->rh.wPortChange_2 = 0; |
| |
| /* Also initate the previous values to zero */ |
| hc->rh.prev_wPortStatus_1 = 0; |
| hc->rh.prev_wPortStatus_2 = 0; |
| |
| /* Initialize the intr-traffic flags */ |
| /* FIXME: This isn't used. (Besides, the error field isn't initialized.) */ |
| hc->intr.sleeping = 0; |
| hc->intr.wq = NULL; |
| |
| epid_usage_bitmask = 0; |
| epid_out_traffic = 0; |
| |
| /* Mark the invalid epid as being used. */ |
| set_bit(INVALID_EPID, (void *)&epid_usage_bitmask); |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, INVALID_EPID); |
| nop(); |
| /* The valid bit should still be set ('invalid' is in our world; not the hardware's). */ |
| *R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, yes) | |
| IO_FIELD(R_USB_EPT_DATA, max_len, 1)); |
| |
| /* Mark the dummy epid as being used. */ |
| set_bit(DUMMY_EPID, (void *)&epid_usage_bitmask); |
| *R_USB_EPT_INDEX = IO_FIELD(R_USB_EPT_INDEX, value, DUMMY_EPID); |
| nop(); |
| *R_USB_EPT_DATA = (IO_STATE(R_USB_EPT_DATA, valid, no) | |
| IO_FIELD(R_USB_EPT_DATA, max_len, 1)); |
| |
| /* Initialize the urb list by initiating a head for each list. */ |
| for (i = 0; i < NBR_OF_EPIDS; i++) { |
| INIT_LIST_HEAD(&urb_list[i]); |
| } |
| spin_lock_init(&urb_list_lock); |
| |
| INIT_LIST_HEAD(&urb_unlink_list); |
| |
| |
| /* Initiate the bulk start timer. */ |
| init_timer(&bulk_start_timer); |
| bulk_start_timer.expires = jiffies + BULK_START_TIMER_INTERVAL; |
| bulk_start_timer.function = etrax_usb_bulk_start_timer_func; |
| add_timer(&bulk_start_timer); |
| |
| |
| /* Initiate the bulk eot timer. */ |
| init_timer(&bulk_eot_timer); |
| bulk_eot_timer.expires = jiffies + BULK_EOT_TIMER_INTERVAL; |
| bulk_eot_timer.function = etrax_usb_bulk_eot_timer_func; |
| add_timer(&bulk_eot_timer); |
| |
| /* Set up the data structures for USB traffic. Note that this must be done before |
| any interrupt that relies on sane DMA list occurrs. */ |
| init_rx_buffers(); |
| init_tx_bulk_ep(); |
| init_tx_ctrl_ep(); |
| init_tx_intr_ep(); |
| init_tx_isoc_ep(); |
| |
| device_initialize(&fake_device); |
| kobject_set_name(&fake_device.kobj, "etrax_usb"); |
| kobject_add(&fake_device.kobj); |
| kobject_uevent(&fake_device.kobj, KOBJ_ADD); |
| hc->bus->controller = &fake_device; |
| usb_register_bus(hc->bus); |
| |
| *R_IRQ_MASK2_SET = |
| /* Note that these interrupts are not used. */ |
| IO_STATE(R_IRQ_MASK2_SET, dma8_sub0_descr, set) | |
| /* Sub channel 1 (ctrl) descr. interrupts are used. */ |
| IO_STATE(R_IRQ_MASK2_SET, dma8_sub1_descr, set) | |
| IO_STATE(R_IRQ_MASK2_SET, dma8_sub2_descr, set) | |
| /* Sub channel 3 (isoc) descr. interrupts are used. */ |
| IO_STATE(R_IRQ_MASK2_SET, dma8_sub3_descr, set); |
| |
| /* Note that the dma9_descr interrupt is not used. */ |
| *R_IRQ_MASK2_SET = |
| IO_STATE(R_IRQ_MASK2_SET, dma9_eop, set) | |
| IO_STATE(R_IRQ_MASK2_SET, dma9_descr, set); |
| |
| /* FIXME: Enable iso_eof only when isoc traffic is running. */ |
| *R_USB_IRQ_MASK_SET = |
| IO_STATE(R_USB_IRQ_MASK_SET, iso_eof, set) | |
| IO_STATE(R_USB_IRQ_MASK_SET, bulk_eot, set) | |
| IO_STATE(R_USB_IRQ_MASK_SET, epid_attn, set) | |
| IO_STATE(R_USB_IRQ_MASK_SET, port_status, set) | |
| IO_STATE(R_USB_IRQ_MASK_SET, ctl_status, set); |
| |
| |
| if (request_irq(ETRAX_USB_HC_IRQ, etrax_usb_hc_interrupt_top_half, 0, |
| "ETRAX 100LX built-in USB (HC)", hc)) { |
| err("Could not allocate IRQ %d for USB", ETRAX_USB_HC_IRQ); |
| etrax_usb_hc_cleanup(); |
| DBFEXIT; |
| return -1; |
| } |
| |
| if (request_irq(ETRAX_USB_RX_IRQ, etrax_usb_rx_interrupt, 0, |
| "ETRAX 100LX built-in USB (Rx)", hc)) { |
| err("Could not allocate IRQ %d for USB", ETRAX_USB_RX_IRQ); |
| etrax_usb_hc_cleanup(); |
| DBFEXIT; |
| return -1; |
| } |
| |
| if (request_irq(ETRAX_USB_TX_IRQ, etrax_usb_tx_interrupt, 0, |
| "ETRAX 100LX built-in USB (Tx)", hc)) { |
| err("Could not allocate IRQ %d for USB", ETRAX_USB_TX_IRQ); |
| etrax_usb_hc_cleanup(); |
| DBFEXIT; |
| return -1; |
| } |
| |
| /* R_USB_COMMAND: |
| USB commands in host mode. The fields in this register should all be |
| written to in one write. Do not read-modify-write one field at a time. A |
| write to this register will trigger events in the USB controller and an |
| incomplete command may lead to unpredictable results, and in worst case |
| even to a deadlock in the controller. |
| (Note however that the busy field is read-only, so no need to write to it.) */ |
| |
| /* Check the busy bit before writing to R_USB_COMMAND. */ |
| |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| /* Reset the USB interface. */ |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, reset); |
| |
| /* Designer's Reference, p. 8 - 10 says we should Initate R_USB_FM_PSTART to 0x2A30 (10800), |
| to guarantee that control traffic gets 10% of the bandwidth, and periodic transfer may |
| allocate the rest (90%). This doesn't work though. Read on for a lenghty explanation. |
| |
| While there is a difference between rev. 2 and rev. 3 of the ETRAX 100LX regarding the NAK |
| behaviour, it doesn't solve this problem. What happens is that a control transfer will not |
| be interrupted in its data stage when PSTART happens (the point at which periodic traffic |
| is started). Thus, if PSTART is set to 10800 and its IN or OUT token is NAKed until just before |
| PSTART happens, it will continue the IN/OUT transfer as long as it's ACKed. After it's done, |
| there may be too little time left for an isochronous transfer, causing an epid attention |
| interrupt due to perror. The work-around for this is to let the control transfers run at the |
| end of the frame instead of at the beginning, and will be interrupted just fine if it doesn't |
| fit into the frame. However, since there will *always* be a control transfer at the beginning |
| of the frame, regardless of what we set PSTART to, that transfer might be a 64-byte transfer |
| which consumes up to 15% of the frame, leaving only 85% for periodic traffic. The solution to |
| this would be to 'dummy allocate' 5% of the frame with the usb_claim_bandwidth function to make |
| sure that the periodic transfers that are inserted will always fit in the frame. |
| |
| The idea was suggested that a control transfer could be split up into several 8 byte transfers, |
| so that it would be interrupted by PSTART, but since this can't be done for an IN transfer this |
| hasn't been implemented. |
| |
| The value 11960 is chosen to be just after the SOF token, with a couple of bit times extra |
| for possible bit stuffing. */ |
| |
| *R_USB_FM_PSTART = IO_FIELD(R_USB_FM_PSTART, value, 11960); |
| |
| #ifdef CONFIG_ETRAX_USB_HOST_PORT1 |
| *R_USB_PORT1_DISABLE = IO_STATE(R_USB_PORT1_DISABLE, disable, no); |
| #endif |
| |
| #ifdef CONFIG_ETRAX_USB_HOST_PORT2 |
| *R_USB_PORT2_DISABLE = IO_STATE(R_USB_PORT2_DISABLE, disable, no); |
| #endif |
| |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| /* Configure the USB interface as a host controller. */ |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, host_config); |
| |
| /* Note: Do not reset any ports here. Await the port status interrupts, to have a controlled |
| sequence of resetting the ports. If we reset both ports now, and there are devices |
| on both ports, we will get a bus error because both devices will answer the set address |
| request. */ |
| |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| /* Start processing of USB traffic. */ |
| *R_USB_COMMAND = |
| IO_STATE(R_USB_COMMAND, port_sel, nop) | |
| IO_STATE(R_USB_COMMAND, port_cmd, reset) | |
| IO_STATE(R_USB_COMMAND, ctrl_cmd, host_run); |
| |
| while (*R_USB_COMMAND & IO_MASK(R_USB_COMMAND, busy)); |
| |
| usb_rh = usb_alloc_dev(NULL, hc->bus, 0); |
| hc->bus->root_hub = usb_rh; |
| usb_rh->state = USB_STATE_ADDRESS; |
| usb_rh->speed = USB_SPEED_FULL; |
| usb_rh->devnum = 1; |
| hc->bus->devnum_next = 2; |
| usb_rh->ep0.desc.wMaxPacketSize = __const_cpu_to_le16(64); |
| usb_get_device_descriptor(usb_rh, USB_DT_DEVICE_SIZE); |
| usb_new_device(usb_rh); |
| |
| DBFEXIT; |
| |
| return 0; |
| } |
| |
| static void etrax_usb_hc_cleanup(void) |
| { |
| DBFENTER; |
| |
| free_irq(ETRAX_USB_HC_IRQ, NULL); |
| free_irq(ETRAX_USB_RX_IRQ, NULL); |
| free_irq(ETRAX_USB_TX_IRQ, NULL); |
| |
| usb_deregister_bus(etrax_usb_bus); |
| |
| /* FIXME: call kmem_cache_destroy here? */ |
| |
| DBFEXIT; |
| } |
| |
| module_init(etrax_usb_hc_init); |
| module_exit(etrax_usb_hc_cleanup); |