| /* |
| * sparse memory mappings. |
| */ |
| #include <linux/config.h> |
| #include <linux/mm.h> |
| #include <linux/mmzone.h> |
| #include <linux/bootmem.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/vmalloc.h> |
| #include <asm/dma.h> |
| |
| /* |
| * Permanent SPARSEMEM data: |
| * |
| * 1) mem_section - memory sections, mem_map's for valid memory |
| */ |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| struct mem_section *mem_section[NR_SECTION_ROOTS] |
| ____cacheline_maxaligned_in_smp; |
| #else |
| struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT] |
| ____cacheline_maxaligned_in_smp; |
| #endif |
| EXPORT_SYMBOL(mem_section); |
| |
| #ifdef CONFIG_SPARSEMEM_EXTREME |
| static struct mem_section *sparse_index_alloc(int nid) |
| { |
| struct mem_section *section = NULL; |
| unsigned long array_size = SECTIONS_PER_ROOT * |
| sizeof(struct mem_section); |
| |
| section = alloc_bootmem_node(NODE_DATA(nid), array_size); |
| |
| if (section) |
| memset(section, 0, array_size); |
| |
| return section; |
| } |
| |
| static int sparse_index_init(unsigned long section_nr, int nid) |
| { |
| static spinlock_t index_init_lock = SPIN_LOCK_UNLOCKED; |
| unsigned long root = SECTION_NR_TO_ROOT(section_nr); |
| struct mem_section *section; |
| int ret = 0; |
| |
| if (mem_section[root]) |
| return -EEXIST; |
| |
| section = sparse_index_alloc(nid); |
| /* |
| * This lock keeps two different sections from |
| * reallocating for the same index |
| */ |
| spin_lock(&index_init_lock); |
| |
| if (mem_section[root]) { |
| ret = -EEXIST; |
| goto out; |
| } |
| |
| mem_section[root] = section; |
| out: |
| spin_unlock(&index_init_lock); |
| return ret; |
| } |
| #else /* !SPARSEMEM_EXTREME */ |
| static inline int sparse_index_init(unsigned long section_nr, int nid) |
| { |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Although written for the SPARSEMEM_EXTREME case, this happens |
| * to also work for the flat array case becase |
| * NR_SECTION_ROOTS==NR_MEM_SECTIONS. |
| */ |
| int __section_nr(struct mem_section* ms) |
| { |
| unsigned long root_nr; |
| struct mem_section* root; |
| |
| for (root_nr = 0; |
| root_nr < NR_MEM_SECTIONS; |
| root_nr += SECTIONS_PER_ROOT) { |
| root = __nr_to_section(root_nr); |
| |
| if (!root) |
| continue; |
| |
| if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT))) |
| break; |
| } |
| |
| return (root_nr * SECTIONS_PER_ROOT) + (ms - root); |
| } |
| |
| /* Record a memory area against a node. */ |
| void memory_present(int nid, unsigned long start, unsigned long end) |
| { |
| unsigned long pfn; |
| |
| start &= PAGE_SECTION_MASK; |
| for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) { |
| unsigned long section = pfn_to_section_nr(pfn); |
| struct mem_section *ms; |
| |
| sparse_index_init(section, nid); |
| |
| ms = __nr_to_section(section); |
| if (!ms->section_mem_map) |
| ms->section_mem_map = SECTION_MARKED_PRESENT; |
| } |
| } |
| |
| /* |
| * Only used by the i386 NUMA architecures, but relatively |
| * generic code. |
| */ |
| unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn, |
| unsigned long end_pfn) |
| { |
| unsigned long pfn; |
| unsigned long nr_pages = 0; |
| |
| for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) { |
| if (nid != early_pfn_to_nid(pfn)) |
| continue; |
| |
| if (pfn_valid(pfn)) |
| nr_pages += PAGES_PER_SECTION; |
| } |
| |
| return nr_pages * sizeof(struct page); |
| } |
| |
| /* |
| * Subtle, we encode the real pfn into the mem_map such that |
| * the identity pfn - section_mem_map will return the actual |
| * physical page frame number. |
| */ |
| static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum) |
| { |
| return (unsigned long)(mem_map - (section_nr_to_pfn(pnum))); |
| } |
| |
| /* |
| * We need this if we ever free the mem_maps. While not implemented yet, |
| * this function is included for parity with its sibling. |
| */ |
| static __attribute((unused)) |
| struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum) |
| { |
| return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum); |
| } |
| |
| static int sparse_init_one_section(struct mem_section *ms, |
| unsigned long pnum, struct page *mem_map) |
| { |
| if (!valid_section(ms)) |
| return -EINVAL; |
| |
| ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum); |
| |
| return 1; |
| } |
| |
| static struct page *sparse_early_mem_map_alloc(unsigned long pnum) |
| { |
| struct page *map; |
| int nid = early_pfn_to_nid(section_nr_to_pfn(pnum)); |
| struct mem_section *ms = __nr_to_section(pnum); |
| |
| map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION); |
| if (map) |
| return map; |
| |
| map = alloc_bootmem_node(NODE_DATA(nid), |
| sizeof(struct page) * PAGES_PER_SECTION); |
| if (map) |
| return map; |
| |
| printk(KERN_WARNING "%s: allocation failed\n", __FUNCTION__); |
| ms->section_mem_map = 0; |
| return NULL; |
| } |
| |
| static struct page *__kmalloc_section_memmap(unsigned long nr_pages) |
| { |
| struct page *page, *ret; |
| unsigned long memmap_size = sizeof(struct page) * nr_pages; |
| |
| page = alloc_pages(GFP_KERNEL, get_order(memmap_size)); |
| if (page) |
| goto got_map_page; |
| |
| ret = vmalloc(memmap_size); |
| if (ret) |
| goto got_map_ptr; |
| |
| return NULL; |
| got_map_page: |
| ret = (struct page *)pfn_to_kaddr(page_to_pfn(page)); |
| got_map_ptr: |
| memset(ret, 0, memmap_size); |
| |
| return ret; |
| } |
| |
| static int vaddr_in_vmalloc_area(void *addr) |
| { |
| if (addr >= (void *)VMALLOC_START && |
| addr < (void *)VMALLOC_END) |
| return 1; |
| return 0; |
| } |
| |
| static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages) |
| { |
| if (vaddr_in_vmalloc_area(memmap)) |
| vfree(memmap); |
| else |
| free_pages((unsigned long)memmap, |
| get_order(sizeof(struct page) * nr_pages)); |
| } |
| |
| /* |
| * Allocate the accumulated non-linear sections, allocate a mem_map |
| * for each and record the physical to section mapping. |
| */ |
| void sparse_init(void) |
| { |
| unsigned long pnum; |
| struct page *map; |
| |
| for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) { |
| if (!valid_section_nr(pnum)) |
| continue; |
| |
| map = sparse_early_mem_map_alloc(pnum); |
| if (!map) |
| continue; |
| sparse_init_one_section(__nr_to_section(pnum), pnum, map); |
| } |
| } |
| |
| /* |
| * returns the number of sections whose mem_maps were properly |
| * set. If this is <=0, then that means that the passed-in |
| * map was not consumed and must be freed. |
| */ |
| int sparse_add_one_section(struct zone *zone, unsigned long start_pfn, |
| int nr_pages) |
| { |
| unsigned long section_nr = pfn_to_section_nr(start_pfn); |
| struct pglist_data *pgdat = zone->zone_pgdat; |
| struct mem_section *ms; |
| struct page *memmap; |
| unsigned long flags; |
| int ret; |
| |
| /* |
| * no locking for this, because it does its own |
| * plus, it does a kmalloc |
| */ |
| sparse_index_init(section_nr, pgdat->node_id); |
| memmap = __kmalloc_section_memmap(nr_pages); |
| |
| pgdat_resize_lock(pgdat, &flags); |
| |
| ms = __pfn_to_section(start_pfn); |
| if (ms->section_mem_map & SECTION_MARKED_PRESENT) { |
| ret = -EEXIST; |
| goto out; |
| } |
| ms->section_mem_map |= SECTION_MARKED_PRESENT; |
| |
| ret = sparse_init_one_section(ms, section_nr, memmap); |
| |
| if (ret <= 0) |
| __kfree_section_memmap(memmap, nr_pages); |
| out: |
| pgdat_resize_unlock(pgdat, &flags); |
| return ret; |
| } |