blob: 95b69e6d0373de0ab655a36a62f1ff78c0885317 [file] [log] [blame]
/* Copyright (c) 2011, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/gpio_event.h>
#include <linux/usb/android.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/i2c.h>
#include <linux/android_pmem.h>
#include <linux/bootmem.h>
#include <linux/mfd/marimba.h>
#include <linux/power_supply.h>
#include <linux/input/rmi_platformdata.h>
#include <linux/input/rmi_i2c.h>
#include <asm/mach/mmc.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
#include <mach/board.h>
#include <mach/msm_iomap.h>
#include <mach/msm_hsusb.h>
#include <mach/rpc_hsusb.h>
#include <mach/rpc_pmapp.h>
#include <mach/usbdiag.h>
#include <mach/usb_gadget_fserial.h>
#include <mach/msm_memtypes.h>
#include <mach/msm_serial_hs.h>
#include <mach/vreg.h>
#include <mach/pmic.h>
#include <mach/socinfo.h>
#include <mach/vreg.h>
#include <mach/rpc_pmapp.h>
#include <mach/msm_battery.h>
#include <mach/rpc_server_handset.h>
#include <mach/socinfo.h>
#include "devices.h"
#include "devices-msm7x2xa.h"
#include "pm.h"
#include "timer.h"
#include "pm-boot.h"
#define PMEM_KERNEL_EBI1_SIZE 0x3A000
#define MSM_PMEM_AUDIO_SIZE 0x5B000
#define BAHAMA_SLAVE_ID_FM_ADDR 0x2A
#define BAHAMA_SLAVE_ID_QMEMBIST_ADDR 0x7B
#define BAHAMA_SLAVE_ID_FM_REG 0x02
#define FM_GPIO 83
enum {
GPIO_HOST_VBUS_EN = 107,
GPIO_BT_SYS_REST_EN = 114,
GPIO_WAKE_ON_WIRELESS,
GPIO_BACKLIGHT_EN,
GPIO_NC,
GPIO_CAM_3MP_PWDN, /* CAM_VGA */
GPIO_WLAN_EN,
GPIO_CAM_5MP_SHDN_EN,
GPIO_CAM_5MP_RESET,
GPIO_TP,
GPIO_CAM_GP_CAMIF_RESET,
};
/* FM Platform power and shutdown routines */
#define FPGA_MSM_CNTRL_REG2 0x90008010
static void config_pcm_i2s_mode(int mode)
{
void __iomem *cfg_ptr;
u8 reg2;
cfg_ptr = ioremap_nocache(FPGA_MSM_CNTRL_REG2, sizeof(char));
if (!cfg_ptr)
return;
if (mode) {
/*enable the pcm mode in FPGA*/
reg2 = readb_relaxed(cfg_ptr);
if (reg2 == 0) {
reg2 = 1;
writeb_relaxed(reg2, cfg_ptr);
}
} else {
/*enable i2s mode in FPGA*/
reg2 = readb_relaxed(cfg_ptr);
if (reg2 == 1) {
reg2 = 0;
writeb_relaxed(reg2, cfg_ptr);
}
}
iounmap(cfg_ptr);
}
static unsigned fm_i2s_config_power_on[] = {
/*FM_I2S_SD*/
GPIO_CFG(68, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
/*FM_I2S_WS*/
GPIO_CFG(70, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
/*FM_I2S_SCK*/
GPIO_CFG(71, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
};
static unsigned fm_i2s_config_power_off[] = {
/*FM_I2S_SD*/
GPIO_CFG(68, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
/*FM_I2S_WS*/
GPIO_CFG(70, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
/*FM_I2S_SCK*/
GPIO_CFG(71, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
};
static unsigned bt_config_power_on[] = {
/*RFR*/
GPIO_CFG(43, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
/*CTS*/
GPIO_CFG(44, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
/*RX*/
GPIO_CFG(45, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
/*TX*/
GPIO_CFG(46, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
};
static unsigned bt_config_pcm_on[] = {
/*PCM_DOUT*/
GPIO_CFG(68, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
/*PCM_DIN*/
GPIO_CFG(69, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
/*PCM_SYNC*/
GPIO_CFG(70, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
/*PCM_CLK*/
GPIO_CFG(71, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
};
static unsigned bt_config_power_off[] = {
/*RFR*/
GPIO_CFG(43, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
/*CTS*/
GPIO_CFG(44, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
/*RX*/
GPIO_CFG(45, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
/*TX*/
GPIO_CFG(46, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
};
static unsigned bt_config_pcm_off[] = {
/*PCM_DOUT*/
GPIO_CFG(68, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
/*PCM_DIN*/
GPIO_CFG(69, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
/*PCM_SYNC*/
GPIO_CFG(70, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
/*PCM_CLK*/
GPIO_CFG(71, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
};
static int config_i2s(int mode)
{
int pin, rc = 0;
if (mode == FM_I2S_ON) {
if (machine_is_msm7627a_qrd1())
config_pcm_i2s_mode(0);
pr_err("%s mode = FM_I2S_ON", __func__);
for (pin = 0; pin < ARRAY_SIZE(fm_i2s_config_power_on);
pin++) {
rc = gpio_tlmm_config(
fm_i2s_config_power_on[pin],
GPIO_CFG_ENABLE
);
if (rc < 0)
return rc;
}
} else if (mode == FM_I2S_OFF) {
pr_err("%s mode = FM_I2S_OFF", __func__);
for (pin = 0; pin < ARRAY_SIZE(fm_i2s_config_power_off);
pin++) {
rc = gpio_tlmm_config(
fm_i2s_config_power_off[pin],
GPIO_CFG_ENABLE
);
if (rc < 0)
return rc;
}
}
return rc;
}
static int config_pcm(int mode)
{
int pin, rc = 0;
if (mode == BT_PCM_ON) {
if (machine_is_msm7627a_qrd1())
config_pcm_i2s_mode(1);
pr_err("%s mode =BT_PCM_ON", __func__);
for (pin = 0; pin < ARRAY_SIZE(bt_config_pcm_on);
pin++) {
rc = gpio_tlmm_config(bt_config_pcm_on[pin],
GPIO_CFG_ENABLE);
if (rc < 0)
return rc;
}
} else if (mode == BT_PCM_OFF) {
pr_err("%s mode =BT_PCM_OFF", __func__);
for (pin = 0; pin < ARRAY_SIZE(bt_config_pcm_off);
pin++) {
rc = gpio_tlmm_config(bt_config_pcm_off[pin],
GPIO_CFG_ENABLE);
if (rc < 0)
return rc;
}
}
return rc;
}
static int msm_bahama_setup_pcm_i2s(int mode)
{
int fm_state = 0, bt_state = 0;
int rc = 0;
struct marimba config = { .mod_id = SLAVE_ID_BAHAMA};
fm_state = marimba_get_fm_status(&config);
bt_state = marimba_get_bt_status(&config);
switch (mode) {
case BT_PCM_ON:
case BT_PCM_OFF:
if (!fm_state)
rc = config_pcm(mode);
break;
case FM_I2S_ON:
rc = config_i2s(mode);
break;
case FM_I2S_OFF:
if (bt_state)
rc = config_pcm(BT_PCM_ON);
else
rc = config_i2s(mode);
break;
default:
rc = -EIO;
pr_err("%s:Unsupported mode", __func__);
}
return rc;
}
static int bt_set_gpio(int on)
{
int rc = 0;
struct marimba config = { .mod_id = SLAVE_ID_BAHAMA};
if (on) {
rc = gpio_direction_output(GPIO_BT_SYS_REST_EN, 1);
msleep(100);
} else {
if (!marimba_get_fm_status(&config) &&
!marimba_get_bt_status(&config)) {
gpio_set_value_cansleep(GPIO_BT_SYS_REST_EN, 0);
rc = gpio_direction_input(GPIO_BT_SYS_REST_EN);
msleep(100);
}
}
if (rc)
pr_err("%s: BT sys_reset_en GPIO : Error", __func__);
return rc;
}
static struct vreg *fm_regulator;
static int fm_radio_setup(struct marimba_fm_platform_data *pdata)
{
int rc = 0;
const char *id = "FMPW";
uint32_t irqcfg;
struct marimba config = { .mod_id = SLAVE_ID_BAHAMA};
u8 value;
/* Voting for 1.8V Regulator */
fm_regulator = vreg_get(NULL , "msme1");
if (IS_ERR(fm_regulator)) {
pr_err("%s: vreg get failed with : (%ld)\n",
__func__, PTR_ERR(fm_regulator));
return -EINVAL;
}
/* Set the voltage level to 1.8V */
rc = vreg_set_level(fm_regulator, 1800);
if (rc < 0) {
pr_err("%s: set regulator level failed with :(%d)\n",
__func__, rc);
goto fm_vreg_fail;
}
/* Enabling the 1.8V regulator */
rc = vreg_enable(fm_regulator);
if (rc) {
pr_err("%s: enable regulator failed with :(%d)\n",
__func__, rc);
goto fm_vreg_fail;
}
/* Voting for 19.2MHz clock */
rc = pmapp_clock_vote(id, PMAPP_CLOCK_ID_D1,
PMAPP_CLOCK_VOTE_ON);
if (rc < 0) {
pr_err("%s: clock vote failed with :(%d)\n",
__func__, rc);
goto fm_clock_vote_fail;
}
rc = bt_set_gpio(1);
if (rc) {
pr_err("%s: bt_set_gpio = %d", __func__, rc);
goto fm_gpio_config_fail;
}
/*re-write FM Slave Id, after reset*/
value = BAHAMA_SLAVE_ID_FM_ADDR;
rc = marimba_write_bit_mask(&config,
BAHAMA_SLAVE_ID_FM_REG, &value, 1, 0xFF);
if (rc < 0) {
pr_err("%s: FM Slave ID rewrite Failed = %d", __func__, rc);
goto fm_gpio_config_fail;
}
/* Configuring the FM GPIO */
irqcfg = GPIO_CFG(FM_GPIO, 0, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL,
GPIO_CFG_2MA);
rc = gpio_tlmm_config(irqcfg, GPIO_CFG_ENABLE);
if (rc) {
pr_err("%s: gpio_tlmm_config(%#x)=%d\n",
__func__, irqcfg, rc);
goto fm_gpio_config_fail;
}
return 0;
fm_gpio_config_fail:
pmapp_clock_vote(id, PMAPP_CLOCK_ID_D1,
PMAPP_CLOCK_VOTE_OFF);
bt_set_gpio(0);
fm_clock_vote_fail:
vreg_disable(fm_regulator);
fm_vreg_fail:
vreg_put(fm_regulator);
return rc;
};
static void fm_radio_shutdown(struct marimba_fm_platform_data *pdata)
{
int rc;
const char *id = "FMPW";
/* Releasing the GPIO line used by FM */
uint32_t irqcfg = GPIO_CFG(FM_GPIO, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_UP,
GPIO_CFG_2MA);
rc = gpio_tlmm_config(irqcfg, GPIO_CFG_ENABLE);
if (rc)
pr_err("%s: gpio_tlmm_config(%#x)=%d\n",
__func__, irqcfg, rc);
/* Releasing the 1.8V Regulator */
if (fm_regulator != NULL) {
rc = vreg_disable(fm_regulator);
if (rc)
pr_err("%s: disable regulator failed:(%d)\n",
__func__, rc);
fm_regulator = NULL;
}
/* Voting off the clock */
rc = pmapp_clock_vote(id, PMAPP_CLOCK_ID_D1,
PMAPP_CLOCK_VOTE_OFF);
if (rc < 0)
pr_err("%s: voting off failed with :(%d)\n",
__func__, rc);
rc = bt_set_gpio(0);
if (rc)
pr_err("%s: bt_set_gpio = %d", __func__, rc);
}
static struct marimba_fm_platform_data marimba_fm_pdata = {
.fm_setup = fm_radio_setup,
.fm_shutdown = fm_radio_shutdown,
.irq = MSM_GPIO_TO_INT(FM_GPIO),
.vreg_s2 = NULL,
.vreg_xo_out = NULL,
/* Configuring the FM SoC as I2S Master */
.is_fm_soc_i2s_master = true,
.config_i2s_gpio = msm_bahama_setup_pcm_i2s,
};
static struct platform_device msm_wlan_ar6000_pm_device = {
.name = "wlan_ar6000_pm_dev",
.id = -1,
};
#if defined(CONFIG_BT) && defined(CONFIG_MARIMBA_CORE)
static struct platform_device msm_bt_power_device = {
.name = "bt_power",
};
struct bahama_config_register {
u8 reg;
u8 value;
u8 mask;
};
struct bt_vreg_info {
const char *name;
unsigned int pmapp_id;
unsigned int level;
unsigned int is_pin_controlled;
struct vreg *vregs;
};
static struct bt_vreg_info bt_vregs[] = {
{"msme1", 2, 1800, 0, NULL},
{"bt", 21, 2900, 1, NULL}
};
static int bahama_bt(int on)
{
int rc = 0;
int i;
struct marimba config = { .mod_id = SLAVE_ID_BAHAMA};
struct bahama_variant_register {
const size_t size;
const struct bahama_config_register *set;
};
const struct bahama_config_register *p;
u8 version;
const struct bahama_config_register v10_bt_on[] = {
{ 0xE9, 0x00, 0xFF },
{ 0xF4, 0x80, 0xFF },
{ 0xE4, 0x00, 0xFF },
{ 0xE5, 0x00, 0x0F },
#ifdef CONFIG_WLAN
{ 0xE6, 0x38, 0x7F },
{ 0xE7, 0x06, 0xFF },
#endif
{ 0xE9, 0x21, 0xFF },
{ 0x01, 0x0C, 0x1F },
{ 0x01, 0x08, 0x1F },
};
const struct bahama_config_register v20_bt_on_fm_off[] = {
{ 0x11, 0x0C, 0xFF },
{ 0x13, 0x01, 0xFF },
{ 0xF4, 0x80, 0xFF },
{ 0xF0, 0x00, 0xFF },
{ 0xE9, 0x00, 0xFF },
#ifdef CONFIG_WLAN
{ 0x81, 0x00, 0x7F },
{ 0x82, 0x00, 0xFF },
{ 0xE6, 0x38, 0x7F },
{ 0xE7, 0x06, 0xFF },
#endif
{ 0x8E, 0x15, 0xFF },
{ 0x8F, 0x15, 0xFF },
{ 0x90, 0x15, 0xFF },
{ 0xE9, 0x21, 0xFF },
};
const struct bahama_config_register v20_bt_on_fm_on[] = {
{ 0x11, 0x0C, 0xFF },
{ 0x13, 0x01, 0xFF },
{ 0xF4, 0x86, 0xFF },
{ 0xF0, 0x06, 0xFF },
{ 0xE9, 0x00, 0xFF },
#ifdef CONFIG_WLAN
{ 0x81, 0x00, 0x7F },
{ 0x82, 0x00, 0xFF },
{ 0xE6, 0x38, 0x7F },
{ 0xE7, 0x06, 0xFF },
#endif
{ 0xE9, 0x21, 0xFF },
};
const struct bahama_config_register v10_bt_off[] = {
{ 0xE9, 0x00, 0xFF },
};
const struct bahama_config_register v20_bt_off_fm_off[] = {
{ 0xF4, 0x84, 0xFF },
{ 0xF0, 0x04, 0xFF },
{ 0xE9, 0x00, 0xFF }
};
const struct bahama_config_register v20_bt_off_fm_on[] = {
{ 0xF4, 0x86, 0xFF },
{ 0xF0, 0x06, 0xFF },
{ 0xE9, 0x00, 0xFF }
};
const struct bahama_variant_register bt_bahama[2][3] = {
{
{ ARRAY_SIZE(v10_bt_off), v10_bt_off },
{ ARRAY_SIZE(v20_bt_off_fm_off), v20_bt_off_fm_off },
{ ARRAY_SIZE(v20_bt_off_fm_on), v20_bt_off_fm_on }
},
{
{ ARRAY_SIZE(v10_bt_on), v10_bt_on },
{ ARRAY_SIZE(v20_bt_on_fm_off), v20_bt_on_fm_off },
{ ARRAY_SIZE(v20_bt_on_fm_on), v20_bt_on_fm_on }
}
};
u8 offset = 0; /* index into bahama configs */
on = on ? 1 : 0;
version = marimba_read_bahama_ver(&config);
if ((int)version < 0 || version == BAHAMA_VER_UNSUPPORTED) {
dev_err(&msm_bt_power_device.dev, "%s: Bahama \
version read Error, version = %d \n",
__func__, version);
return -EIO;
}
if (version == BAHAMA_VER_2_0) {
if (marimba_get_fm_status(&config))
offset = 0x01;
}
p = bt_bahama[on][version + offset].set;
dev_info(&msm_bt_power_device.dev,
"%s: found version %d\n", __func__, version);
for (i = 0; i < bt_bahama[on][version + offset].size; i++) {
u8 value = (p+i)->value;
rc = marimba_write_bit_mask(&config,
(p+i)->reg,
&value,
sizeof((p+i)->value),
(p+i)->mask);
if (rc < 0) {
dev_err(&msm_bt_power_device.dev,
"%s: reg %x write failed: %d\n",
__func__, (p+i)->reg, rc);
return rc;
}
dev_dbg(&msm_bt_power_device.dev,
"%s: reg 0x%02x write value 0x%02x mask 0x%02x\n",
__func__, (p+i)->reg,
value, (p+i)->mask);
value = 0;
rc = marimba_read_bit_mask(&config,
(p+i)->reg, &value,
sizeof((p+i)->value), (p+i)->mask);
if (rc < 0)
dev_err(&msm_bt_power_device.dev, "%s marimba_read_bit_mask- error",
__func__);
dev_dbg(&msm_bt_power_device.dev,
"%s: reg 0x%02x read value 0x%02x mask 0x%02x\n",
__func__, (p+i)->reg,
value, (p+i)->mask);
}
/* Update BT Status */
if (on)
marimba_set_bt_status(&config, true);
else
marimba_set_bt_status(&config, false);
return rc;
}
static int bluetooth_switch_regulators(int on)
{
int i, rc = 0;
const char *id = "BTPW";
for (i = 0; i < ARRAY_SIZE(bt_vregs); i++) {
if (!bt_vregs[i].vregs) {
pr_err("%s: vreg_get %s failed(%d)\n",
__func__, bt_vregs[i].name, rc);
goto vreg_fail;
}
rc = on ? vreg_set_level(bt_vregs[i].vregs,
bt_vregs[i].level) : 0;
if (rc < 0) {
pr_err("%s: vreg set level failed (%d)\n",
__func__, rc);
goto vreg_set_level_fail;
}
if (bt_vregs[i].is_pin_controlled == 1) {
rc = pmapp_vreg_pincntrl_vote(id,
bt_vregs[i].pmapp_id,
PMAPP_CLOCK_ID_D1,
on ? PMAPP_CLOCK_VOTE_ON :
PMAPP_CLOCK_VOTE_OFF);
} else {
rc = on ? vreg_enable(bt_vregs[i].vregs) :
vreg_disable(bt_vregs[i].vregs);
}
if (rc < 0) {
pr_err("%s: vreg %s %s failed(%d)\n",
__func__, bt_vregs[i].name,
on ? "enable" : "disable", rc);
goto vreg_fail;
}
}
return rc;
vreg_fail:
while (i) {
if (on)
vreg_disable(bt_vregs[--i].vregs);
}
vreg_set_level_fail:
vreg_put(bt_vregs[0].vregs);
vreg_put(bt_vregs[1].vregs);
return rc;
}
static unsigned int msm_bahama_setup_power(void)
{
int rc = 0;
struct vreg *vreg_s3 = NULL;
vreg_s3 = vreg_get(NULL, "msme1");
if (IS_ERR(vreg_s3)) {
pr_err("%s: vreg get failed (%ld)\n",
__func__, PTR_ERR(vreg_s3));
return PTR_ERR(vreg_s3);
}
rc = vreg_set_level(vreg_s3, 1800);
if (rc < 0) {
pr_err("%s: vreg set level failed (%d)\n",
__func__, rc);
goto vreg_fail;
}
rc = vreg_enable(vreg_s3);
if (rc < 0) {
pr_err("%s: vreg enable failed (%d)\n",
__func__, rc);
goto vreg_fail;
}
/*setup Bahama_sys_reset_n*/
rc = gpio_request(GPIO_BT_SYS_REST_EN, "bahama sys_rst_n");
if (rc < 0) {
pr_err("%s: gpio_request %d = %d\n", __func__,
GPIO_BT_SYS_REST_EN, rc);
goto vreg_fail;
}
rc = bt_set_gpio(1);
if (rc < 0) {
pr_err("%s: bt_set_gpio %d = %d\n", __func__,
GPIO_BT_SYS_REST_EN, rc);
goto gpio_fail;
}
return rc;
gpio_fail:
gpio_free(GPIO_BT_SYS_REST_EN);
vreg_fail:
vreg_put(vreg_s3);
return rc;
}
static unsigned int msm_bahama_shutdown_power(int value)
{
int rc = 0;
struct vreg *vreg_s3 = NULL;
vreg_s3 = vreg_get(NULL, "msme1");
if (IS_ERR(vreg_s3)) {
pr_err("%s: vreg get failed (%ld)\n",
__func__, PTR_ERR(vreg_s3));
return PTR_ERR(vreg_s3);
}
rc = vreg_disable(vreg_s3);
if (rc) {
pr_err("%s: vreg disable failed (%d)\n",
__func__, rc);
vreg_put(vreg_s3);
return rc;
}
if (value == BAHAMA_ID) {
rc = bt_set_gpio(0);
if (rc) {
pr_err("%s: bt_set_gpio = %d\n",
__func__, rc);
}
}
return rc;
}
static unsigned int msm_bahama_core_config(int type)
{
int rc = 0;
if (type == BAHAMA_ID) {
int i;
struct marimba config = { .mod_id = SLAVE_ID_BAHAMA};
const struct bahama_config_register v20_init[] = {
/* reg, value, mask */
{ 0xF4, 0x84, 0xFF }, /* AREG */
{ 0xF0, 0x04, 0xFF } /* DREG */
};
if (marimba_read_bahama_ver(&config) == BAHAMA_VER_2_0) {
for (i = 0; i < ARRAY_SIZE(v20_init); i++) {
u8 value = v20_init[i].value;
rc = marimba_write_bit_mask(&config,
v20_init[i].reg,
&value,
sizeof(v20_init[i].value),
v20_init[i].mask);
if (rc < 0) {
pr_err("%s: reg %d write failed: %d\n",
__func__, v20_init[i].reg, rc);
return rc;
}
pr_debug("%s: reg 0x%02x value 0x%02x"
" mask 0x%02x\n",
__func__, v20_init[i].reg,
v20_init[i].value, v20_init[i].mask);
}
}
}
rc = bt_set_gpio(0);
if (rc) {
pr_err("%s: bt_set_gpio = %d\n",
__func__, rc);
}
pr_debug("core type: %d\n", type);
return rc;
}
static int bluetooth_power(int on)
{
int pin, rc = 0;
const char *id = "BTPW";
int cid = 0;
cid = adie_get_detected_connectivity_type();
if (cid != BAHAMA_ID) {
pr_err("%s: unexpected adie connectivity type: %d\n",
__func__, cid);
return -ENODEV;
}
if (on) {
/*setup power for BT SOC*/
rc = bt_set_gpio(on);
if (rc) {
pr_err("%s: bt_set_gpio = %d\n",
__func__, rc);
goto exit;
}
rc = bluetooth_switch_regulators(on);
if (rc < 0) {
pr_err("%s: bluetooth_switch_regulators rc = %d",
__func__, rc);
goto exit;
}
/*setup BT GPIO lines*/
for (pin = 0; pin < ARRAY_SIZE(bt_config_power_on);
pin++) {
rc = gpio_tlmm_config(bt_config_power_on[pin],
GPIO_CFG_ENABLE);
if (rc < 0) {
pr_err("%s: gpio_tlmm_config(%#x)=%d\n",
__func__,
bt_config_power_on[pin],
rc);
goto fail_power;
}
}
/*Setup BT clocks*/
rc = pmapp_clock_vote(id, PMAPP_CLOCK_ID_D1,
PMAPP_CLOCK_VOTE_ON);
if (rc < 0) {
pr_err("Failed to vote for TCXO_D1 ON\n");
goto fail_clock;
}
msleep(20);
/*I2C config for Bahama*/
rc = bahama_bt(1);
if (rc < 0) {
pr_err("%s: bahama_bt rc = %d", __func__, rc);
goto fail_i2c;
}
msleep(20);
/*setup BT PCM lines*/
rc = msm_bahama_setup_pcm_i2s(BT_PCM_ON);
if (rc < 0) {
pr_err("%s: msm_bahama_setup_pcm_i2s , rc =%d\n",
__func__, rc);
goto fail_power;
}
rc = pmapp_clock_vote(id, PMAPP_CLOCK_ID_D1,
PMAPP_CLOCK_VOTE_PIN_CTRL);
if (rc < 0)
pr_err("%s:Pin Control Failed, rc = %d",
__func__, rc);
} else {
rc = bahama_bt(0);
if (rc < 0)
pr_err("%s: bahama_bt rc = %d", __func__, rc);
rc = bt_set_gpio(on);
if (rc) {
pr_err("%s: bt_set_gpio = %d\n",
__func__, rc);
}
fail_i2c:
rc = pmapp_clock_vote(id, PMAPP_CLOCK_ID_D1,
PMAPP_CLOCK_VOTE_OFF);
if (rc < 0)
pr_err("%s: Failed to vote Off D1\n", __func__);
fail_clock:
for (pin = 0; pin < ARRAY_SIZE(bt_config_power_off);
pin++) {
rc = gpio_tlmm_config(bt_config_power_off[pin],
GPIO_CFG_ENABLE);
if (rc < 0) {
pr_err("%s: gpio_tlmm_config(%#x)=%d\n",
__func__, bt_config_power_off[pin], rc);
}
}
rc = msm_bahama_setup_pcm_i2s(BT_PCM_OFF);
if (rc < 0) {
pr_err("%s: msm_bahama_setup_pcm_i2s, rc =%d\n",
__func__, rc);
}
fail_power:
rc = bluetooth_switch_regulators(0);
if (rc < 0) {
pr_err("%s: switch_regulators : rc = %d",\
__func__, rc);
goto exit;
}
}
return rc;
exit:
pr_err("%s: failed with rc = %d", __func__, rc);
return rc;
}
static int __init bt_power_init(void)
{
int i, rc = 0;
for (i = 0; i < ARRAY_SIZE(bt_vregs); i++) {
bt_vregs[i].vregs = vreg_get(NULL,
bt_vregs[i].name);
if (IS_ERR(bt_vregs[i].vregs)) {
pr_err("%s: vreg get %s failed (%ld)\n",
__func__, bt_vregs[i].name,
PTR_ERR(bt_vregs[i].vregs));
rc = PTR_ERR(bt_vregs[i].vregs);
goto vreg_get_fail;
}
}
msm_bt_power_device.dev.platform_data = &bluetooth_power;
return rc;
vreg_get_fail:
while (i)
vreg_put(bt_vregs[--i].vregs);
return rc;
}
static struct marimba_platform_data marimba_pdata = {
.slave_id[SLAVE_ID_BAHAMA_FM] = BAHAMA_SLAVE_ID_FM_ADDR,
.slave_id[SLAVE_ID_BAHAMA_QMEMBIST] = BAHAMA_SLAVE_ID_QMEMBIST_ADDR,
.bahama_setup = msm_bahama_setup_power,
.bahama_shutdown = msm_bahama_shutdown_power,
.bahama_core_config = msm_bahama_core_config,
.fm = &marimba_fm_pdata,
};
#endif
#if defined(CONFIG_BT) && defined(CONFIG_MARIMBA_CORE)
static struct i2c_board_info bahama_devices[] = {
{
I2C_BOARD_INFO("marimba", 0xc),
.platform_data = &marimba_pdata,
},
};
#endif
static struct msm_gpio qup_i2c_gpios_io[] = {
{ GPIO_CFG(60, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"qup_scl" },
{ GPIO_CFG(61, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"qup_sda" },
{ GPIO_CFG(131, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"qup_scl" },
{ GPIO_CFG(132, 0, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"qup_sda" },
};
static struct msm_gpio qup_i2c_gpios_hw[] = {
{ GPIO_CFG(60, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"qup_scl" },
{ GPIO_CFG(61, 1, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"qup_sda" },
{ GPIO_CFG(131, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"qup_scl" },
{ GPIO_CFG(132, 2, GPIO_CFG_INPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"qup_sda" },
};
static void gsbi_qup_i2c_gpio_config(int adap_id, int config_type)
{
int rc;
if (adap_id < 0 || adap_id > 1)
return;
/* Each adapter gets 2 lines from the table */
if (config_type)
rc = msm_gpios_request_enable(&qup_i2c_gpios_hw[adap_id*2], 2);
else
rc = msm_gpios_request_enable(&qup_i2c_gpios_io[adap_id*2], 2);
if (rc < 0)
pr_err("QUP GPIO request/enable failed: %d\n", rc);
}
static struct msm_i2c_platform_data msm_gsbi0_qup_i2c_pdata = {
.clk_freq = 100000,
.msm_i2c_config_gpio = gsbi_qup_i2c_gpio_config,
};
static struct msm_i2c_platform_data msm_gsbi1_qup_i2c_pdata = {
.clk_freq = 100000,
.msm_i2c_config_gpio = gsbi_qup_i2c_gpio_config,
};
#ifdef CONFIG_ARCH_MSM7X27A
#define MSM_PMEM_MDP_SIZE 0x1DD1000
#define MSM_PMEM_ADSP_SIZE 0x1000000
#ifdef CONFIG_FB_MSM_TRIPLE_BUFFER
#define MSM_FB_SIZE 0x260000
#else
#define MSM_FB_SIZE 0x195000
#endif
#endif
#if defined(CONFIG_TOUCHSCREEN_SYNAPTICS_RMI4_I2C) || \
defined(CONFIG_TOUCHSCREEN_SYNAPTICS_RMI4_I2C_MODULE)
#ifndef CLEARPAD3000_ATTEN_GPIO
#define CLEARPAD3000_ATTEN_GPIO (48)
#endif
#ifndef CLEARPAD3000_RESET_GPIO
#define CLEARPAD3000_RESET_GPIO (26)
#endif
static int synaptics_touchpad_setup(void);
static struct msm_gpio clearpad3000_cfg_data[] = {
{GPIO_CFG(CLEARPAD3000_ATTEN_GPIO, 0, GPIO_CFG_INPUT,
GPIO_CFG_NO_PULL, GPIO_CFG_6MA), "rmi4_attn"},
{GPIO_CFG(CLEARPAD3000_RESET_GPIO, 0, GPIO_CFG_OUTPUT,
GPIO_CFG_PULL_DOWN, GPIO_CFG_8MA), "rmi4_reset"},
};
static struct rmi_XY_pair rmi_offset = {.x = 0, .y = 0};
static struct rmi_range rmi_clipx = {.min = 48, .max = 980};
static struct rmi_range rmi_clipy = {.min = 7, .max = 1647};
static struct rmi_f11_functiondata synaptics_f11_data = {
.swap_axes = false,
.flipX = false,
.flipY = false,
.offset = &rmi_offset,
.button_height = 113,
.clipX = &rmi_clipx,
.clipY = &rmi_clipy,
};
#define MAX_LEN 100
static ssize_t clearpad3000_virtual_keys_register(struct kobject *kobj,
struct kobj_attribute *attr, char *buf)
{
char *virtual_keys = __stringify(EV_KEY) ":" __stringify(KEY_MENU) \
":60:830:120:60" ":" __stringify(EV_KEY) \
":" __stringify(KEY_HOME) ":180:830:120:60" \
":" __stringify(EV_KEY) ":" \
__stringify(KEY_SEARCH) ":300:830:120:60" \
":" __stringify(EV_KEY) ":" \
__stringify(KEY_BACK) ":420:830:120:60" "\n";
return snprintf(buf, strnlen(virtual_keys, MAX_LEN) + 1 , "%s",
virtual_keys);
}
static struct kobj_attribute clearpad3000_virtual_keys_attr = {
.attr = {
.name = "virtualkeys.sensor00fn11",
.mode = S_IRUGO,
},
.show = &clearpad3000_virtual_keys_register,
};
static struct attribute *virtual_key_properties_attrs[] = {
&clearpad3000_virtual_keys_attr.attr,
NULL
};
static struct attribute_group virtual_key_properties_attr_group = {
.attrs = virtual_key_properties_attrs,
};
struct kobject *virtual_key_properties_kobj;
static struct rmi_functiondata synaptics_functiondata[] = {
{
.function_index = RMI_F11_INDEX,
.data = &synaptics_f11_data,
},
};
static struct rmi_functiondata_list synaptics_perfunctiondata = {
.count = ARRAY_SIZE(synaptics_functiondata),
.functiondata = synaptics_functiondata,
};
static struct rmi_sensordata synaptics_sensordata = {
.perfunctiondata = &synaptics_perfunctiondata,
.rmi_sensor_setup = synaptics_touchpad_setup,
};
static struct rmi_i2c_platformdata synaptics_platformdata = {
.i2c_address = 0x2c,
.irq_type = IORESOURCE_IRQ_LOWLEVEL,
.sensordata = &synaptics_sensordata,
};
static struct i2c_board_info synaptic_i2c_clearpad3k[] = {
{
I2C_BOARD_INFO("rmi4_ts", 0x2c),
.platform_data = &synaptics_platformdata,
},
};
static int synaptics_touchpad_setup(void)
{
int retval = 0;
virtual_key_properties_kobj =
kobject_create_and_add("board_properties", NULL);
if (virtual_key_properties_kobj)
retval = sysfs_create_group(virtual_key_properties_kobj,
&virtual_key_properties_attr_group);
if (!virtual_key_properties_kobj || retval)
pr_err("failed to create ft5202 board_properties\n");
retval = msm_gpios_request_enable(clearpad3000_cfg_data,
sizeof(clearpad3000_cfg_data)/sizeof(struct msm_gpio));
if (retval) {
pr_err("%s:Failed to obtain touchpad GPIO %d. Code: %d.",
__func__, CLEARPAD3000_ATTEN_GPIO, retval);
retval = 0; /* ignore the err */
}
synaptics_platformdata.irq = gpio_to_irq(CLEARPAD3000_ATTEN_GPIO);
gpio_set_value(CLEARPAD3000_RESET_GPIO, 0);
usleep(10000);
gpio_set_value(CLEARPAD3000_RESET_GPIO, 1);
usleep(50000);
return retval;
}
#endif
static struct android_usb_platform_data android_usb_pdata = {
.update_pid_and_serial_num = usb_diag_update_pid_and_serial_num,
};
static struct platform_device android_usb_device = {
.name = "android_usb",
.id = -1,
.dev = {
.platform_data = &android_usb_pdata,
},
};
#ifdef CONFIG_USB_EHCI_MSM_72K
static void msm_hsusb_vbus_power(unsigned phy_info, int on)
{
int rc = 0;
unsigned gpio;
gpio = GPIO_HOST_VBUS_EN;
rc = gpio_request(gpio, "i2c_host_vbus_en");
if (rc < 0) {
pr_err("failed to request %d GPIO\n", gpio);
return;
}
gpio_direction_output(gpio, !!on);
gpio_set_value_cansleep(gpio, !!on);
gpio_free(gpio);
}
static struct msm_usb_host_platform_data msm_usb_host_pdata = {
.phy_info = (USB_PHY_INTEGRATED | USB_PHY_MODEL_45NM),
};
static void __init msm7627a_init_host(void)
{
msm_add_host(0, &msm_usb_host_pdata);
}
#endif
#ifdef CONFIG_USB_MSM_OTG_72K
static int hsusb_rpc_connect(int connect)
{
if (connect)
return msm_hsusb_rpc_connect();
else
return msm_hsusb_rpc_close();
}
static struct vreg *vreg_3p3;
static int msm_hsusb_ldo_init(int init)
{
if (init) {
vreg_3p3 = vreg_get(NULL, "usb");
if (IS_ERR(vreg_3p3))
return PTR_ERR(vreg_3p3);
} else
vreg_put(vreg_3p3);
return 0;
}
static int msm_hsusb_ldo_enable(int enable)
{
static int ldo_status;
if (!vreg_3p3 || IS_ERR(vreg_3p3))
return -ENODEV;
if (ldo_status == enable)
return 0;
ldo_status = enable;
if (enable)
return vreg_enable(vreg_3p3);
return vreg_disable(vreg_3p3);
}
#ifndef CONFIG_USB_EHCI_MSM_72K
static int msm_hsusb_pmic_notif_init(void (*callback)(int online), int init)
{
int ret = 0;
if (init)
ret = msm_pm_app_rpc_init(callback);
else
msm_pm_app_rpc_deinit(callback);
return ret;
}
#endif
static struct msm_otg_platform_data msm_otg_pdata = {
#ifndef CONFIG_USB_EHCI_MSM_72K
.pmic_vbus_notif_init = msm_hsusb_pmic_notif_init,
#else
.vbus_power = msm_hsusb_vbus_power,
#endif
.rpc_connect = hsusb_rpc_connect,
.core_clk = 1,
.pemp_level = PRE_EMPHASIS_WITH_20_PERCENT,
.cdr_autoreset = CDR_AUTO_RESET_DISABLE,
.drv_ampl = HS_DRV_AMPLITUDE_DEFAULT,
.se1_gating = SE1_GATING_DISABLE,
.ldo_init = msm_hsusb_ldo_init,
.ldo_enable = msm_hsusb_ldo_enable,
.chg_init = hsusb_chg_init,
.chg_connected = hsusb_chg_connected,
.chg_vbus_draw = hsusb_chg_vbus_draw,
};
#endif
static struct msm_hsusb_gadget_platform_data msm_gadget_pdata = {
.is_phy_status_timer_on = 1,
};
#if (defined(CONFIG_MMC_MSM_SDC1_SUPPORT)\
|| defined(CONFIG_MMC_MSM_SDC2_SUPPORT)\
|| defined(CONFIG_MMC_MSM_SDC3_SUPPORT)\
|| defined(CONFIG_MMC_MSM_SDC4_SUPPORT))
static unsigned long vreg_sts, gpio_sts;
static struct vreg *vreg_mmc;
static struct vreg *vreg_emmc;
struct sdcc_vreg {
struct vreg *vreg_data;
unsigned level;
};
static struct sdcc_vreg sdcc_vreg_data[4];
struct sdcc_gpio {
struct msm_gpio *cfg_data;
uint32_t size;
struct msm_gpio *sleep_cfg_data;
};
/**
* Due to insufficient drive strengths for SDC GPIO lines some old versioned
* SD/MMC cards may cause data CRC errors. Hence, set optimal values
* for SDC slots based on timing closure and marginality. SDC1 slot
* require higher value since it should handle bad signal quality due
* to size of T-flash adapters.
*/
static struct msm_gpio sdc1_cfg_data[] = {
{GPIO_CFG(51, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_14MA),
"sdc1_dat_3"},
{GPIO_CFG(52, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_14MA),
"sdc1_dat_2"},
{GPIO_CFG(53, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_14MA),
"sdc1_dat_1"},
{GPIO_CFG(54, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_14MA),
"sdc1_dat_0"},
{GPIO_CFG(55, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_14MA),
"sdc1_cmd"},
{GPIO_CFG(56, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_14MA),
"sdc1_clk"},
};
static struct msm_gpio sdc2_cfg_data[] = {
{GPIO_CFG(62, 2, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"sdc2_clk"},
{GPIO_CFG(63, 2, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc2_cmd"},
{GPIO_CFG(64, 2, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc2_dat_3"},
{GPIO_CFG(65, 2, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc2_dat_2"},
{GPIO_CFG(66, 2, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc2_dat_1"},
{GPIO_CFG(67, 2, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc2_dat_0"},
};
static struct msm_gpio sdc2_sleep_cfg_data[] = {
{GPIO_CFG(62, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"sdc2_clk"},
{GPIO_CFG(63, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"sdc2_cmd"},
{GPIO_CFG(64, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"sdc2_dat_3"},
{GPIO_CFG(65, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"sdc2_dat_2"},
{GPIO_CFG(66, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"sdc2_dat_1"},
{GPIO_CFG(67, 0, GPIO_CFG_INPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
"sdc2_dat_0"},
};
static struct msm_gpio sdc3_cfg_data[] = {
{GPIO_CFG(88, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"sdc3_clk"},
{GPIO_CFG(89, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_cmd"},
{GPIO_CFG(90, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_dat_3"},
{GPIO_CFG(91, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_dat_2"},
{GPIO_CFG(92, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_dat_1"},
{GPIO_CFG(93, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_dat_0"},
#ifdef CONFIG_MMC_MSM_SDC3_8_BIT_SUPPORT
{GPIO_CFG(19, 3, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_dat_7"},
{GPIO_CFG(20, 3, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_dat_6"},
{GPIO_CFG(21, 3, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_dat_5"},
{GPIO_CFG(108, 3, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc3_dat_4"},
#endif
};
static struct msm_gpio sdc4_cfg_data[] = {
{GPIO_CFG(19, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc4_dat_3"},
{GPIO_CFG(20, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc4_dat_2"},
{GPIO_CFG(21, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc4_dat_1"},
{GPIO_CFG(107, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc4_cmd"},
{GPIO_CFG(108, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP, GPIO_CFG_10MA),
"sdc4_dat_0"},
{GPIO_CFG(109, 1, GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_8MA),
"sdc4_clk"},
};
static struct sdcc_gpio sdcc_cfg_data[] = {
{
.cfg_data = sdc1_cfg_data,
.size = ARRAY_SIZE(sdc1_cfg_data),
},
{
.cfg_data = sdc2_cfg_data,
.size = ARRAY_SIZE(sdc2_cfg_data),
.sleep_cfg_data = sdc2_sleep_cfg_data,
},
{
.cfg_data = sdc3_cfg_data,
.size = ARRAY_SIZE(sdc3_cfg_data),
},
{
.cfg_data = sdc4_cfg_data,
.size = ARRAY_SIZE(sdc4_cfg_data),
},
};
static int msm_sdcc_setup_gpio(int dev_id, unsigned int enable)
{
int rc = 0;
struct sdcc_gpio *curr;
curr = &sdcc_cfg_data[dev_id - 1];
if (!(test_bit(dev_id, &gpio_sts)^enable))
return rc;
if (enable) {
set_bit(dev_id, &gpio_sts);
rc = msm_gpios_request_enable(curr->cfg_data, curr->size);
if (rc)
pr_err("%s: Failed to turn on GPIOs for slot %d\n",
__func__, dev_id);
} else {
clear_bit(dev_id, &gpio_sts);
if (curr->sleep_cfg_data) {
rc = msm_gpios_enable(curr->sleep_cfg_data, curr->size);
msm_gpios_free(curr->sleep_cfg_data, curr->size);
return rc;
}
msm_gpios_disable_free(curr->cfg_data, curr->size);
}
return rc;
}
static int msm_sdcc_setup_vreg(int dev_id, unsigned int enable)
{
int rc = 0;
struct sdcc_vreg *curr;
curr = &sdcc_vreg_data[dev_id - 1];
if (!(test_bit(dev_id, &vreg_sts)^enable))
return rc;
if (enable) {
set_bit(dev_id, &vreg_sts);
rc = vreg_set_level(curr->vreg_data, curr->level);
if (rc)
pr_err("%s: vreg_set_level() = %d\n", __func__, rc);
rc = vreg_enable(curr->vreg_data);
if (rc)
pr_err("%s: vreg_enable() = %d\n", __func__, rc);
} else {
clear_bit(dev_id, &vreg_sts);
rc = vreg_disable(curr->vreg_data);
if (rc)
pr_err("%s: vreg_disable() = %d\n", __func__, rc);
}
return rc;
}
static uint32_t msm_sdcc_setup_power(struct device *dv, unsigned int vdd)
{
int rc = 0;
struct platform_device *pdev;
pdev = container_of(dv, struct platform_device, dev);
rc = msm_sdcc_setup_gpio(pdev->id, !!vdd);
if (rc)
goto out;
rc = msm_sdcc_setup_vreg(pdev->id, !!vdd);
out:
return rc;
}
#define GPIO_SDC1_HW_DET 42
#if defined(CONFIG_MMC_MSM_SDC1_SUPPORT) \
&& defined(CONFIG_MMC_MSM_CARD_HW_DETECTION)
static unsigned int msm7627a_sdcc_slot_status(struct device *dev)
{
int status;
status = gpio_tlmm_config(GPIO_CFG(GPIO_SDC1_HW_DET, 2, GPIO_CFG_INPUT,
GPIO_CFG_PULL_UP, GPIO_CFG_8MA), GPIO_CFG_ENABLE);
if (status)
pr_err("%s:Failed to configure tlmm for GPIO %d\n", __func__,
GPIO_SDC1_HW_DET);
status = gpio_request(GPIO_SDC1_HW_DET, "SD_HW_Detect");
if (status) {
pr_err("%s:Failed to request GPIO %d\n", __func__,
GPIO_SDC1_HW_DET);
} else {
status = gpio_direction_input(GPIO_SDC1_HW_DET);
if (!status)
status = !gpio_get_value(GPIO_SDC1_HW_DET);
gpio_free(GPIO_SDC1_HW_DET);
}
return status;
}
#endif
#ifdef CONFIG_MMC_MSM_SDC1_SUPPORT
static struct mmc_platform_data sdc1_plat_data = {
.ocr_mask = MMC_VDD_28_29,
.translate_vdd = msm_sdcc_setup_power,
.mmc_bus_width = MMC_CAP_4_BIT_DATA,
.msmsdcc_fmin = 144000,
.msmsdcc_fmid = 24576000,
.msmsdcc_fmax = 49152000,
#ifdef CONFIG_MMC_MSM_CARD_HW_DETECTION
.status = msm7627a_sdcc_slot_status,
.status_irq = MSM_GPIO_TO_INT(GPIO_SDC1_HW_DET),
.irq_flags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
#endif
};
#endif
#ifdef CONFIG_MMC_MSM_SDC2_SUPPORT
static struct mmc_platform_data sdc2_plat_data = {
/*
* SDC2 supports only 1.8V, claim for 2.85V range is just
* for allowing buggy cards who advertise 2.8V even though
* they can operate at 1.8V supply.
*/
.ocr_mask = MMC_VDD_28_29 | MMC_VDD_165_195,
.translate_vdd = msm_sdcc_setup_power,
.mmc_bus_width = MMC_CAP_4_BIT_DATA,
#ifdef CONFIG_MMC_MSM_SDIO_SUPPORT
.sdiowakeup_irq = MSM_GPIO_TO_INT(66),
#endif
.msmsdcc_fmin = 144000,
.msmsdcc_fmid = 24576000,
.msmsdcc_fmax = 49152000,
#ifdef CONFIG_MMC_MSM_SDC2_DUMMY52_REQUIRED
.dummy52_required = 1,
#endif
};
#endif
#ifdef CONFIG_MMC_MSM_SDC3_SUPPORT
static struct mmc_platform_data sdc3_plat_data = {
.ocr_mask = MMC_VDD_28_29,
.translate_vdd = msm_sdcc_setup_power,
#ifdef CONFIG_MMC_MSM_SDC3_8_BIT_SUPPORT
.mmc_bus_width = MMC_CAP_8_BIT_DATA,
#else
.mmc_bus_width = MMC_CAP_4_BIT_DATA,
#endif
.msmsdcc_fmin = 144000,
.msmsdcc_fmid = 24576000,
.msmsdcc_fmax = 49152000,
.nonremovable = 1,
};
#endif
#if (defined(CONFIG_MMC_MSM_SDC4_SUPPORT)\
&& !defined(CONFIG_MMC_MSM_SDC3_8_BIT_SUPPORT))
static struct mmc_platform_data sdc4_plat_data = {
.ocr_mask = MMC_VDD_28_29,
.translate_vdd = msm_sdcc_setup_power,
.mmc_bus_width = MMC_CAP_4_BIT_DATA,
.msmsdcc_fmin = 144000,
.msmsdcc_fmid = 24576000,
.msmsdcc_fmax = 49152000,
};
#endif
#endif
#ifdef CONFIG_SERIAL_MSM_HS
static struct msm_serial_hs_platform_data msm_uart_dm1_pdata = {
.inject_rx_on_wakeup = 1,
.rx_to_inject = 0xFD,
};
#endif
static struct msm_pm_platform_data msm7627a_pm_data[MSM_PM_SLEEP_MODE_NR] = {
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE] = {
.idle_supported = 1,
.suspend_supported = 1,
.idle_enabled = 1,
.suspend_enabled = 1,
.latency = 16000,
.residency = 20000,
},
[MSM_PM_SLEEP_MODE_POWER_COLLAPSE_NO_XO_SHUTDOWN] = {
.idle_supported = 1,
.suspend_supported = 1,
.idle_enabled = 1,
.suspend_enabled = 1,
.latency = 12000,
.residency = 20000,
},
[MSM_PM_SLEEP_MODE_RAMP_DOWN_AND_WAIT_FOR_INTERRUPT] = {
.idle_supported = 1,
.suspend_supported = 1,
.idle_enabled = 0,
.suspend_enabled = 1,
.latency = 2000,
.residency = 0,
},
[MSM_PM_SLEEP_MODE_WAIT_FOR_INTERRUPT] = {
.idle_supported = 1,
.suspend_supported = 1,
.idle_enabled = 1,
.suspend_enabled = 1,
.latency = 2,
.residency = 0,
},
};
static struct android_pmem_platform_data android_pmem_adsp_pdata = {
.name = "pmem_adsp",
.allocator_type = PMEM_ALLOCATORTYPE_BITMAP,
.cached = 1,
.memory_type = MEMTYPE_EBI1,
};
static struct platform_device android_pmem_adsp_device = {
.name = "android_pmem",
.id = 1,
.dev = { .platform_data = &android_pmem_adsp_pdata },
};
static unsigned pmem_mdp_size = MSM_PMEM_MDP_SIZE;
static int __init pmem_mdp_size_setup(char *p)
{
pmem_mdp_size = memparse(p, NULL);
return 0;
}
early_param("pmem_mdp_size", pmem_mdp_size_setup);
static unsigned pmem_adsp_size = MSM_PMEM_ADSP_SIZE;
static int __init pmem_adsp_size_setup(char *p)
{
pmem_adsp_size = memparse(p, NULL);
return 0;
}
early_param("pmem_adsp_size", pmem_adsp_size_setup);
static unsigned fb_size = MSM_FB_SIZE;
static int __init fb_size_setup(char *p)
{
fb_size = memparse(p, NULL);
return 0;
}
early_param("fb_size", fb_size_setup);
static struct resource msm_fb_resources[] = {
{
.flags = IORESOURCE_DMA,
}
};
static int msm_fb_detect_panel(const char *name)
{
int ret;
if (!strncmp(name, "mipi_video_truly_wvga", 21))
ret = 0;
else
ret = -ENODEV;
return ret;
}
static int mipi_truly_set_bl(int on)
{
gpio_set_value_cansleep(GPIO_BACKLIGHT_EN, !!on);
return 1;
}
static struct msm_fb_platform_data msm_fb_pdata = {
.detect_client = msm_fb_detect_panel,
};
static struct platform_device msm_fb_device = {
.name = "msm_fb",
.id = 0,
.num_resources = ARRAY_SIZE(msm_fb_resources),
.resource = msm_fb_resources,
.dev = {
.platform_data = &msm_fb_pdata,
}
};
static struct msm_panel_common_pdata mipi_truly_pdata = {
.pmic_backlight = mipi_truly_set_bl,
};
static struct platform_device mipi_dsi_truly_panel_device = {
.name = "mipi_truly",
.id = 0,
.dev = {
.platform_data = &mipi_truly_pdata,
}
};
static void __init msm7627a_init_mmc(void)
{
vreg_emmc = vreg_get(NULL, "emmc");
if (IS_ERR(vreg_emmc)) {
pr_err("%s: vreg get failed (%ld)\n",
__func__, PTR_ERR(vreg_emmc));
return;
}
vreg_mmc = vreg_get(NULL, "mmc");
if (IS_ERR(vreg_mmc)) {
pr_err("%s: vreg get failed (%ld)\n",
__func__, PTR_ERR(vreg_mmc));
return;
}
/* eMMC slot */
#ifdef CONFIG_MMC_MSM_SDC3_SUPPORT
sdcc_vreg_data[2].vreg_data = vreg_emmc;
sdcc_vreg_data[2].level = 3000;
msm_add_sdcc(3, &sdc3_plat_data);
#endif
/* Micro-SD slot */
#ifdef CONFIG_MMC_MSM_SDC1_SUPPORT
sdcc_vreg_data[0].vreg_data = vreg_mmc;
sdcc_vreg_data[0].level = 2850;
msm_add_sdcc(1, &sdc1_plat_data);
#endif
/* SDIO WLAN slot */
#ifdef CONFIG_MMC_MSM_SDC2_SUPPORT
sdcc_vreg_data[1].vreg_data = vreg_mmc;
sdcc_vreg_data[1].level = 2850;
msm_add_sdcc(2, &sdc2_plat_data);
#endif
/* Not Used */
#if (defined(CONFIG_MMC_MSM_SDC4_SUPPORT)\
&& !defined(CONFIG_MMC_MSM_SDC3_8_BIT_SUPPORT))
sdcc_vreg_data[3].vreg_data = vreg_mmc;
sdcc_vreg_data[3].level = 2850;
msm_add_sdcc(4, &sdc4_plat_data);
#endif
}
#define SND(desc, num) { .name = #desc, .id = num }
static struct snd_endpoint snd_endpoints_list[] = {
SND(HANDSET, 0),
SND(MONO_HEADSET, 2),
SND(HEADSET, 3),
SND(SPEAKER, 6),
SND(TTY_HEADSET, 8),
SND(TTY_VCO, 9),
SND(TTY_HCO, 10),
SND(BT, 12),
SND(IN_S_SADC_OUT_HANDSET, 16),
SND(IN_S_SADC_OUT_SPEAKER_PHONE, 25),
SND(FM_DIGITAL_STEREO_HEADSET, 26),
SND(FM_DIGITAL_SPEAKER_PHONE, 27),
SND(FM_DIGITAL_BT_A2DP_HEADSET, 28),
SND(STEREO_HEADSET_AND_SPEAKER, 31),
SND(CURRENT, 0x7FFFFFFE),
SND(FM_ANALOG_STEREO_HEADSET, 35),
SND(FM_ANALOG_STEREO_HEADSET_CODEC, 36),
};
#undef SND
static struct msm_snd_endpoints msm_device_snd_endpoints = {
.endpoints = snd_endpoints_list,
.num = sizeof(snd_endpoints_list) / sizeof(struct snd_endpoint)
};
static struct platform_device msm_device_snd = {
.name = "msm_snd",
.id = -1,
.dev = {
.platform_data = &msm_device_snd_endpoints
},
};
#define DEC0_FORMAT ((1<<MSM_ADSP_CODEC_MP3)| \
(1<<MSM_ADSP_CODEC_AAC)|(1<<MSM_ADSP_CODEC_WMA)| \
(1<<MSM_ADSP_CODEC_WMAPRO)|(1<<MSM_ADSP_CODEC_AMRWB)| \
(1<<MSM_ADSP_CODEC_AMRNB)|(1<<MSM_ADSP_CODEC_WAV)| \
(1<<MSM_ADSP_CODEC_ADPCM)|(1<<MSM_ADSP_CODEC_YADPCM)| \
(1<<MSM_ADSP_CODEC_EVRC)|(1<<MSM_ADSP_CODEC_QCELP))
#define DEC1_FORMAT ((1<<MSM_ADSP_CODEC_MP3)| \
(1<<MSM_ADSP_CODEC_AAC)|(1<<MSM_ADSP_CODEC_WMA)| \
(1<<MSM_ADSP_CODEC_WMAPRO)|(1<<MSM_ADSP_CODEC_AMRWB)| \
(1<<MSM_ADSP_CODEC_AMRNB)|(1<<MSM_ADSP_CODEC_WAV)| \
(1<<MSM_ADSP_CODEC_ADPCM)|(1<<MSM_ADSP_CODEC_YADPCM)| \
(1<<MSM_ADSP_CODEC_EVRC)|(1<<MSM_ADSP_CODEC_QCELP))
#define DEC2_FORMAT ((1<<MSM_ADSP_CODEC_MP3)| \
(1<<MSM_ADSP_CODEC_AAC)|(1<<MSM_ADSP_CODEC_WMA)| \
(1<<MSM_ADSP_CODEC_WMAPRO)|(1<<MSM_ADSP_CODEC_AMRWB)| \
(1<<MSM_ADSP_CODEC_AMRNB)|(1<<MSM_ADSP_CODEC_WAV)| \
(1<<MSM_ADSP_CODEC_ADPCM)|(1<<MSM_ADSP_CODEC_YADPCM)| \
(1<<MSM_ADSP_CODEC_EVRC)|(1<<MSM_ADSP_CODEC_QCELP))
#define DEC3_FORMAT ((1<<MSM_ADSP_CODEC_MP3)| \
(1<<MSM_ADSP_CODEC_AAC)|(1<<MSM_ADSP_CODEC_WMA)| \
(1<<MSM_ADSP_CODEC_WMAPRO)|(1<<MSM_ADSP_CODEC_AMRWB)| \
(1<<MSM_ADSP_CODEC_AMRNB)|(1<<MSM_ADSP_CODEC_WAV)| \
(1<<MSM_ADSP_CODEC_ADPCM)|(1<<MSM_ADSP_CODEC_YADPCM)| \
(1<<MSM_ADSP_CODEC_EVRC)|(1<<MSM_ADSP_CODEC_QCELP))
#define DEC4_FORMAT (1<<MSM_ADSP_CODEC_MIDI)
static unsigned int dec_concurrency_table[] = {
/* Audio LP */
(DEC0_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DMA)), 0,
0, 0, 0,
/* Concurrency 1 */
(DEC0_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC1_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC2_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC3_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC4_FORMAT),
/* Concurrency 2 */
(DEC0_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC1_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC2_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC3_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC4_FORMAT),
/* Concurrency 3 */
(DEC0_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC1_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC2_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC3_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC4_FORMAT),
/* Concurrency 4 */
(DEC0_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC1_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC2_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC3_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC4_FORMAT),
/* Concurrency 5 */
(DEC0_FORMAT|(1<<MSM_ADSP_MODE_TUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC1_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC2_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC3_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC4_FORMAT),
/* Concurrency 6 */
(DEC0_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
0, 0, 0, 0,
/* Concurrency 7 */
(DEC0_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC1_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC2_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC3_FORMAT|(1<<MSM_ADSP_MODE_NONTUNNEL)|(1<<MSM_ADSP_OP_DM)),
(DEC4_FORMAT),
};
#define DEC_INFO(name, queueid, decid, nr_codec) { .module_name = name, \
.module_queueid = queueid, .module_decid = decid, \
.nr_codec_support = nr_codec}
static struct msm_adspdec_info dec_info_list[] = {
DEC_INFO("AUDPLAY0TASK", 13, 0, 11), /* AudPlay0BitStreamCtrlQueue */
DEC_INFO("AUDPLAY1TASK", 14, 1, 11), /* AudPlay1BitStreamCtrlQueue */
DEC_INFO("AUDPLAY2TASK", 15, 2, 11), /* AudPlay2BitStreamCtrlQueue */
DEC_INFO("AUDPLAY3TASK", 16, 3, 11), /* AudPlay3BitStreamCtrlQueue */
DEC_INFO("AUDPLAY4TASK", 17, 4, 1), /* AudPlay4BitStreamCtrlQueue */
};
static struct msm_adspdec_database msm_device_adspdec_database = {
.num_dec = ARRAY_SIZE(dec_info_list),
.num_concurrency_support = (ARRAY_SIZE(dec_concurrency_table) / \
ARRAY_SIZE(dec_info_list)),
.dec_concurrency_table = dec_concurrency_table,
.dec_info_list = dec_info_list,
};
static struct platform_device msm_device_adspdec = {
.name = "msm_adspdec",
.id = -1,
.dev = {
.platform_data = &msm_device_adspdec_database
},
};
static struct android_pmem_platform_data android_pmem_audio_pdata = {
.name = "pmem_audio",
.allocator_type = PMEM_ALLOCATORTYPE_BITMAP,
.cached = 0,
.memory_type = MEMTYPE_EBI1,
};
static struct platform_device android_pmem_audio_device = {
.name = "android_pmem",
.id = 2,
.dev = { .platform_data = &android_pmem_audio_pdata },
};
static struct android_pmem_platform_data android_pmem_pdata = {
.name = "pmem",
.allocator_type = PMEM_ALLOCATORTYPE_BITMAP,
.cached = 1,
.memory_type = MEMTYPE_EBI1,
};
static struct platform_device android_pmem_device = {
.name = "android_pmem",
.id = 0,
.dev = { .platform_data = &android_pmem_pdata },
};
static u32 msm_calculate_batt_capacity(u32 current_voltage);
static struct msm_psy_batt_pdata msm_psy_batt_data = {
.voltage_min_design = 2800,
.voltage_max_design = 4300,
.avail_chg_sources = AC_CHG | USB_CHG ,
.batt_technology = POWER_SUPPLY_TECHNOLOGY_LION,
.calculate_capacity = &msm_calculate_batt_capacity,
};
static u32 msm_calculate_batt_capacity(u32 current_voltage)
{
u32 low_voltage = msm_psy_batt_data.voltage_min_design;
u32 high_voltage = msm_psy_batt_data.voltage_max_design;
return (current_voltage - low_voltage) * 100
/ (high_voltage - low_voltage);
}
static struct platform_device msm_batt_device = {
.name = "msm-battery",
.id = -1,
.dev.platform_data = &msm_psy_batt_data,
};
#ifdef CONFIG_MSM_CAMERA
static uint32_t camera_off_gpio_table[] = {
GPIO_CFG(15, 0, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
};
static uint32_t camera_on_gpio_table[] = {
GPIO_CFG(15, 1, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_DOWN, GPIO_CFG_2MA),
};
static void qrd1_camera_gpio_cfg(void)
{
int rc = 0;
rc = gpio_request(GPIO_CAM_5MP_SHDN_EN, "ov5640");
if (rc < 0)
pr_err("%s: gpio_request---GPIO_CAM_5MP_SHDN_EN failed!",
__func__);
rc = gpio_tlmm_config(GPIO_CFG(GPIO_CAM_5MP_SHDN_EN, 0,
GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP,
GPIO_CFG_2MA), GPIO_CFG_ENABLE);
if (rc < 0) {
pr_err("%s: unable to enable Power Down gpio for main"
"camera!\n", __func__);
gpio_free(GPIO_CAM_5MP_SHDN_EN);
}
rc = gpio_request(GPIO_CAM_5MP_RESET, "ov5640");
if (rc < 0) {
pr_err("%s: gpio_request---GPIO_CAM_5MP_RESET failed!",
__func__);
gpio_free(GPIO_CAM_5MP_SHDN_EN);
}
rc = gpio_tlmm_config(GPIO_CFG(GPIO_CAM_5MP_RESET, 0,
GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP,
GPIO_CFG_2MA), GPIO_CFG_ENABLE);
if (rc < 0) {
pr_err("%s: unable to enable reset gpio for main camera!\n",
__func__);
gpio_free(GPIO_CAM_5MP_RESET);
}
rc = gpio_request(GPIO_CAM_3MP_PWDN, "ov7692");
if (rc < 0)
pr_err("%s: gpio_request---GPIO_CAM_3MP_PWDN failed!",
__func__);
rc = gpio_tlmm_config(GPIO_CFG(GPIO_CAM_3MP_PWDN, 0,
GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP,
GPIO_CFG_2MA), GPIO_CFG_ENABLE);
if (rc < 0) {
pr_err("%s: unable to enable Power Down gpio for front"
"camera!\n", __func__);
gpio_free(GPIO_CAM_3MP_PWDN);
}
gpio_direction_output(GPIO_CAM_5MP_SHDN_EN, 1);
gpio_direction_output(GPIO_CAM_5MP_RESET, 1);
gpio_direction_output(GPIO_CAM_3MP_PWDN, 1);
}
#endif
static struct vreg *vreg_gp1;
static struct vreg *vreg_gp2;
static struct vreg *vreg_gp3;
static void msm_camera_vreg_config(int vreg_en)
{
int rc;
if (vreg_gp1 == NULL) {
vreg_gp1 = vreg_get(NULL, "msme1");
if (IS_ERR(vreg_gp1)) {
pr_err("%s: vreg_get(%s) failed (%ld)\n",
__func__, "msme1", PTR_ERR(vreg_gp1));
return;
}
rc = vreg_set_level(vreg_gp1, 1800);
if (rc) {
pr_err("%s: GP1 set_level failed (%d)\n",
__func__, rc);
return;
}
}
if (vreg_gp2 == NULL) {
vreg_gp2 = vreg_get(NULL, "gp2");
if (IS_ERR(vreg_gp2)) {
pr_err("%s: vreg_get(%s) failed (%ld)\n",
__func__, "gp2", PTR_ERR(vreg_gp2));
return;
}
rc = vreg_set_level(vreg_gp2, 2850);
if (rc) {
pr_err("%s: GP2 set_level failed (%d)\n",
__func__, rc);
}
}
if (vreg_gp3 == NULL) {
vreg_gp3 = vreg_get(NULL, "usb2");
if (IS_ERR(vreg_gp3)) {
pr_err("%s: vreg_get(%s) failed (%ld)\n",
__func__, "gp3", PTR_ERR(vreg_gp3));
return;
}
rc = vreg_set_level(vreg_gp3, 1800);
if (rc) {
pr_err("%s: GP3 set level failed (%d)\n",
__func__, rc);
}
}
if (vreg_en) {
rc = vreg_enable(vreg_gp1);
if (rc) {
pr_err("%s: GP1 enable failed (%d)\n",
__func__, rc);
return;
}
rc = vreg_enable(vreg_gp2);
if (rc) {
pr_err("%s: GP2 enable failed (%d)\n",
__func__, rc);
}
rc = vreg_enable(vreg_gp3);
if (rc) {
pr_err("%s: GP3 enable failed (%d)\n",
__func__, rc);
}
} else {
rc = vreg_disable(vreg_gp1);
if (rc)
pr_err("%s: GP1 disable failed (%d)\n",
__func__, rc);
rc = vreg_disable(vreg_gp2);
if (rc) {
pr_err("%s: GP2 disable failed (%d)\n",
__func__, rc);
}
rc = vreg_disable(vreg_gp3);
if (rc) {
pr_err("%s: GP3 disable failed (%d)\n",
__func__, rc);
}
}
}
static int config_gpio_table(uint32_t *table, int len)
{
int rc = 0, i = 0;
for (i = 0; i < len; i++) {
rc = gpio_tlmm_config(table[i], GPIO_CFG_ENABLE);
if (rc) {
pr_err("%s not able to get gpio\n", __func__);
for (i--; i >= 0; i--)
gpio_tlmm_config(camera_off_gpio_table[i],
GPIO_CFG_ENABLE);
break;
}
}
return rc;
}
static int config_camera_on_gpios_rear(void)
{
int rc = 0;
msm_camera_vreg_config(1);
rc = config_gpio_table(camera_on_gpio_table,
ARRAY_SIZE(camera_on_gpio_table));
if (rc < 0) {
pr_err("%s: CAMSENSOR gpio table request"
"failed\n", __func__);
return rc;
}
return rc;
}
static void config_camera_off_gpios_rear(void)
{
msm_camera_vreg_config(0);
config_gpio_table(camera_off_gpio_table,
ARRAY_SIZE(camera_off_gpio_table));
}
static int config_camera_on_gpios_front(void)
{
int rc = 0;
msm_camera_vreg_config(1);
rc = config_gpio_table(camera_on_gpio_table,
ARRAY_SIZE(camera_on_gpio_table));
if (rc < 0) {
pr_err("%s: CAMSENSOR gpio table request"
"failed\n", __func__);
return rc;
}
return rc;
}
static void config_camera_off_gpios_front(void)
{
msm_camera_vreg_config(0);
config_gpio_table(camera_off_gpio_table,
ARRAY_SIZE(camera_off_gpio_table));
}
struct msm_camera_device_platform_data msm_camera_data_rear = {
.camera_gpio_on = config_camera_on_gpios_rear,
.camera_gpio_off = config_camera_off_gpios_rear,
.ioext.csiphy = 0xA1000000,
.ioext.csisz = 0x00100000,
.ioext.csiirq = INT_CSI_IRQ_1,
.ioclk.mclk_clk_rate = 24000000,
.ioclk.vfe_clk_rate = 192000000,
.ioext.appphy = MSM_CLK_CTL_PHYS,
.ioext.appsz = MSM_CLK_CTL_SIZE,
};
struct msm_camera_device_platform_data msm_camera_data_front = {
.camera_gpio_on = config_camera_on_gpios_front,
.camera_gpio_off = config_camera_off_gpios_front,
.ioext.csiphy = 0xA0F00000,
.ioext.csisz = 0x00100000,
.ioext.csiirq = INT_CSI_IRQ_0,
.ioclk.mclk_clk_rate = 24000000,
.ioclk.vfe_clk_rate = 192000000,
.ioext.appphy = MSM_CLK_CTL_PHYS,
.ioext.appsz = MSM_CLK_CTL_SIZE,
};
#ifdef CONFIG_OV5640
static struct msm_camera_sensor_platform_info ov5640_sensor_info = {
.mount_angle = 90
};
static struct msm_camera_sensor_flash_src msm_flash_src_ov5640 = {
.flash_sr_type = MSM_CAMERA_FLASH_SRC_LED,
._fsrc.led_src.led_name = "flashlight",
._fsrc.led_src.led_name_len = 10,
};
static struct msm_camera_sensor_flash_data flash_ov5640 = {
.flash_type = MSM_CAMERA_FLASH_LED,
.flash_src = &msm_flash_src_ov5640,
};
static struct msm_camera_sensor_info msm_camera_sensor_ov5640_data = {
.sensor_name = "ov5640",
.sensor_reset_enable = 1,
.sensor_reset = GPIO_CAM_5MP_RESET,
.sensor_pwd = GPIO_CAM_5MP_SHDN_EN,
.vcm_pwd = 0,
.vcm_enable = 0,
.pdata = &msm_camera_data_rear,
.flash_data = &flash_ov5640,
.sensor_platform_info = &ov5640_sensor_info,
.csi_if = 1,
};
static struct platform_device msm_camera_sensor_ov5640 = {
.name = "msm_camera_ov5640",
.dev = {
.platform_data = &msm_camera_sensor_ov5640_data,
},
};
#endif
#ifdef CONFIG_WEBCAM_OV7692_QRD
static struct msm_camera_sensor_platform_info ov7692_sensor_7627a_info = {
.mount_angle = 90
};
static struct msm_camera_sensor_flash_data flash_ov7692 = {
.flash_type = MSM_CAMERA_FLASH_NONE,
};
static struct msm_camera_sensor_info msm_camera_sensor_ov7692_data = {
.sensor_name = "ov7692",
.sensor_reset_enable = 0,
.sensor_reset = 0,
.sensor_pwd = GPIO_CAM_3MP_PWDN,
.vcm_pwd = 0,
.vcm_enable = 0,
.pdata = &msm_camera_data_front,
.flash_data = &flash_ov7692,
.sensor_platform_info = &ov7692_sensor_7627a_info,
.csi_if = 1,
};
static struct platform_device msm_camera_sensor_ov7692 = {
.name = "msm_camera_ov7692",
.dev = {
.platform_data = &msm_camera_sensor_ov7692_data,
},
};
#endif
static struct i2c_board_info i2c_camera_devices[] = {
#ifdef CONFIG_OV5640
{
I2C_BOARD_INFO("ov5640", 0x78 >> 1),
},
#endif
#ifdef CONFIG_WEBCAM_OV7692_QRD
{
I2C_BOARD_INFO("ov7692", 0x78),
},
#endif
};
static struct platform_device *qrd1_devices[] __initdata = {
&msm_device_dmov,
&msm_device_smd,
&msm_device_uart1,
&msm_device_uart_dm1,
&msm_gsbi0_qup_i2c_device,
&msm_gsbi1_qup_i2c_device,
&msm_device_otg,
&msm_device_gadget_peripheral,
&android_usb_device,
&android_pmem_device,
&android_pmem_adsp_device,
&msm_fb_device,
&android_pmem_audio_device,
&msm_device_snd,
&msm_device_adspdec,
&msm_batt_device,
#ifdef CONFIG_OV5640
&msm_camera_sensor_ov5640,
#endif
#ifdef CONFIG_WEBCAM_OV7692_QRD
&msm_camera_sensor_ov7692,
#endif
&msm_kgsl_3d0,
#ifdef CONFIG_BT
&msm_bt_power_device,
#endif
&mipi_dsi_truly_panel_device,
&msm_wlan_ar6000_pm_device,
&asoc_msm_pcm,
&asoc_msm_dai0,
&asoc_msm_dai1,
};
static unsigned pmem_kernel_ebi1_size = PMEM_KERNEL_EBI1_SIZE;
static int __init pmem_kernel_ebi1_size_setup(char *p)
{
pmem_kernel_ebi1_size = memparse(p, NULL);
return 0;
}
early_param("pmem_kernel_ebi1_size", pmem_kernel_ebi1_size_setup);
static unsigned pmem_audio_size = MSM_PMEM_AUDIO_SIZE;
static int __init pmem_audio_size_setup(char *p)
{
pmem_audio_size = memparse(p, NULL);
return 0;
}
early_param("pmem_audio_size", pmem_audio_size_setup);
static void __init msm_msm7627a_allocate_memory_regions(void)
{
void *addr;
unsigned long size;
size = fb_size ? : MSM_FB_SIZE;
addr = alloc_bootmem_align(size, 0x1000);
msm_fb_resources[0].start = __pa(addr);
msm_fb_resources[0].end = msm_fb_resources[0].start + size - 1;
pr_info("allocating %lu bytes at %p (%lx physical) for fb\n", size,
addr, __pa(addr));
}
static struct memtype_reserve msm7627a_reserve_table[] __initdata = {
[MEMTYPE_SMI] = {
},
[MEMTYPE_EBI0] = {
.flags = MEMTYPE_FLAGS_1M_ALIGN,
},
[MEMTYPE_EBI1] = {
.flags = MEMTYPE_FLAGS_1M_ALIGN,
},
};
static struct msm_panel_common_pdata mdp_pdata = {
.gpio = 97,
.mdp_rev = MDP_REV_303,
};
#define GPIO_LCDC_BRDG_PD 128
#define GPIO_LCDC_BRDG_RESET_N 129
#define GPIO_LCD_DSI_SEL 125
static unsigned mipi_dsi_gpio[] = {
GPIO_CFG(GPIO_LCDC_BRDG_RESET_N, 0, GPIO_CFG_OUTPUT,
GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* LCDC_BRDG_RESET_N */
GPIO_CFG(GPIO_LCDC_BRDG_PD, 0, GPIO_CFG_OUTPUT,
GPIO_CFG_NO_PULL, GPIO_CFG_2MA), /* LCDC_BRDG_PD */
};
static unsigned lcd_dsi_sel_gpio[] = {
GPIO_CFG(GPIO_LCD_DSI_SEL, 0, GPIO_CFG_OUTPUT, GPIO_CFG_PULL_UP,
GPIO_CFG_2MA),
};
enum {
DSI_SINGLE_LANE = 1,
DSI_TWO_LANES,
};
static int msm_fb_get_lane_config(void)
{
pr_info("DSI_TWO_LANES\n");
return DSI_TWO_LANES;
}
static int mipi_truly_sel_mode(int video_mode)
{
int rc = 0;
rc = gpio_request(GPIO_LCD_DSI_SEL, "lcd_dsi_sel");
if (rc < 0)
goto gpio_error;
rc = gpio_tlmm_config(lcd_dsi_sel_gpio[0], GPIO_CFG_ENABLE);
if (rc)
goto gpio_error;
rc = gpio_direction_output(GPIO_LCD_DSI_SEL, 1);
if (!rc) {
gpio_set_value_cansleep(GPIO_LCD_DSI_SEL, video_mode);
return rc;
} else {
goto gpio_error;
}
gpio_error:
pr_err("mipi_truly_sel_mode failed\n");
gpio_free(GPIO_LCD_DSI_SEL);
return rc;
}
static int msm_fb_dsi_client_qrd1_reset(void)
{
int rc = 0;
rc = gpio_request(GPIO_LCDC_BRDG_RESET_N, "lcdc_brdg_reset_n");
if (rc < 0) {
pr_err("failed to request lcd brdg reset_n\n");
return rc;
}
rc = gpio_tlmm_config(mipi_dsi_gpio[0], GPIO_CFG_ENABLE);
if (rc < 0) {
pr_err("Failed to enable LCDC Bridge reset enable\n");
return rc;
}
rc = gpio_direction_output(GPIO_LCDC_BRDG_RESET_N, 1);
if (rc < 0) {
pr_err("Failed GPIO bridge pd\n");
gpio_free(GPIO_LCDC_BRDG_RESET_N);
return rc;
}
mipi_truly_sel_mode(1);
return rc;
}
static int msm_fb_dsi_client_reset(void)
{
int rc = 0;
rc = msm_fb_dsi_client_qrd1_reset();
return rc;
}
static int dsi_gpio_initialized;
static int mipi_dsi_panel_qrd1_power(int on)
{
int rc = 0;
if (!dsi_gpio_initialized) {
rc = gpio_request(GPIO_BACKLIGHT_EN, "gpio_bkl_en");
if (rc < 0)
return rc;
rc = gpio_tlmm_config(GPIO_CFG(GPIO_BACKLIGHT_EN, 0,
GPIO_CFG_OUTPUT, GPIO_CFG_NO_PULL, GPIO_CFG_2MA),
GPIO_CFG_ENABLE);
if (rc < 0) {
pr_err("failed GPIO_BACKLIGHT_EN tlmm config\n");
return rc;
}
rc = gpio_direction_output(GPIO_BACKLIGHT_EN, 1);
if (rc < 0) {
pr_err("failed to enable backlight\n");
gpio_free(GPIO_BACKLIGHT_EN);
return rc;
}
dsi_gpio_initialized = 1;
}
gpio_set_value_cansleep(GPIO_BACKLIGHT_EN, !!on);
if (!on) {
gpio_set_value_cansleep(GPIO_LCDC_BRDG_RESET_N, 1);
msleep(20);
gpio_set_value_cansleep(GPIO_LCDC_BRDG_RESET_N, 0);
msleep(20);
gpio_set_value_cansleep(GPIO_LCDC_BRDG_RESET_N, 1);
}
return rc;
}
static int mipi_dsi_panel_power(int on)
{
int rc = 0;
rc = mipi_dsi_panel_qrd1_power(on);
return rc;
}
#define MDP_303_VSYNC_GPIO 97
#ifdef CONFIG_FB_MSM_MDP303
static struct mipi_dsi_platform_data mipi_dsi_pdata = {
.vsync_gpio = MDP_303_VSYNC_GPIO,
.dsi_power_save = mipi_dsi_panel_power,
.dsi_client_reset = msm_fb_dsi_client_reset,
.get_lane_config = msm_fb_get_lane_config,
};
#endif
static void __init msm_fb_add_devices(void)
{
msm_fb_register_device("mdp", &mdp_pdata);
msm_fb_register_device("mipi_dsi", &mipi_dsi_pdata);
}
static void __init size_pmem_devices(void)
{
#ifdef CONFIG_ANDROID_PMEM
android_pmem_adsp_pdata.size = pmem_adsp_size;
android_pmem_pdata.size = pmem_mdp_size;
android_pmem_audio_pdata.size = pmem_audio_size;
#endif
}
static void __init reserve_memory_for(struct android_pmem_platform_data *p)
{
msm7627a_reserve_table[p->memory_type].size += p->size;
}
static void __init reserve_pmem_memory(void)
{
#ifdef CONFIG_ANDROID_PMEM
reserve_memory_for(&android_pmem_adsp_pdata);
reserve_memory_for(&android_pmem_pdata);
reserve_memory_for(&android_pmem_audio_pdata);
msm7627a_reserve_table[MEMTYPE_EBI1].size += pmem_kernel_ebi1_size;
#endif
}
static void __init msm7627a_calculate_reserve_sizes(void)
{
size_pmem_devices();
reserve_pmem_memory();
}
static int msm7627a_paddr_to_memtype(unsigned int paddr)
{
return MEMTYPE_EBI1;
}
static struct reserve_info msm7627a_reserve_info __initdata = {
.memtype_reserve_table = msm7627a_reserve_table,
.calculate_reserve_sizes = msm7627a_calculate_reserve_sizes,
.paddr_to_memtype = msm7627a_paddr_to_memtype,
};
static void __init msm7627a_reserve(void)
{
reserve_info = &msm7627a_reserve_info;
msm_reserve();
}
static void __init msm_device_i2c_init(void)
{
msm_gsbi0_qup_i2c_device.dev.platform_data = &msm_gsbi0_qup_i2c_pdata;
msm_gsbi1_qup_i2c_device.dev.platform_data = &msm_gsbi1_qup_i2c_pdata;
}
static struct msm_handset_platform_data hs_platform_data = {
.hs_name = "7k_handset",
.pwr_key_delay_ms = 500, /* 0 will disable end key */
};
static struct platform_device hs_pdev = {
.name = "msm-handset",
.id = -1,
.dev = {
.platform_data = &hs_platform_data,
},
};
#define UART1DM_RX_GPIO 45
static void __init msm_qrd1_init(void)
{
msm7x2x_misc_init();
msm_device_i2c_init();
msm7627a_init_mmc();
qrd1_camera_gpio_cfg();
#ifdef CONFIG_SERIAL_MSM_HS
msm_uart_dm1_pdata.wakeup_irq = gpio_to_irq(UART1DM_RX_GPIO);
msm_device_uart_dm1.dev.platform_data = &msm_uart_dm1_pdata;
#endif
#ifdef CONFIG_USB_MSM_OTG_72K
msm_otg_pdata.swfi_latency = msm7627a_pm_data
[MSM_PM_SLEEP_MODE_RAMP_DOWN_AND_WAIT_FOR_INTERRUPT].latency;
msm_device_otg.dev.platform_data = &msm_otg_pdata;
#endif
msm_device_gadget_peripheral.dev.platform_data =
&msm_gadget_pdata;
platform_add_devices(qrd1_devices,
ARRAY_SIZE(qrd1_devices));
#ifdef CONFIG_USB_EHCI_MSM_72K
msm7627a_init_host();
#endif
msm_pm_set_platform_data(msm7627a_pm_data,
ARRAY_SIZE(msm7627a_pm_data));
BUG_ON(msm_pm_boot_init(MSM_PM_BOOT_CONFIG_RESET_VECTOR,
ioremap(0, PAGE_SIZE)));
msm_fb_add_devices();
#if defined(CONFIG_BT) && defined(CONFIG_MARIMBA_CORE)
i2c_register_board_info(MSM_GSBI1_QUP_I2C_BUS_ID,
bahama_devices,
ARRAY_SIZE(bahama_devices));
bt_power_init();
#endif
i2c_register_board_info(MSM_GSBI0_QUP_I2C_BUS_ID, i2c_camera_devices,
ARRAY_SIZE(i2c_camera_devices));
#if defined(CONFIG_TOUCHSCREEN_SYNAPTICS_RMI4_I2C) || \
defined(CONFIG_TOUCHSCREEN_SYNAPTICS_RMI4_I2C_MODULE)
i2c_register_board_info(MSM_GSBI1_QUP_I2C_BUS_ID,
synaptic_i2c_clearpad3k,
ARRAY_SIZE(synaptic_i2c_clearpad3k));
#endif
platform_device_register(&hs_pdev);
#ifdef CONFIG_MSM_RPC_VIBRATOR
msm_init_pmic_vibrator();
#endif
}
static void __init qrd7627a_init_early(void)
{
msm_msm7627a_allocate_memory_regions();
}
MACHINE_START(MSM7627A_QRD1, "QRD MSM7627a QRD1")
.boot_params = PHYS_OFFSET + 0x100,
.map_io = msm_common_io_init,
.reserve = msm7627a_reserve,
.init_irq = msm_init_irq,
.init_machine = msm_qrd1_init,
.timer = &msm_timer,
.init_early = qrd7627a_init_early,
.handle_irq = vic_handle_irq,
MACHINE_END