blob: d8da08e18ba0ac9f43eb88bc9480f51bac2195e1 [file] [log] [blame]
/*
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/hw_random.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/types.h>
#include <mach/msm_bus.h>
#include <linux/qrng.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/gfp.h>
#include <linux/string.h>
#include <linux/platform_data/qcom_crypto_device.h>
#include "ctr_drbg.h"
#include "fips_drbg.h"
#define E_FAILURE 0Xffff
#define E_SUCCESS 0
#define AES128_KEY_SIZE (16)
#define AES128_BLOCK_SIZE (16)
#define AES_TEXT_LENGTH (64)
#define MAX_TEXT_LENGTH (2048)
uint8_t df_initial_k[16] = "\x0\x1\x2\x3\x4\x5\x6\x7\x8\x9\xa\xb\xc\xd\xe\xf";
static void _crypto_cipher_test_complete(struct crypto_async_request *req,
int err)
{
struct msm_ctr_tcrypt_result_s *res = NULL;
if (!req)
return;
res = req->data;
if (!res)
return;
if (err == -EINPROGRESS)
return;
res->err = err;
complete(&res->completion);
}
static int ctr_aes_init(struct ctr_drbg_ctx_s *ctx)
{
int status = 0;
ctx->aes_ctx.tfm = crypto_alloc_ablkcipher("qcom-ecb(aes)", 0, 0);
if (IS_ERR(ctx->aes_ctx.tfm) || (NULL == ctx->aes_ctx.tfm)) {
pr_info("%s: qcom-ecb(aes) failed", __func__);
ctx->aes_ctx.tfm = crypto_alloc_ablkcipher("ecb(aes)", 0, 0);
pr_info("ctx->aes_ctx.tfm = %p\n", ctx->aes_ctx.tfm);
if (IS_ERR(ctx->aes_ctx.tfm) || (NULL == ctx->aes_ctx.tfm)) {
pr_err("%s: qcom-ecb(aes) failed\n", __func__);
status = -E_FAILURE;
goto out;
}
}
ctx->aes_ctx.req = ablkcipher_request_alloc(ctx->aes_ctx.tfm,
GFP_KERNEL);
if (IS_ERR(ctx->aes_ctx.req) || (NULL == ctx->aes_ctx.req)) {
pr_info("%s: Failed to allocate request.\n", __func__);
status = -E_FAILURE;
goto clr_tfm;
}
ablkcipher_request_set_callback(ctx->aes_ctx.req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
_crypto_cipher_test_complete,
&ctx->aes_ctx.result);
memset(&ctx->aes_ctx.input, 0, sizeof(struct msm_ctr_buffer_s));
memset(&ctx->aes_ctx.output, 0, sizeof(struct msm_ctr_buffer_s));
/* Allocate memory. */
ctx->aes_ctx.input.virt_addr = kmalloc(AES128_BLOCK_SIZE,
GFP_KERNEL | __GFP_DMA);
if (NULL == ctx->aes_ctx.input.virt_addr) {
pr_debug("%s: Failed to input memory.\n", __func__);
status = -E_FAILURE;
goto clr_req;
}
ctx->aes_ctx.output.virt_addr = kmalloc(AES128_BLOCK_SIZE,
GFP_KERNEL | __GFP_DMA);
if (NULL == ctx->aes_ctx.output.virt_addr) {
pr_debug("%s: Failed to output memory.\n", __func__);
status = -E_FAILURE;
goto clr_input;
}
/*--------------------------------------------------------------------
Set DF AES mode
----------------------------------------------------------------------*/
ctx->df_aes_ctx.tfm = crypto_alloc_ablkcipher("qcom-ecb(aes)", 0, 0);
if ((NULL == ctx->df_aes_ctx.tfm) || IS_ERR(ctx->df_aes_ctx.tfm)) {
pr_info("%s: qcom-ecb(aes) failed", __func__);
ctx->df_aes_ctx.tfm = crypto_alloc_ablkcipher("ecb(aes)", 0, 0);
if (IS_ERR(ctx->df_aes_ctx.tfm) ||
(NULL == ctx->df_aes_ctx.tfm)) {
pr_err("%s: ecb(aes) failed", __func__);
status = -E_FAILURE;
goto clr_output;
}
}
ctx->df_aes_ctx.req = ablkcipher_request_alloc(ctx->df_aes_ctx.tfm,
GFP_KERNEL);
if (IS_ERR(ctx->df_aes_ctx.req) || (NULL == ctx->df_aes_ctx.req)) {
pr_debug(": Failed to allocate request.\n");
status = -E_FAILURE;
goto clr_df_tfm;
}
ablkcipher_request_set_callback(ctx->df_aes_ctx.req,
CRYPTO_TFM_REQ_MAY_BACKLOG,
_crypto_cipher_test_complete,
&ctx->df_aes_ctx.result);
memset(&ctx->df_aes_ctx.input, 0, sizeof(struct msm_ctr_buffer_s));
memset(&ctx->df_aes_ctx.output, 0, sizeof(struct msm_ctr_buffer_s));
ctx->df_aes_ctx.input.virt_addr = kmalloc(AES128_BLOCK_SIZE,
GFP_KERNEL | __GFP_DMA);
if (NULL == ctx->df_aes_ctx.input.virt_addr) {
pr_debug(": Failed to input memory.\n");
status = -E_FAILURE;
goto clr_df_req;
}
ctx->df_aes_ctx.output.virt_addr = kmalloc(AES128_BLOCK_SIZE,
GFP_KERNEL | __GFP_DMA);
if (NULL == ctx->df_aes_ctx.output.virt_addr) {
pr_debug(": Failed to output memory.\n");
status = -E_FAILURE;
goto clr_df_input;
}
goto out;
clr_df_input:
if (ctx->df_aes_ctx.input.virt_addr) {
kzfree(ctx->df_aes_ctx.input.virt_addr);
ctx->df_aes_ctx.input.virt_addr = NULL;
}
clr_df_req:
if (ctx->df_aes_ctx.req) {
ablkcipher_request_free(ctx->df_aes_ctx.req);
ctx->df_aes_ctx.req = NULL;
}
clr_df_tfm:
if (ctx->df_aes_ctx.tfm) {
crypto_free_ablkcipher(ctx->df_aes_ctx.tfm);
ctx->df_aes_ctx.tfm = NULL;
}
clr_output:
if (ctx->aes_ctx.output.virt_addr) {
kzfree(ctx->aes_ctx.output.virt_addr);
ctx->aes_ctx.output.virt_addr = NULL;
}
clr_input:
if (ctx->aes_ctx.input.virt_addr) {
kzfree(ctx->aes_ctx.input.virt_addr);
ctx->aes_ctx.input.virt_addr = NULL;
}
clr_req:
if (ctx->aes_ctx.req) {
ablkcipher_request_free(ctx->aes_ctx.req);
ctx->aes_ctx.req = NULL;
}
clr_tfm:
if (ctx->aes_ctx.tfm) {
crypto_free_ablkcipher(ctx->aes_ctx.tfm);
ctx->aes_ctx.tfm = NULL;
}
out:
return status;
}
/*
* Increments the V field in *ctx
*/
static void increment_V(struct ctr_drbg_ctx_s *ctx)
{
unsigned sum = 1;
int i;
uint8_t *p = &ctx->seed.key_V.V[0];
/*
* To make known answer tests work, this has to be done big_endian.
* So we just do it by bytes.
* since we are using AES-128, the key size is 16 bytes.
*/
for (i = 15; sum != 0 && i >= 0; --i) {
sum += p[i];
p[i] = (sum & 0xff);
sum >>= 8;
}
return;
}
/*
* The NIST update function. It updates the key and V to new values
* (to prevent backtracking) and optionally stirs in data. data may
* be null, otherwise *data is from 0 to 256 bits long.
* keysched is an optional keyschedule to use as an optimization. It
* must be consistent with the key in *ctx. No changes are made to
* *ctx until it is assured that there will be no failures. Note that
* data_len is in bytes. (That may not be offical NIST
* recommendation, but I do it anyway; they say "or equivalent" and
* this is equivalent enough.)
*/
static enum ctr_drbg_status_t
update(struct ctr_drbg_ctx_s *ctx, const uint8_t *data, size_t data_len)
{
uint8_t temp[32];
unsigned int i;
int rc;
struct scatterlist sg_in, sg_out;
for (i = 0; i < 2; ++i) {
increment_V(ctx);
init_completion(&ctx->aes_ctx.result.completion);
/*
* Note: personalize these called routines for
* specific testing.
*/
memcpy(ctx->aes_ctx.input.virt_addr,
ctx->seed.key_V.V,
CTR_DRBG_BLOCK_LEN_BYTES);
crypto_ablkcipher_clear_flags(ctx->aes_ctx.tfm, ~0);
/* Encrypt some clear text! */
sg_init_one(&sg_in,
ctx->aes_ctx.input.virt_addr,
AES128_BLOCK_SIZE);
sg_init_one(&sg_out,
ctx->aes_ctx.output.virt_addr,
AES128_BLOCK_SIZE);
ablkcipher_request_set_crypt(ctx->aes_ctx.req,
&sg_in,
&sg_out,
CTR_DRBG_BLOCK_LEN_BYTES,
NULL);
rc = crypto_ablkcipher_encrypt(ctx->aes_ctx.req);
switch (rc) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
rc = wait_for_completion_interruptible(
&ctx->aes_ctx.result.completion);
if (!rc && !ctx->aes_ctx.result.err) {
INIT_COMPLETION(ctx->aes_ctx.result.completion);
break;
}
/* fall through */
default:
pr_debug("crypto_ablkcipher_encrypt returned");
pr_debug(" with %d result %d on iteration\n",
rc,
ctx->aes_ctx.result.err);
break;
}
init_completion(&ctx->aes_ctx.result.completion);
memcpy(temp + AES128_BLOCK_SIZE * i,
ctx->aes_ctx.output.virt_addr,
AES128_BLOCK_SIZE);
}
if (data_len > 0)
pr_debug("in upadte, data_len = %zu\n", data_len);
for (i = 0; i < data_len; ++i)
ctx->seed.as_bytes[i] = temp[i] ^ data[i];
/* now copy the rest of temp to key and V */
if (32 > data_len) {
memcpy(ctx->seed.as_bytes + data_len,
temp + data_len,
32 - data_len);
}
memset(temp, 0, 32);
return CTR_DRBG_SUCCESS;
}
/*
* Reseeds the CTR_DRBG instance with entropy. entropy_len_bits must
* be exactly 256.
*/
enum ctr_drbg_status_t ctr_drbg_reseed(struct ctr_drbg_ctx_s *ctx,
const void *entropy,
size_t entropy_len_bits)
{
enum ctr_drbg_status_t update_rv;
uint8_t seed_material[32];
int rc;
if (ctx == NULL || entropy == NULL)
return CTR_DRBG_INVALID_ARG;
update_rv = block_cipher_df(ctx,
(uint8_t *)entropy,
(entropy_len_bits / 8),
seed_material,
32
);
if (CTR_DRBG_SUCCESS != update_rv) {
memset(seed_material, 0, 32);
return CTR_DRBG_GENERAL_ERROR;
}
rc = crypto_ablkcipher_setkey(ctx->aes_ctx.tfm,
ctx->seed.key_V.key,
AES128_KEY_SIZE
);
if (rc) {
memset(seed_material, 0, 32);
pr_debug("set-key in Instantiate failed, returns with %d", rc);
return CTR_DRBG_GENERAL_ERROR;
}
pr_debug("ctr_drbg_reseed, to call update\n");
update_rv = update(ctx, (const uint8_t *)seed_material, 32);
pr_debug("ctr_drbg_reseed, after called update\n");
if (update_rv != CTR_DRBG_SUCCESS) {
memset(seed_material, 0, 32);
return update_rv;
}
ctx->reseed_counter = 1; /* think 0 but SP 800-90 says 1 */
memset(seed_material, 0, 32);
return CTR_DRBG_SUCCESS;
}
/*
* The NIST instantiate function. entropy_len_bits must be exactly
* 256. After reseed_interval generate requests, generated requests
* will fail until the CTR_DRBG instance is reseeded. As per NIST SP
* 800-90, an error is returned if reseed_interval > 2^48.
*/
enum ctr_drbg_status_t
ctr_drbg_instantiate(struct ctr_drbg_ctx_s *ctx,
const uint8_t *entropy,
size_t entropy_len_bits,
const uint8_t *nonce,
size_t nonce_len_bits,
unsigned long long reseed_interval)
{
enum ctr_drbg_status_t update_rv;
uint8_t seed_material[32];
uint8_t df_input[32];
int rc;
if (ctx == NULL || entropy == NULL || nonce == NULL)
return CTR_DRBG_INVALID_ARG;
if (((nonce_len_bits / 8) + (entropy_len_bits / 8)) > 32) {
pr_info("\nentropy_len_bits + nonce_len_bits is too long!");
pr_info("\nnonce len: %zu, entropy: %zu\n",
nonce_len_bits, entropy_len_bits);
return CTR_DRBG_INVALID_ARG + 1;
}
if (reseed_interval > (1ULL << 48))
return CTR_DRBG_INVALID_ARG + 2;
ctr_aes_init(ctx);
memset(ctx->seed.as_bytes, 0, sizeof(ctx->seed.as_bytes));
memcpy(df_input, (uint8_t *)entropy, entropy_len_bits / 8);
memcpy(df_input + (entropy_len_bits / 8), nonce, nonce_len_bits / 8);
update_rv = block_cipher_df(ctx, df_input, 24, seed_material, 32);
memset(df_input, 0, 32);
if (CTR_DRBG_SUCCESS != update_rv) {
pr_debug("block_cipher_df failed, returns %d", update_rv);
memset(seed_material, 0, 32);
return CTR_DRBG_GENERAL_ERROR;
}
rc = crypto_ablkcipher_setkey(ctx->aes_ctx.tfm,
ctx->seed.key_V.key,
AES128_KEY_SIZE);
if (rc) {
pr_debug("crypto_ablkcipher_setkey API failed: %d", rc);
memset(seed_material, 0, 32);
return CTR_DRBG_GENERAL_ERROR;
}
update_rv = update(ctx, (const uint8_t *)seed_material, 32);
if (update_rv != CTR_DRBG_SUCCESS) {
memset(seed_material, 0, 32);
return update_rv;
}
ctx->reseed_counter = 1; /* think 0 but SP 800-90 says 1 */
ctx->reseed_interval = reseed_interval;
memset(seed_material, 0, 32);
pr_debug(" return from ctr_drbg_instantiate\n");
return CTR_DRBG_SUCCESS;
}
/*
* Generate random bits. len_bits is specified in bits, as required by
* NIST SP800-90. It fails with CTR_DRBG_NEEDS_RESEED if the number
* of generates since instantiation or the last reseed >= the
* reseed_interval supplied at instantiation. len_bits must be a
* multiple of 8. len_bits must not exceed 2^19, as per NIST SP
* 800-90. Optionally stirs in additional_input which is
* additional_input_len_bits long, and is silently rounded up to a
* multiple of 8. CTR_DRBG_INVALID_ARG is returned if any pointer arg
* is null and the corresponding length is non-zero or if
* additioanl_input_len_bits > 256.
*/
enum ctr_drbg_status_t
ctr_drbg_generate_w_data(struct ctr_drbg_ctx_s *ctx,
void *additional_input,
size_t additional_input_len_bits,
void *buffer,
size_t len_bits)
{
size_t total_blocks = (len_bits + 127) / 128;
enum ctr_drbg_status_t update_rv;
int rv = 0;
size_t i;
int rc;
struct scatterlist sg_in, sg_out;
if (ctx == NULL)
return CTR_DRBG_INVALID_ARG;
if (buffer == NULL && len_bits > 0)
return CTR_DRBG_INVALID_ARG;
if (len_bits % 8 != 0)
return CTR_DRBG_INVALID_ARG;
if (len_bits > (1<<19))
return CTR_DRBG_INVALID_ARG;
if ((additional_input == NULL && additional_input_len_bits > 0) ||
additional_input_len_bits > CTR_DRBG_SEED_LEN_BITS)
return CTR_DRBG_INVALID_ARG;
if (ctx->reseed_counter > ctx->reseed_interval)
return CTR_DRBG_NEEDS_RESEED;
rc = crypto_ablkcipher_setkey(ctx->aes_ctx.tfm,
ctx->seed.key_V.key,
AES128_KEY_SIZE);
if (rc) {
pr_debug("crypto_ablkcipher_setkey API failed: %d", rc);
return CTR_DRBG_GENERAL_ERROR;
}
if (rv < 0)
return CTR_DRBG_GENERAL_ERROR;
if (!ctx->continuous_test_started) {
increment_V(ctx);
init_completion(&ctx->aes_ctx.result.completion);
crypto_ablkcipher_clear_flags(ctx->aes_ctx.tfm, ~0);
memcpy(ctx->aes_ctx.input.virt_addr, ctx->seed.key_V.V, 16);
sg_init_one(&sg_in, ctx->aes_ctx.input.virt_addr, 16);
sg_init_one(&sg_out, ctx->aes_ctx.output.virt_addr, 16);
ablkcipher_request_set_crypt(ctx->aes_ctx.req, &sg_in, &sg_out,
CTR_DRBG_BLOCK_LEN_BYTES, NULL);
rc = crypto_ablkcipher_encrypt(ctx->aes_ctx.req);
switch (rc) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
rc = wait_for_completion_interruptible(
&ctx->aes_ctx.result.completion);
if (!rc && !ctx->aes_ctx.result.err) {
INIT_COMPLETION(ctx->aes_ctx.result.completion);
break;
}
/* fall through */
default:
pr_debug(":crypto_ablkcipher_encrypt returned with %d result %d on iteration\n",
rc,
ctx->aes_ctx.result.err);
break;
}
init_completion(&ctx->aes_ctx.result.completion);
memcpy(ctx->prev_drn, ctx->aes_ctx.output.virt_addr, 16);
ctx->continuous_test_started = 1;
}
/* Generate the output */
for (i = 0; i < total_blocks; ++i) {
/* Increment the counter */
increment_V(ctx);
if (((len_bits % 128) != 0) && (i == (total_blocks - 1))) {
/* last block and it's a fragment */
init_completion(&ctx->aes_ctx.result.completion);
/*
* Note: personalize these called routines for
* specific testing.
*/
crypto_ablkcipher_clear_flags(ctx->aes_ctx.tfm, ~0);
/* Encrypt some clear text! */
memcpy(ctx->aes_ctx.input.virt_addr,
ctx->seed.key_V.V,
16);
sg_init_one(&sg_in,
ctx->aes_ctx.input.virt_addr,
16);
sg_init_one(&sg_out,
ctx->aes_ctx.output.virt_addr,
16);
ablkcipher_request_set_crypt(ctx->aes_ctx.req,
&sg_in,
&sg_out,
CTR_DRBG_BLOCK_LEN_BYTES,
NULL);
rc = crypto_ablkcipher_encrypt(ctx->aes_ctx.req);
switch (rc) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
rc = wait_for_completion_interruptible(
&ctx->aes_ctx.result.completion);
if (!rc && !ctx->aes_ctx.result.err) {
INIT_COMPLETION(
ctx->aes_ctx.result.completion);
break;
}
/* fall through */
default:
break;
}
init_completion(&ctx->aes_ctx.result.completion);
if (!memcmp(ctx->prev_drn,
ctx->aes_ctx.output.virt_addr,
16))
return CTR_DRBG_GENERAL_ERROR;
else
memcpy(ctx->prev_drn,
ctx->aes_ctx.output.virt_addr,
16);
rv = 0;
memcpy((uint8_t *)buffer + 16*i,
ctx->aes_ctx.output.virt_addr,
(len_bits % 128)/8);
} else {
/* normal case: encrypt direct to target buffer */
init_completion(&ctx->aes_ctx.result.completion);
/*
* Note: personalize these called routines for
* specific testing.
*/
crypto_ablkcipher_clear_flags(ctx->aes_ctx.tfm, ~0);
/* Encrypt some clear text! */
memcpy(ctx->aes_ctx.input.virt_addr,
ctx->seed.key_V.V,
16);
sg_init_one(&sg_in,
ctx->aes_ctx.input.virt_addr,
16);
sg_init_one(&sg_out,
ctx->aes_ctx.output.virt_addr,
16);
ablkcipher_request_set_crypt(ctx->aes_ctx.req,
&sg_in,
&sg_out,
CTR_DRBG_BLOCK_LEN_BYTES,
NULL);
rc = crypto_ablkcipher_encrypt(ctx->aes_ctx.req);
switch (rc) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
rc = wait_for_completion_interruptible(
&ctx->aes_ctx.result.completion);
if (!rc && !ctx->aes_ctx.result.err) {
INIT_COMPLETION(
ctx->aes_ctx.result.completion);
break;
}
/* fall through */
default:
break;
}
if (!memcmp(ctx->prev_drn,
ctx->aes_ctx.output.virt_addr,
16))
return CTR_DRBG_GENERAL_ERROR;
else
memcpy(ctx->prev_drn,
ctx->aes_ctx.output.virt_addr,
16);
memcpy((uint8_t *)buffer + 16*i,
ctx->aes_ctx.output.virt_addr,
16);
rv = 0;
}
}
update_rv = update(ctx,
additional_input,
(additional_input_len_bits + 7) / 8); /* round up */
if (update_rv != CTR_DRBG_SUCCESS)
return update_rv;
ctx->reseed_counter += 1;
return CTR_DRBG_SUCCESS;
}
/*
* Generate random bits, but with no provided data. See notes on
* ctr_drbg_generate_w_data()
*/
enum ctr_drbg_status_t
ctr_drbg_generate(struct ctr_drbg_ctx_s *ctx,
void *buffer,
size_t len_bits)
{
return ctr_drbg_generate_w_data(ctx, NULL, 0, buffer, len_bits);
}
void ctr_aes_deinit(struct ctr_drbg_ctx_s *ctx)
{
if (ctx->aes_ctx.req) {
ablkcipher_request_free(ctx->aes_ctx.req);
ctx->aes_ctx.req = NULL;
}
if (ctx->aes_ctx.tfm) {
crypto_free_ablkcipher(ctx->aes_ctx.tfm);
ctx->aes_ctx.tfm = NULL;
}
if (ctx->aes_ctx.input.virt_addr) {
kzfree(ctx->aes_ctx.input.virt_addr);
ctx->aes_ctx.input.virt_addr = NULL;
}
if (ctx->aes_ctx.output.virt_addr) {
kzfree(ctx->aes_ctx.output.virt_addr);
ctx->aes_ctx.output.virt_addr = NULL;
}
if (ctx->df_aes_ctx.req) {
ablkcipher_request_free(ctx->df_aes_ctx.req);
ctx->df_aes_ctx.req = NULL;
}
if (ctx->df_aes_ctx.tfm) {
crypto_free_ablkcipher(ctx->df_aes_ctx.tfm);
ctx->df_aes_ctx.tfm = NULL;
}
if (ctx->df_aes_ctx.input.virt_addr) {
kzfree(ctx->df_aes_ctx.input.virt_addr);
ctx->df_aes_ctx.input.virt_addr = NULL;
}
if (ctx->df_aes_ctx.output.virt_addr) {
kzfree(ctx->df_aes_ctx.output.virt_addr);
ctx->df_aes_ctx.output.virt_addr = NULL;
}
}
/*
* Zeroizes the context structure. In some future implemenation it
* could also free resources. So do call it.
*/
void
ctr_drbg_uninstantiate(struct ctr_drbg_ctx_s *ctx)
{
ctr_aes_deinit(ctx);
memset(ctx, 0, sizeof(*ctx));
}
/*
* the derivation functions to handle biased entropy input.
*/
enum ctr_drbg_status_t df_bcc_func(struct ctr_drbg_ctx_s *ctx,
uint8_t *key,
uint8_t *input,
uint32_t input_size,
uint8_t *output)
{
enum ctr_drbg_status_t ret_val = CTR_DRBG_SUCCESS;
uint8_t *p;
int rc;
int i;
int n;
struct scatterlist sg_in, sg_out;
if (0 != (input_size % CTR_DRBG_BLOCK_LEN_BYTES))
return CTR_DRBG_INVALID_ARG;
n = input_size / CTR_DRBG_BLOCK_LEN_BYTES;
for (i = 0; i < CTR_DRBG_BLOCK_LEN_BYTES; i++)
ctx->df_aes_ctx.output.virt_addr[i] = 0;
rc = crypto_ablkcipher_setkey(ctx->df_aes_ctx.tfm,
key,
AES128_KEY_SIZE);
if (rc) {
pr_debug("crypto_ablkcipher_setkey API failed: %d\n", rc);
return CTR_DRBG_GENERAL_ERROR;
}
p = input;
while (n > 0) {
for (i = 0; i < CTR_DRBG_BLOCK_LEN_BYTES; i++, p++)
ctx->df_aes_ctx.input.virt_addr[i] =
ctx->df_aes_ctx.output.virt_addr[i] ^ (*p);
init_completion(&ctx->df_aes_ctx.result.completion);
/*
* Note: personalize these called routines for
* specific testing.
*/
crypto_ablkcipher_clear_flags(ctx->df_aes_ctx.tfm, ~0);
/* Encrypt some clear text! */
sg_init_one(&sg_in, ctx->df_aes_ctx.input.virt_addr, 16);
sg_init_one(&sg_out, ctx->df_aes_ctx.output.virt_addr, 16);
ablkcipher_request_set_crypt(ctx->df_aes_ctx.req,
&sg_in,
&sg_out,
CTR_DRBG_BLOCK_LEN_BYTES,
NULL);
rc = crypto_ablkcipher_encrypt(ctx->df_aes_ctx.req);
switch (rc) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
rc = wait_for_completion_interruptible(
&ctx->df_aes_ctx.result.completion);
if (!rc && !ctx->df_aes_ctx.result.err) {
INIT_COMPLETION(
ctx->df_aes_ctx.result.completion);
break;
}
/* fall through */
default:
break;
}
init_completion(&ctx->df_aes_ctx.result.completion);
n--;
}
for (i = 0; i < CTR_DRBG_BLOCK_LEN_BYTES; i++)
output[i] = ctx->df_aes_ctx.output.virt_addr[i];
return ret_val;
}
/* output_size must <= 512 bits (<= 64) */
enum ctr_drbg_status_t
block_cipher_df(struct ctr_drbg_ctx_s *ctx,
const uint8_t *input,
uint32_t input_size,
uint8_t *output,
uint32_t output_size)
{
enum ctr_drbg_status_t ret_val = CTR_DRBG_SUCCESS;
uint32_t s_len = 0;
uint32_t s_pad_len = 0;
uint8_t temp[32];
uint32_t out_len = 0;
uint8_t siv_string[64];
uint8_t *p_s_string = NULL;
int rc;
struct scatterlist sg_in, sg_out;
if (output_size > 64)
return CTR_DRBG_INVALID_ARG;
s_len = input_size + 9;
s_pad_len = s_len % 16;
if (0 != s_pad_len)
s_len += (16 - s_pad_len);
/* add the length of IV */
s_len += 16;
if (s_len > 64)
pr_debug("error! s_len is too big!!!!!!!!!!!!\n");
memset(siv_string, 0, 64);
p_s_string = siv_string + 16;
p_s_string[3] = input_size;
p_s_string[7] = output_size;
memcpy(p_s_string + 8, input, input_size);
p_s_string[8 + input_size] = 0x80;
if (0 < s_pad_len)
memset(p_s_string + 9 + input_size, '\0', s_pad_len);
ret_val = df_bcc_func(ctx, df_initial_k, siv_string, s_len, temp);
if (CTR_DRBG_SUCCESS != ret_val) {
pr_debug("df_bcc_func failed, returned %d", ret_val);
goto out;
}
siv_string[3] = 0x1;
ret_val = df_bcc_func(ctx, df_initial_k, siv_string, s_len, temp + 16);
if (CTR_DRBG_SUCCESS != ret_val)
goto out;
out_len = 0;
rc = crypto_ablkcipher_setkey(ctx->df_aes_ctx.tfm,
temp,
AES128_KEY_SIZE);
if (rc) {
pr_debug("crypto_ablkcipher_setkey API failed: %d", rc);
goto out;
}
memcpy(ctx->df_aes_ctx.input.virt_addr, temp + 16, 16);
while (out_len < output_size) {
init_completion(&ctx->df_aes_ctx.result.completion);
/*
* Note: personalize these called routines for
* specific testing.
*/
crypto_ablkcipher_clear_flags(ctx->df_aes_ctx.tfm, ~0);
/* Encrypt some clear text! */
sg_init_one(&sg_in, ctx->df_aes_ctx.input.virt_addr, 16);
sg_init_one(&sg_out, ctx->df_aes_ctx.output.virt_addr, 16);
ablkcipher_request_set_crypt(ctx->df_aes_ctx.req,
&sg_in,
&sg_out,
CTR_DRBG_BLOCK_LEN_BYTES,
NULL);
rc = crypto_ablkcipher_encrypt(ctx->df_aes_ctx.req);
switch (rc) {
case 0:
break;
case -EINPROGRESS:
case -EBUSY:
rc = wait_for_completion_interruptible(
&ctx->df_aes_ctx.result.completion);
if (!rc && !ctx->df_aes_ctx.result.err) {
INIT_COMPLETION(
ctx->df_aes_ctx.result.completion);
break;
}
/* fall through */
default:
break;
}
init_completion(&ctx->df_aes_ctx.result.completion);
memcpy(output + out_len, ctx->df_aes_ctx.output.virt_addr, 16);
memcpy(ctx->df_aes_ctx.input.virt_addr, output + out_len, 16);
out_len += 16;
}
out:
memset(siv_string, 0, 64);
memset(temp, 0, 32);
return ret_val;
}