blob: 273e57e357ebdb6e5a5c2354bff434a7f6a40e86 [file] [log] [blame]
/*
* drivers/gpu/ion/ion_priv.h
*
* Copyright (C) 2011 Google, Inc.
* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#ifndef _ION_PRIV_H
#define _ION_PRIV_H
#include <linux/kref.h>
#include <linux/mm_types.h>
#include <linux/mutex.h>
#include <linux/rbtree.h>
#include <linux/ion.h>
#include <linux/iommu.h>
#include <linux/seq_file.h>
enum {
DI_PARTITION_NUM = 0,
DI_DOMAIN_NUM = 1,
DI_MAX,
};
/**
* struct ion_iommu_map - represents a mapping of an ion buffer to an iommu
* @iova_addr - iommu virtual address
* @node - rb node to exist in the buffer's tree of iommu mappings
* @domain_info - contains the partition number and domain number
* domain_info[1] = domain number
* domain_info[0] = partition number
* @ref - for reference counting this mapping
* @mapped_size - size of the iova space mapped
* (may not be the same as the buffer size)
* @flags - iommu domain/partition specific flags.
*
* Represents a mapping of one ion buffer to a particular iommu domain
* and address range. There may exist other mappings of this buffer in
* different domains or address ranges. All mappings will have the same
* cacheability and security.
*/
struct ion_iommu_map {
unsigned long iova_addr;
struct rb_node node;
union {
int domain_info[DI_MAX];
uint64_t key;
};
struct ion_buffer *buffer;
struct kref ref;
int mapped_size;
unsigned long flags;
};
struct ion_buffer *ion_handle_buffer(struct ion_handle *handle);
/**
* struct ion_buffer - metadata for a particular buffer
* @ref: refernce count
* @node: node in the ion_device buffers tree
* @dev: back pointer to the ion_device
* @heap: back pointer to the heap the buffer came from
* @flags: buffer specific flags
* @size: size of the buffer
* @priv_virt: private data to the buffer representable as
* a void *
* @priv_phys: private data to the buffer representable as
* an ion_phys_addr_t (and someday a phys_addr_t)
* @lock: protects the buffers cnt fields
* @kmap_cnt: number of times the buffer is mapped to the kernel
* @vaddr: the kenrel mapping if kmap_cnt is not zero
* @dmap_cnt: number of times the buffer is mapped for dma
* @sg_table: the sg table for the buffer if dmap_cnt is not zero
*/
struct ion_buffer {
struct kref ref;
struct rb_node node;
struct ion_device *dev;
struct ion_heap *heap;
unsigned long flags;
size_t size;
union {
void *priv_virt;
ion_phys_addr_t priv_phys;
};
struct mutex lock;
int kmap_cnt;
void *vaddr;
int dmap_cnt;
struct sg_table *sg_table;
int umap_cnt;
unsigned int iommu_map_cnt;
struct rb_root iommu_maps;
int marked;
};
/**
* struct ion_heap_ops - ops to operate on a given heap
* @allocate: allocate memory
* @free: free memory
* @phys get physical address of a buffer (only define on
* physically contiguous heaps)
* @map_dma map the memory for dma to a scatterlist
* @unmap_dma unmap the memory for dma
* @map_kernel map memory to the kernel
* @unmap_kernel unmap memory to the kernel
* @map_user map memory to userspace
* @unmap_user unmap memory to userspace
*/
struct ion_heap_ops {
int (*allocate) (struct ion_heap *heap,
struct ion_buffer *buffer, unsigned long len,
unsigned long align, unsigned long flags);
void (*free) (struct ion_buffer *buffer);
int (*phys) (struct ion_heap *heap, struct ion_buffer *buffer,
ion_phys_addr_t *addr, size_t *len);
struct sg_table *(*map_dma) (struct ion_heap *heap,
struct ion_buffer *buffer);
void (*unmap_dma) (struct ion_heap *heap, struct ion_buffer *buffer);
void * (*map_kernel) (struct ion_heap *heap, struct ion_buffer *buffer);
void (*unmap_kernel) (struct ion_heap *heap, struct ion_buffer *buffer);
int (*map_user) (struct ion_heap *mapper, struct ion_buffer *buffer,
struct vm_area_struct *vma);
void (*unmap_user) (struct ion_heap *mapper, struct ion_buffer *buffer);
int (*cache_op)(struct ion_heap *heap, struct ion_buffer *buffer,
void *vaddr, unsigned int offset,
unsigned int length, unsigned int cmd);
int (*map_iommu)(struct ion_buffer *buffer,
struct ion_iommu_map *map_data,
unsigned int domain_num,
unsigned int partition_num,
unsigned long align,
unsigned long iova_length,
unsigned long flags);
void (*unmap_iommu)(struct ion_iommu_map *data);
int (*print_debug)(struct ion_heap *heap, struct seq_file *s,
const struct rb_root *mem_map);
int (*secure_heap)(struct ion_heap *heap, int version, void *data);
int (*unsecure_heap)(struct ion_heap *heap, int version, void *data);
};
/**
* struct ion_heap - represents a heap in the system
* @node: rb node to put the heap on the device's tree of heaps
* @dev: back pointer to the ion_device
* @type: type of heap
* @ops: ops struct as above
* @id: id of heap, also indicates priority of this heap when
* allocating. These are specified by platform data and
* MUST be unique
* @name: used for debugging
*
* Represents a pool of memory from which buffers can be made. In some
* systems the only heap is regular system memory allocated via vmalloc.
* On others, some blocks might require large physically contiguous buffers
* that are allocated from a specially reserved heap.
*/
struct ion_heap {
struct rb_node node;
struct ion_device *dev;
enum ion_heap_type type;
struct ion_heap_ops *ops;
int id;
const char *name;
};
/**
* struct mem_map_data - represents information about the memory map for a heap
* @node: rb node used to store in the tree of mem_map_data
* @addr: start address of memory region.
* @addr: end address of memory region.
* @size: size of memory region
* @client_name: name of the client who owns this buffer.
*
*/
struct mem_map_data {
struct rb_node node;
unsigned long addr;
unsigned long addr_end;
unsigned long size;
const char *client_name;
};
#define iommu_map_domain(__m) ((__m)->domain_info[1])
#define iommu_map_partition(__m) ((__m)->domain_info[0])
/**
* ion_device_create - allocates and returns an ion device
* @custom_ioctl: arch specific ioctl function if applicable
*
* returns a valid device or -PTR_ERR
*/
struct ion_device *ion_device_create(long (*custom_ioctl)
(struct ion_client *client,
unsigned int cmd,
unsigned long arg));
/**
* ion_device_destroy - free and device and it's resource
* @dev: the device
*/
void ion_device_destroy(struct ion_device *dev);
/**
* ion_device_add_heap - adds a heap to the ion device
* @dev: the device
* @heap: the heap to add
*/
void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap);
/**
* functions for creating and destroying the built in ion heaps.
* architectures can add their own custom architecture specific
* heaps as appropriate.
*/
struct ion_heap *ion_heap_create(struct ion_platform_heap *);
void ion_heap_destroy(struct ion_heap *);
struct ion_heap *ion_system_heap_create(struct ion_platform_heap *);
void ion_system_heap_destroy(struct ion_heap *);
struct ion_heap *ion_system_contig_heap_create(struct ion_platform_heap *);
void ion_system_contig_heap_destroy(struct ion_heap *);
struct ion_heap *ion_carveout_heap_create(struct ion_platform_heap *);
void ion_carveout_heap_destroy(struct ion_heap *);
struct ion_heap *ion_iommu_heap_create(struct ion_platform_heap *);
void ion_iommu_heap_destroy(struct ion_heap *);
struct ion_heap *ion_cp_heap_create(struct ion_platform_heap *);
void ion_cp_heap_destroy(struct ion_heap *);
struct ion_heap *ion_reusable_heap_create(struct ion_platform_heap *);
void ion_reusable_heap_destroy(struct ion_heap *);
/**
* kernel api to allocate/free from carveout -- used when carveout is
* used to back an architecture specific custom heap
*/
ion_phys_addr_t ion_carveout_allocate(struct ion_heap *heap, unsigned long size,
unsigned long align);
void ion_carveout_free(struct ion_heap *heap, ion_phys_addr_t addr,
unsigned long size);
struct ion_heap *msm_get_contiguous_heap(void);
/**
* The carveout/cp heap returns physical addresses, since 0 may be a valid
* physical address, this is used to indicate allocation failed
*/
#define ION_CARVEOUT_ALLOCATE_FAIL -1
#define ION_CP_ALLOCATE_FAIL -1
/**
* The reserved heap returns physical addresses, since 0 may be a valid
* physical address, this is used to indicate allocation failed
*/
#define ION_RESERVED_ALLOCATE_FAIL -1
/**
* ion_map_fmem_buffer - map fmem allocated memory into the kernel
* @buffer - buffer to map
* @phys_base - physical base of the heap
* @virt_base - virtual base of the heap
* @flags - flags for the heap
*
* Map fmem allocated memory into the kernel address space. This
* is designed to be used by other heaps that need fmem behavior.
* The virtual range must be pre-allocated.
*/
void *ion_map_fmem_buffer(struct ion_buffer *buffer, unsigned long phys_base,
void *virt_base, unsigned long flags);
/**
* ion_do_cache_op - do cache operations.
*
* @client - pointer to ION client.
* @handle - pointer to buffer handle.
* @uaddr - virtual address to operate on.
* @offset - offset from physical address.
* @len - Length of data to do cache operation on.
* @cmd - Cache operation to perform:
* ION_IOC_CLEAN_CACHES
* ION_IOC_INV_CACHES
* ION_IOC_CLEAN_INV_CACHES
*
* Returns 0 on success
*/
int ion_do_cache_op(struct ion_client *client, struct ion_handle *handle,
void *uaddr, unsigned long offset, unsigned long len,
unsigned int cmd);
void ion_cp_heap_get_base(struct ion_heap *heap, unsigned long *base,
unsigned long *size);
void ion_mem_map_show(struct ion_heap *heap);
#endif /* _ION_PRIV_H */