| /* |
| * PowerPC atomic bit operations. |
| * |
| * Merged version by David Gibson <david@gibson.dropbear.id.au>. |
| * Based on ppc64 versions by: Dave Engebretsen, Todd Inglett, Don |
| * Reed, Pat McCarthy, Peter Bergner, Anton Blanchard. They |
| * originally took it from the ppc32 code. |
| * |
| * Within a word, bits are numbered LSB first. Lot's of places make |
| * this assumption by directly testing bits with (val & (1<<nr)). |
| * This can cause confusion for large (> 1 word) bitmaps on a |
| * big-endian system because, unlike little endian, the number of each |
| * bit depends on the word size. |
| * |
| * The bitop functions are defined to work on unsigned longs, so for a |
| * ppc64 system the bits end up numbered: |
| * |63..............0|127............64|191...........128|255...........196| |
| * and on ppc32: |
| * |31.....0|63....31|95....64|127...96|159..128|191..160|223..192|255..224| |
| * |
| * There are a few little-endian macros used mostly for filesystem |
| * bitmaps, these work on similar bit arrays layouts, but |
| * byte-oriented: |
| * |7...0|15...8|23...16|31...24|39...32|47...40|55...48|63...56| |
| * |
| * The main difference is that bit 3-5 (64b) or 3-4 (32b) in the bit |
| * number field needs to be reversed compared to the big-endian bit |
| * fields. This can be achieved by XOR with 0x38 (64b) or 0x18 (32b). |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #ifndef _ASM_POWERPC_BITOPS_H |
| #define _ASM_POWERPC_BITOPS_H |
| |
| #ifdef __KERNEL__ |
| |
| #include <linux/compiler.h> |
| #include <asm/atomic.h> |
| #include <asm/asm-compat.h> |
| #include <asm/synch.h> |
| |
| /* |
| * clear_bit doesn't imply a memory barrier |
| */ |
| #define smp_mb__before_clear_bit() smp_mb() |
| #define smp_mb__after_clear_bit() smp_mb() |
| |
| #define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG)) |
| #define BITOP_WORD(nr) ((nr) / BITS_PER_LONG) |
| #define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7) |
| |
| static __inline__ void set_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long old; |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| __asm__ __volatile__( |
| "1:" PPC_LLARX "%0,0,%3 # set_bit\n" |
| "or %0,%0,%2\n" |
| PPC405_ERR77(0,%3) |
| PPC_STLCX "%0,0,%3\n" |
| "bne- 1b" |
| : "=&r"(old), "=m"(*p) |
| : "r"(mask), "r"(p), "m"(*p) |
| : "cc" ); |
| } |
| |
| static __inline__ void clear_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long old; |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| __asm__ __volatile__( |
| "1:" PPC_LLARX "%0,0,%3 # clear_bit\n" |
| "andc %0,%0,%2\n" |
| PPC405_ERR77(0,%3) |
| PPC_STLCX "%0,0,%3\n" |
| "bne- 1b" |
| : "=&r"(old), "=m"(*p) |
| : "r"(mask), "r"(p), "m"(*p) |
| : "cc" ); |
| } |
| |
| static __inline__ void change_bit(int nr, volatile unsigned long *addr) |
| { |
| unsigned long old; |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| __asm__ __volatile__( |
| "1:" PPC_LLARX "%0,0,%3 # change_bit\n" |
| "xor %0,%0,%2\n" |
| PPC405_ERR77(0,%3) |
| PPC_STLCX "%0,0,%3\n" |
| "bne- 1b" |
| : "=&r"(old), "=m"(*p) |
| : "r"(mask), "r"(p), "m"(*p) |
| : "cc" ); |
| } |
| |
| static __inline__ int test_and_set_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long old, t; |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| __asm__ __volatile__( |
| EIEIO_ON_SMP |
| "1:" PPC_LLARX "%0,0,%3 # test_and_set_bit\n" |
| "or %1,%0,%2 \n" |
| PPC405_ERR77(0,%3) |
| PPC_STLCX "%1,0,%3 \n" |
| "bne- 1b" |
| ISYNC_ON_SMP |
| : "=&r" (old), "=&r" (t) |
| : "r" (mask), "r" (p) |
| : "cc", "memory"); |
| |
| return (old & mask) != 0; |
| } |
| |
| static __inline__ int test_and_clear_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long old, t; |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| __asm__ __volatile__( |
| EIEIO_ON_SMP |
| "1:" PPC_LLARX "%0,0,%3 # test_and_clear_bit\n" |
| "andc %1,%0,%2 \n" |
| PPC405_ERR77(0,%3) |
| PPC_STLCX "%1,0,%3 \n" |
| "bne- 1b" |
| ISYNC_ON_SMP |
| : "=&r" (old), "=&r" (t) |
| : "r" (mask), "r" (p) |
| : "cc", "memory"); |
| |
| return (old & mask) != 0; |
| } |
| |
| static __inline__ int test_and_change_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long old, t; |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| __asm__ __volatile__( |
| EIEIO_ON_SMP |
| "1:" PPC_LLARX "%0,0,%3 # test_and_change_bit\n" |
| "xor %1,%0,%2 \n" |
| PPC405_ERR77(0,%3) |
| PPC_STLCX "%1,0,%3 \n" |
| "bne- 1b" |
| ISYNC_ON_SMP |
| : "=&r" (old), "=&r" (t) |
| : "r" (mask), "r" (p) |
| : "cc", "memory"); |
| |
| return (old & mask) != 0; |
| } |
| |
| static __inline__ void set_bits(unsigned long mask, unsigned long *addr) |
| { |
| unsigned long old; |
| |
| __asm__ __volatile__( |
| "1:" PPC_LLARX "%0,0,%3 # set_bits\n" |
| "or %0,%0,%2\n" |
| PPC_STLCX "%0,0,%3\n" |
| "bne- 1b" |
| : "=&r" (old), "=m" (*addr) |
| : "r" (mask), "r" (addr), "m" (*addr) |
| : "cc"); |
| } |
| |
| /* Non-atomic versions */ |
| static __inline__ int test_bit(unsigned long nr, |
| __const__ volatile unsigned long *addr) |
| { |
| return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1))); |
| } |
| |
| static __inline__ void __set_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| *p |= mask; |
| } |
| |
| static __inline__ void __clear_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| *p &= ~mask; |
| } |
| |
| static __inline__ void __change_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| |
| *p ^= mask; |
| } |
| |
| static __inline__ int __test_and_set_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| unsigned long old = *p; |
| |
| *p = old | mask; |
| return (old & mask) != 0; |
| } |
| |
| static __inline__ int __test_and_clear_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| unsigned long old = *p; |
| |
| *p = old & ~mask; |
| return (old & mask) != 0; |
| } |
| |
| static __inline__ int __test_and_change_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| unsigned long mask = BITOP_MASK(nr); |
| unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); |
| unsigned long old = *p; |
| |
| *p = old ^ mask; |
| return (old & mask) != 0; |
| } |
| |
| /* |
| * Return the zero-based bit position (LE, not IBM bit numbering) of |
| * the most significant 1-bit in a double word. |
| */ |
| static __inline__ int __ilog2(unsigned long x) |
| { |
| int lz; |
| |
| asm (PPC_CNTLZL "%0,%1" : "=r" (lz) : "r" (x)); |
| return BITS_PER_LONG - 1 - lz; |
| } |
| |
| /* |
| * Determines the bit position of the least significant 0 bit in the |
| * specified double word. The returned bit position will be |
| * zero-based, starting from the right side (63/31 - 0). |
| */ |
| static __inline__ unsigned long ffz(unsigned long x) |
| { |
| /* no zero exists anywhere in the 8 byte area. */ |
| if ((x = ~x) == 0) |
| return BITS_PER_LONG; |
| |
| /* |
| * Calculate the bit position of the least signficant '1' bit in x |
| * (since x has been changed this will actually be the least signficant |
| * '0' bit in * the original x). Note: (x & -x) gives us a mask that |
| * is the least significant * (RIGHT-most) 1-bit of the value in x. |
| */ |
| return __ilog2(x & -x); |
| } |
| |
| static __inline__ int __ffs(unsigned long x) |
| { |
| return __ilog2(x & -x); |
| } |
| |
| /* |
| * ffs: find first bit set. This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| static __inline__ int ffs(int x) |
| { |
| unsigned long i = (unsigned long)x; |
| return __ilog2(i & -i) + 1; |
| } |
| |
| /* |
| * fls: find last (most-significant) bit set. |
| * Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32. |
| */ |
| static __inline__ int fls(unsigned int x) |
| { |
| int lz; |
| |
| asm ("cntlzw %0,%1" : "=r" (lz) : "r" (x)); |
| return 32 - lz; |
| } |
| |
| /* |
| * hweightN: returns the hamming weight (i.e. the number |
| * of bits set) of a N-bit word |
| */ |
| #define hweight64(x) generic_hweight64(x) |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| #define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0) |
| unsigned long find_next_zero_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset); |
| /** |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| #define find_first_bit(addr, size) find_next_bit((addr), (size), 0) |
| unsigned long find_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset); |
| |
| /* Little-endian versions */ |
| |
| static __inline__ int test_le_bit(unsigned long nr, |
| __const__ unsigned long *addr) |
| { |
| __const__ unsigned char *tmp = (__const__ unsigned char *) addr; |
| return (tmp[nr >> 3] >> (nr & 7)) & 1; |
| } |
| |
| #define __set_le_bit(nr, addr) \ |
| __set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) |
| #define __clear_le_bit(nr, addr) \ |
| __clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) |
| |
| #define test_and_set_le_bit(nr, addr) \ |
| test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) |
| #define test_and_clear_le_bit(nr, addr) \ |
| test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) |
| |
| #define __test_and_set_le_bit(nr, addr) \ |
| __test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) |
| #define __test_and_clear_le_bit(nr, addr) \ |
| __test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr)) |
| |
| #define find_first_zero_le_bit(addr, size) find_next_zero_le_bit((addr), (size), 0) |
| unsigned long find_next_zero_le_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset); |
| |
| /* Bitmap functions for the ext2 filesystem */ |
| |
| #define ext2_set_bit(nr,addr) \ |
| __test_and_set_le_bit((nr), (unsigned long*)addr) |
| #define ext2_clear_bit(nr, addr) \ |
| __test_and_clear_le_bit((nr), (unsigned long*)addr) |
| |
| #define ext2_set_bit_atomic(lock, nr, addr) \ |
| test_and_set_le_bit((nr), (unsigned long*)addr) |
| #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| test_and_clear_le_bit((nr), (unsigned long*)addr) |
| |
| #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr) |
| |
| #define ext2_find_first_zero_bit(addr, size) \ |
| find_first_zero_le_bit((unsigned long*)addr, size) |
| #define ext2_find_next_zero_bit(addr, size, off) \ |
| find_next_zero_le_bit((unsigned long*)addr, size, off) |
| |
| /* Bitmap functions for the minix filesystem. */ |
| |
| #define minix_test_and_set_bit(nr,addr) \ |
| __test_and_set_le_bit(nr, (unsigned long *)addr) |
| #define minix_set_bit(nr,addr) \ |
| __set_le_bit(nr, (unsigned long *)addr) |
| #define minix_test_and_clear_bit(nr,addr) \ |
| __test_and_clear_le_bit(nr, (unsigned long *)addr) |
| #define minix_test_bit(nr,addr) \ |
| test_le_bit(nr, (unsigned long *)addr) |
| |
| #define minix_find_first_zero_bit(addr,size) \ |
| find_first_zero_le_bit((unsigned long *)addr, size) |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| #ifdef CONFIG_PPC64 |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 64; |
| return __ffs(b[2]) + 128; |
| #else |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| #endif |
| } |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_POWERPC_BITOPS_H */ |