blob: faa562510f857a663eb96bac6d1d0d4389e51a11 [file] [log] [blame]
/* ehci-msm2.c - HSUSB Host Controller Driver Implementation
*
* Copyright (c) 2008-2013, The Linux Foundation. All rights reserved.
*
* Partly derived from ehci-fsl.c and ehci-hcd.c
* Copyright (c) 2000-2004 by David Brownell
* Copyright (c) 2005 MontaVista Software
*
* All source code in this file is licensed under the following license except
* where indicated.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can find it at http://www.fsf.org
*/
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/wakelock.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/ulpi.h>
#include <linux/usb/msm_hsusb_hw.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/of.h>
#include <mach/clk.h>
#include <mach/msm_xo.h>
#include <mach/msm_iomap.h>
#define MSM_USB_BASE (hcd->regs)
#define PDEV_NAME_LEN 20
struct msm_hcd {
struct ehci_hcd ehci;
spinlock_t wakeup_lock;
struct device *dev;
struct clk *xo_clk;
struct clk *iface_clk;
struct clk *core_clk;
struct clk *alt_core_clk;
struct clk *phy_sleep_clk;
struct regulator *hsusb_vddcx;
struct regulator *hsusb_3p3;
struct regulator *hsusb_1p8;
struct regulator *vbus;
struct msm_xo_voter *xo_handle;
bool async_int;
bool vbus_on;
atomic_t in_lpm;
int pmic_gpio_dp_irq;
bool pmic_gpio_dp_irq_enabled;
uint32_t pmic_gpio_int_cnt;
atomic_t pm_usage_cnt;
struct wake_lock wlock;
struct work_struct phy_susp_fail_work;
int async_irq;
bool async_irq_enabled;
uint32_t async_int_cnt;
};
static inline struct msm_hcd *hcd_to_mhcd(struct usb_hcd *hcd)
{
return (struct msm_hcd *) (hcd->hcd_priv);
}
static inline struct usb_hcd *mhcd_to_hcd(struct msm_hcd *mhcd)
{
return container_of((void *) mhcd, struct usb_hcd, hcd_priv);
}
#define HSUSB_PHY_3P3_VOL_MIN 3050000 /* uV */
#define HSUSB_PHY_3P3_VOL_MAX 3300000 /* uV */
#define HSUSB_PHY_3P3_HPM_LOAD 50000 /* uA */
#define HSUSB_PHY_1P8_VOL_MIN 1800000 /* uV */
#define HSUSB_PHY_1P8_VOL_MAX 1800000 /* uV */
#define HSUSB_PHY_1P8_HPM_LOAD 50000 /* uA */
#define HSUSB_PHY_VDD_DIG_VOL_MIN 1045000 /* uV */
#define HSUSB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */
#define HSUSB_PHY_VDD_DIG_LOAD 49360 /* uA */
static int msm_ehci_init_vddcx(struct msm_hcd *mhcd, int init)
{
int ret = 0;
if (!init)
goto disable_reg;
mhcd->hsusb_vddcx = devm_regulator_get(mhcd->dev, "HSUSB_VDDCX");
if (IS_ERR(mhcd->hsusb_vddcx)) {
dev_err(mhcd->dev, "unable to get ehci vddcx\n");
return PTR_ERR(mhcd->hsusb_vddcx);
}
ret = regulator_set_voltage(mhcd->hsusb_vddcx,
HSUSB_PHY_VDD_DIG_VOL_MIN,
HSUSB_PHY_VDD_DIG_VOL_MAX);
if (ret) {
dev_err(mhcd->dev, "unable to set the voltage"
"for ehci vddcx\n");
return ret;
}
ret = regulator_set_optimum_mode(mhcd->hsusb_vddcx,
HSUSB_PHY_VDD_DIG_LOAD);
if (ret < 0) {
dev_err(mhcd->dev, "%s: Unable to set optimum mode of the"
" regulator: VDDCX\n", __func__);
goto reg_optimum_mode_err;
}
ret = regulator_enable(mhcd->hsusb_vddcx);
if (ret) {
dev_err(mhcd->dev, "unable to enable ehci vddcx\n");
goto reg_enable_err;
}
return 0;
disable_reg:
regulator_disable(mhcd->hsusb_vddcx);
reg_enable_err:
regulator_set_optimum_mode(mhcd->hsusb_vddcx, 0);
reg_optimum_mode_err:
regulator_set_voltage(mhcd->hsusb_vddcx, 0,
HSUSB_PHY_VDD_DIG_VOL_MIN);
return ret;
}
static int msm_ehci_ldo_init(struct msm_hcd *mhcd, int init)
{
int rc = 0;
if (!init)
goto put_1p8;
mhcd->hsusb_3p3 = devm_regulator_get(mhcd->dev, "HSUSB_3p3");
if (IS_ERR(mhcd->hsusb_3p3)) {
dev_err(mhcd->dev, "unable to get hsusb 3p3\n");
return PTR_ERR(mhcd->hsusb_3p3);
}
rc = regulator_set_voltage(mhcd->hsusb_3p3,
HSUSB_PHY_3P3_VOL_MIN, HSUSB_PHY_3P3_VOL_MAX);
if (rc) {
dev_err(mhcd->dev, "unable to set voltage level for"
"hsusb 3p3\n");
return rc;
}
mhcd->hsusb_1p8 = devm_regulator_get(mhcd->dev, "HSUSB_1p8");
if (IS_ERR(mhcd->hsusb_1p8)) {
dev_err(mhcd->dev, "unable to get hsusb 1p8\n");
rc = PTR_ERR(mhcd->hsusb_1p8);
goto put_3p3_lpm;
}
rc = regulator_set_voltage(mhcd->hsusb_1p8,
HSUSB_PHY_1P8_VOL_MIN, HSUSB_PHY_1P8_VOL_MAX);
if (rc) {
dev_err(mhcd->dev, "unable to set voltage level for"
"hsusb 1p8\n");
goto put_1p8;
}
return 0;
put_1p8:
regulator_set_voltage(mhcd->hsusb_1p8, 0, HSUSB_PHY_1P8_VOL_MAX);
put_3p3_lpm:
regulator_set_voltage(mhcd->hsusb_3p3, 0, HSUSB_PHY_3P3_VOL_MAX);
return rc;
}
#ifdef CONFIG_PM_SLEEP
#define HSUSB_PHY_SUSP_DIG_VOL_P50 500000
#define HSUSB_PHY_SUSP_DIG_VOL_P75 750000
static int msm_ehci_config_vddcx(struct msm_hcd *mhcd, int high)
{
struct msm_usb_host_platform_data *pdata;
int max_vol = HSUSB_PHY_VDD_DIG_VOL_MAX;
int min_vol;
int ret;
pdata = mhcd->dev->platform_data;
if (high)
min_vol = HSUSB_PHY_VDD_DIG_VOL_MIN;
else if (pdata && pdata->dock_connect_irq &&
!irq_read_line(pdata->dock_connect_irq))
min_vol = HSUSB_PHY_SUSP_DIG_VOL_P75;
else
min_vol = HSUSB_PHY_SUSP_DIG_VOL_P50;
ret = regulator_set_voltage(mhcd->hsusb_vddcx, min_vol, max_vol);
if (ret) {
dev_err(mhcd->dev, "%s: unable to set the voltage of regulator"
" HSUSB_VDDCX\n", __func__);
return ret;
}
dev_dbg(mhcd->dev, "%s: min_vol:%d max_vol:%d\n", __func__, min_vol,
max_vol);
return ret;
}
#else
static int msm_ehci_config_vddcx(struct msm_hcd *mhcd, int high)
{
return 0;
}
#endif
static void msm_ehci_vbus_power(struct msm_hcd *mhcd, bool on)
{
int ret;
if (!mhcd->vbus) {
pr_err("vbus is NULL.");
return;
}
if (mhcd->vbus_on == on)
return;
if (on) {
ret = regulator_enable(mhcd->vbus);
if (ret) {
pr_err("unable to enable vbus\n");
return;
}
mhcd->vbus_on = true;
} else {
ret = regulator_disable(mhcd->vbus);
if (ret) {
pr_err("unable to disable vbus\n");
return;
}
mhcd->vbus_on = false;
}
}
static irqreturn_t msm_ehci_dock_connect_irq(int irq, void *data)
{
const struct msm_usb_host_platform_data *pdata;
struct msm_hcd *mhcd = data;
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
pdata = mhcd->dev->platform_data;
if (atomic_read(&mhcd->in_lpm))
usb_hcd_resume_root_hub(hcd);
if (irq_read_line(pdata->dock_connect_irq)) {
dev_dbg(mhcd->dev, "%s:Dock removed disable vbus\n", __func__);
msm_ehci_vbus_power(mhcd, 0);
} else {
dev_dbg(mhcd->dev, "%s:Dock connected enable vbus\n", __func__);
msm_ehci_vbus_power(mhcd, 1);
}
return IRQ_HANDLED;
}
static int msm_ehci_init_vbus(struct msm_hcd *mhcd, int init)
{
int rc = 0;
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
const struct msm_usb_host_platform_data *pdata;
int ret = 0;
pdata = mhcd->dev->platform_data;
if (!init) {
if (pdata && pdata->dock_connect_irq)
free_irq(pdata->dock_connect_irq, mhcd);
return rc;
}
mhcd->vbus = devm_regulator_get(mhcd->dev, "vbus");
ret = PTR_ERR(mhcd->vbus);
if (ret == -EPROBE_DEFER) {
pr_debug("failed to get vbus handle, defer probe\n");
return ret;
} else if (IS_ERR(mhcd->vbus)) {
pr_err("Unable to get vbus\n");
return -ENODEV;
}
if (pdata) {
hcd->power_budget = pdata->power_budget;
if (pdata->dock_connect_irq) {
rc = request_threaded_irq(pdata->dock_connect_irq, NULL,
msm_ehci_dock_connect_irq,
IRQF_TRIGGER_FALLING |
IRQF_TRIGGER_RISING |
IRQF_ONESHOT, "msm_ehci_host", mhcd);
if (!rc)
enable_irq_wake(pdata->dock_connect_irq);
}
}
return rc;
}
static int msm_ehci_ldo_enable(struct msm_hcd *mhcd, int on)
{
int ret = 0;
if (IS_ERR(mhcd->hsusb_1p8)) {
dev_err(mhcd->dev, "%s: HSUSB_1p8 is not initialized\n",
__func__);
return -ENODEV;
}
if (IS_ERR(mhcd->hsusb_3p3)) {
dev_err(mhcd->dev, "%s: HSUSB_3p3 is not initialized\n",
__func__);
return -ENODEV;
}
if (on) {
ret = regulator_set_optimum_mode(mhcd->hsusb_1p8,
HSUSB_PHY_1P8_HPM_LOAD);
if (ret < 0) {
dev_err(mhcd->dev, "%s: Unable to set HPM of the"
" regulator: HSUSB_1p8\n", __func__);
return ret;
}
ret = regulator_enable(mhcd->hsusb_1p8);
if (ret) {
dev_err(mhcd->dev, "%s: unable to enable the hsusb"
" 1p8\n", __func__);
regulator_set_optimum_mode(mhcd->hsusb_1p8, 0);
return ret;
}
ret = regulator_set_optimum_mode(mhcd->hsusb_3p3,
HSUSB_PHY_3P3_HPM_LOAD);
if (ret < 0) {
dev_err(mhcd->dev, "%s: Unable to set HPM of the "
"regulator: HSUSB_3p3\n", __func__);
regulator_set_optimum_mode(mhcd->hsusb_1p8, 0);
regulator_disable(mhcd->hsusb_1p8);
return ret;
}
ret = regulator_enable(mhcd->hsusb_3p3);
if (ret) {
dev_err(mhcd->dev, "%s: unable to enable the "
"hsusb 3p3\n", __func__);
regulator_set_optimum_mode(mhcd->hsusb_3p3, 0);
regulator_set_optimum_mode(mhcd->hsusb_1p8, 0);
regulator_disable(mhcd->hsusb_1p8);
return ret;
}
} else {
ret = regulator_disable(mhcd->hsusb_1p8);
if (ret) {
dev_err(mhcd->dev, "%s: unable to disable the "
"hsusb 1p8\n", __func__);
return ret;
}
ret = regulator_set_optimum_mode(mhcd->hsusb_1p8, 0);
if (ret < 0)
dev_err(mhcd->dev, "%s: Unable to set LPM of the "
"regulator: HSUSB_1p8\n", __func__);
ret = regulator_disable(mhcd->hsusb_3p3);
if (ret) {
dev_err(mhcd->dev, "%s: unable to disable the "
"hsusb 3p3\n", __func__);
return ret;
}
ret = regulator_set_optimum_mode(mhcd->hsusb_3p3, 0);
if (ret < 0)
dev_err(mhcd->dev, "%s: Unable to set LPM of the "
"regulator: HSUSB_3p3\n", __func__);
}
dev_dbg(mhcd->dev, "reg (%s)\n", on ? "HPM" : "LPM");
return ret < 0 ? ret : 0;
}
#define ULPI_IO_TIMEOUT_USECS (10 * 1000)
static int msm_ulpi_read(struct msm_hcd *mhcd, u32 reg)
{
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
unsigned long timeout;
/* initiate read operation */
writel_relaxed(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg),
USB_ULPI_VIEWPORT);
/* wait for completion */
timeout = jiffies + usecs_to_jiffies(ULPI_IO_TIMEOUT_USECS);
while (readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN) {
if (time_after(jiffies, timeout)) {
dev_err(mhcd->dev, "msm_ulpi_read: timeout %08x\n",
readl_relaxed(USB_ULPI_VIEWPORT));
return -ETIMEDOUT;
}
udelay(1);
}
return ULPI_DATA_READ(readl_relaxed(USB_ULPI_VIEWPORT));
}
static int msm_ulpi_write(struct msm_hcd *mhcd, u32 val, u32 reg)
{
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
unsigned long timeout;
/* initiate write operation */
writel_relaxed(ULPI_RUN | ULPI_WRITE |
ULPI_ADDR(reg) | ULPI_DATA(val),
USB_ULPI_VIEWPORT);
/* wait for completion */
timeout = jiffies + usecs_to_jiffies(ULPI_IO_TIMEOUT_USECS);
while (readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN) {
if (time_after(jiffies, timeout)) {
dev_err(mhcd->dev, "msm_ulpi_write: timeout\n");
return -ETIMEDOUT;
}
udelay(1);
}
return 0;
}
/**
* Do hard reset to USB hardware block using one of reset methodology based
* on availablity of alt_core_clk. There are two kinds of hardware resets.
* 1. Conventional synchronous reset where clocks to blocks to be ON while
* issuing the reset. 2. Asynchronous reset which requires clocks to be OFF.
*/
static int msm_ehci_link_clk_reset(struct msm_hcd *mhcd, bool assert)
{
int ret;
if (assert) {
if (!IS_ERR(mhcd->alt_core_clk)) {
ret = clk_reset(mhcd->alt_core_clk, CLK_RESET_ASSERT);
} else {
/* Using asynchronous block reset to the hardware */
clk_disable(mhcd->iface_clk);
clk_disable(mhcd->core_clk);
ret = clk_reset(mhcd->core_clk, CLK_RESET_ASSERT);
}
if (ret)
dev_err(mhcd->dev, "usb clk assert failed\n");
} else {
if (!IS_ERR(mhcd->alt_core_clk)) {
ret = clk_reset(mhcd->alt_core_clk, CLK_RESET_DEASSERT);
} else {
ret = clk_reset(mhcd->core_clk, CLK_RESET_DEASSERT);
ndelay(200);
clk_enable(mhcd->core_clk);
clk_enable(mhcd->iface_clk);
}
if (ret)
dev_err(mhcd->dev, "usb clk deassert failed\n");
}
return ret;
}
static int msm_ehci_phy_reset(struct msm_hcd *mhcd)
{
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
struct msm_usb_host_platform_data *pdata;
u32 val;
int ret;
int retries;
ret = msm_ehci_link_clk_reset(mhcd, 1);
if (ret)
return ret;
usleep_range(10, 12);
ret = msm_ehci_link_clk_reset(mhcd, 0);
if (ret)
return ret;
pdata = mhcd->dev->platform_data;
if (pdata && pdata->use_sec_phy)
/* select secondary phy if offset is set for USB operation */
writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16),
USB_PHY_CTRL2);
val = readl_relaxed(USB_PORTSC) & ~PORTSC_PTS_MASK;
writel_relaxed(val | PORTSC_PTS_ULPI, USB_PORTSC);
for (retries = 3; retries > 0; retries--) {
ret = msm_ulpi_write(mhcd, ULPI_FUNC_CTRL_SUSPENDM,
ULPI_CLR(ULPI_FUNC_CTRL));
if (!ret)
break;
}
if (!retries)
return -ETIMEDOUT;
/* Wakeup the PHY with a reg-access for calibration */
for (retries = 3; retries > 0; retries--) {
ret = msm_ulpi_read(mhcd, ULPI_DEBUG);
if (ret != -ETIMEDOUT)
break;
}
if (!retries)
return -ETIMEDOUT;
dev_info(mhcd->dev, "phy_reset: success\n");
return 0;
}
#define LINK_RESET_TIMEOUT_USEC (250 * 1000)
static int msm_hsusb_reset(struct msm_hcd *mhcd)
{
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
struct msm_usb_host_platform_data *pdata;
unsigned long timeout;
int ret;
if (!IS_ERR(mhcd->alt_core_clk))
clk_prepare_enable(mhcd->alt_core_clk);
ret = msm_ehci_phy_reset(mhcd);
if (ret) {
dev_err(mhcd->dev, "phy_reset failed\n");
return ret;
}
writel_relaxed(USBCMD_RESET, USB_USBCMD);
timeout = jiffies + usecs_to_jiffies(LINK_RESET_TIMEOUT_USEC);
while (readl_relaxed(USB_USBCMD) & USBCMD_RESET) {
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
udelay(1);
}
/* select ULPI phy */
writel_relaxed(0x80000000, USB_PORTSC);
pdata = mhcd->dev->platform_data;
if (pdata && pdata->use_sec_phy)
writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16),
USB_PHY_CTRL2);
msleep(100);
writel_relaxed(0x0, USB_AHBBURST);
writel_relaxed(0x08, USB_AHBMODE);
/* Ensure that RESET operation is completed before turning off clock */
mb();
if (!IS_ERR(mhcd->alt_core_clk))
clk_disable_unprepare(mhcd->alt_core_clk);
/*rising edge interrupts with Dp rise and fall enabled*/
msm_ulpi_write(mhcd, ULPI_INT_DP, ULPI_USB_INT_EN_RISE);
msm_ulpi_write(mhcd, ULPI_INT_DP, ULPI_USB_INT_EN_FALL);
/*Clear the PHY interrupts by reading the PHY interrupt latch register*/
msm_ulpi_read(mhcd, ULPI_USB_INT_LATCH);
return 0;
}
static void msm_ehci_phy_susp_fail_work(struct work_struct *w)
{
struct msm_hcd *mhcd = container_of(w, struct msm_hcd,
phy_susp_fail_work);
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
msm_ehci_vbus_power(mhcd, 0);
usb_remove_hcd(hcd);
msm_hsusb_reset(mhcd);
usb_add_hcd(hcd, hcd->irq, IRQF_SHARED);
msm_ehci_vbus_power(mhcd, 1);
}
#define PHY_SUSPEND_TIMEOUT_USEC (500 * 1000)
#define PHY_RESUME_TIMEOUT_USEC (100 * 1000)
#ifdef CONFIG_PM_SLEEP
static int msm_ehci_suspend(struct msm_hcd *mhcd)
{
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
unsigned long timeout;
int ret;
u32 portsc;
if (atomic_read(&mhcd->in_lpm)) {
dev_dbg(mhcd->dev, "%s called in lpm\n", __func__);
return 0;
}
disable_irq(hcd->irq);
/* Set the PHCD bit, only if it is not set by the controller.
* PHY may take some time or even fail to enter into low power
* mode (LPM). Hence poll for 500 msec and reset the PHY and link
* in failure case.
*/
portsc = readl_relaxed(USB_PORTSC);
if (!(portsc & PORTSC_PHCD)) {
writel_relaxed(portsc | PORTSC_PHCD,
USB_PORTSC);
timeout = jiffies + usecs_to_jiffies(PHY_SUSPEND_TIMEOUT_USEC);
while (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD)) {
if (time_after(jiffies, timeout)) {
dev_err(mhcd->dev, "Unable to suspend PHY\n");
schedule_work(&mhcd->phy_susp_fail_work);
return -ETIMEDOUT;
}
udelay(1);
}
}
/*
* PHY has capability to generate interrupt asynchronously in low
* power mode (LPM). This interrupt is level triggered. So USB IRQ
* line must be disabled till async interrupt enable bit is cleared
* in USBCMD register. Assert STP (ULPI interface STOP signal) to
* block data communication from PHY.
*/
writel_relaxed(readl_relaxed(USB_USBCMD) | ASYNC_INTR_CTRL |
ULPI_STP_CTRL, USB_USBCMD);
/*
* Ensure that hardware is put in low power mode before
* clocks are turned OFF and VDD is allowed to minimize.
*/
mb();
clk_disable_unprepare(mhcd->iface_clk);
clk_disable_unprepare(mhcd->core_clk);
/* usb phy does not require TCXO clock, hence vote for TCXO disable */
if (!IS_ERR(mhcd->xo_clk)) {
clk_disable_unprepare(mhcd->xo_clk);
} else {
ret = msm_xo_mode_vote(mhcd->xo_handle, MSM_XO_MODE_OFF);
if (ret)
dev_err(mhcd->dev, "%s failed to devote for TCXO %d\n",
__func__, ret);
}
msm_ehci_config_vddcx(mhcd, 0);
atomic_set(&mhcd->in_lpm, 1);
enable_irq(hcd->irq);
if (mhcd->pmic_gpio_dp_irq) {
mhcd->pmic_gpio_dp_irq_enabled = 1;
enable_irq_wake(mhcd->pmic_gpio_dp_irq);
enable_irq(mhcd->pmic_gpio_dp_irq);
}
if (mhcd->async_irq) {
mhcd->async_irq_enabled = 1;
enable_irq_wake(mhcd->async_irq);
enable_irq(mhcd->async_irq);
}
wake_unlock(&mhcd->wlock);
dev_info(mhcd->dev, "EHCI USB in low power mode\n");
return 0;
}
static int msm_ehci_resume(struct msm_hcd *mhcd)
{
struct usb_hcd *hcd = mhcd_to_hcd(mhcd);
unsigned long timeout;
unsigned temp;
int ret;
unsigned long flags;
if (!atomic_read(&mhcd->in_lpm)) {
dev_dbg(mhcd->dev, "%s called in !in_lpm\n", __func__);
return 0;
}
if (mhcd->pmic_gpio_dp_irq_enabled) {
disable_irq_wake(mhcd->pmic_gpio_dp_irq);
disable_irq_nosync(mhcd->pmic_gpio_dp_irq);
mhcd->pmic_gpio_dp_irq_enabled = 0;
}
spin_lock_irqsave(&mhcd->wakeup_lock, flags);
if (mhcd->async_irq_enabled) {
disable_irq_wake(mhcd->async_irq);
disable_irq_nosync(mhcd->async_irq);
mhcd->async_irq_enabled = 0;
}
spin_unlock_irqrestore(&mhcd->wakeup_lock, flags);
wake_lock(&mhcd->wlock);
/* Vote for TCXO when waking up the phy */
if (!IS_ERR(mhcd->xo_clk)) {
clk_prepare_enable(mhcd->xo_clk);
} else {
ret = msm_xo_mode_vote(mhcd->xo_handle, MSM_XO_MODE_ON);
if (ret)
dev_err(mhcd->dev, "%s failed to vote for TCXO D0 %d\n",
__func__, ret);
}
clk_prepare_enable(mhcd->core_clk);
clk_prepare_enable(mhcd->iface_clk);
msm_ehci_config_vddcx(mhcd, 1);
temp = readl_relaxed(USB_USBCMD);
temp &= ~ASYNC_INTR_CTRL;
temp &= ~ULPI_STP_CTRL;
writel_relaxed(temp, USB_USBCMD);
if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD))
goto skip_phy_resume;
temp = readl_relaxed(USB_PORTSC) & ~PORTSC_PHCD;
writel_relaxed(temp, USB_PORTSC);
timeout = jiffies + usecs_to_jiffies(PHY_RESUME_TIMEOUT_USEC);
while ((readl_relaxed(USB_PORTSC) & PORTSC_PHCD) ||
!(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_SYNC_STATE)) {
if (time_after(jiffies, timeout)) {
/*This is a fatal error. Reset the link and PHY*/
dev_err(mhcd->dev, "Unable to resume USB. Resetting the h/w\n");
msm_hsusb_reset(mhcd);
break;
}
udelay(1);
}
skip_phy_resume:
usb_hcd_resume_root_hub(hcd);
atomic_set(&mhcd->in_lpm, 0);
if (mhcd->async_int) {
mhcd->async_int = false;
pm_runtime_put_noidle(mhcd->dev);
enable_irq(hcd->irq);
}
if (atomic_read(&mhcd->pm_usage_cnt)) {
atomic_set(&mhcd->pm_usage_cnt, 0);
pm_runtime_put_noidle(mhcd->dev);
}
dev_info(mhcd->dev, "EHCI USB exited from low power mode\n");
return 0;
}
#endif
static irqreturn_t msm_ehci_irq(struct usb_hcd *hcd)
{
struct msm_hcd *mhcd = hcd_to_mhcd(hcd);
if (atomic_read(&mhcd->in_lpm)) {
disable_irq_nosync(hcd->irq);
mhcd->async_int = true;
pm_runtime_get(mhcd->dev);
return IRQ_HANDLED;
}
return ehci_irq(hcd);
}
static irqreturn_t msm_async_irq(int irq, void *data)
{
struct msm_hcd *mhcd = data;
int ret;
mhcd->async_int_cnt++;
dev_dbg(mhcd->dev, "%s: hsusb host remote wakeup interrupt cnt: %u\n",
__func__, mhcd->async_int_cnt);
wake_lock(&mhcd->wlock);
spin_lock(&mhcd->wakeup_lock);
if (mhcd->async_irq_enabled) {
mhcd->async_irq_enabled = 0;
disable_irq_wake(irq);
disable_irq_nosync(irq);
}
spin_unlock(&mhcd->wakeup_lock);
if (!atomic_read(&mhcd->pm_usage_cnt)) {
ret = pm_runtime_get(mhcd->dev);
if ((ret == 1) || (ret == -EINPROGRESS))
pm_runtime_put_noidle(mhcd->dev);
else
atomic_set(&mhcd->pm_usage_cnt, 1);
}
return IRQ_HANDLED;
}
static irqreturn_t msm_ehci_host_wakeup_irq(int irq, void *data)
{
struct msm_hcd *mhcd = data;
mhcd->pmic_gpio_int_cnt++;
dev_dbg(mhcd->dev, "%s: hsusb host remote wakeup interrupt cnt: %u\n",
__func__, mhcd->pmic_gpio_int_cnt);
wake_lock(&mhcd->wlock);
if (mhcd->pmic_gpio_dp_irq_enabled) {
mhcd->pmic_gpio_dp_irq_enabled = 0;
disable_irq_wake(irq);
disable_irq_nosync(irq);
}
if (!atomic_read(&mhcd->pm_usage_cnt)) {
atomic_set(&mhcd->pm_usage_cnt, 1);
pm_runtime_get(mhcd->dev);
}
return IRQ_HANDLED;
}
static int msm_ehci_reset(struct usb_hcd *hcd)
{
struct ehci_hcd *ehci = hcd_to_ehci(hcd);
struct msm_hcd *mhcd = hcd_to_mhcd(hcd);
struct msm_usb_host_platform_data *pdata;
int retval;
ehci->caps = USB_CAPLENGTH;
ehci->regs = USB_CAPLENGTH +
HC_LENGTH(ehci, ehci_readl(ehci, &ehci->caps->hc_capbase));
dbg_hcs_params(ehci, "reset");
dbg_hcc_params(ehci, "reset");
/* cache the data to minimize the chip reads*/
ehci->hcs_params = ehci_readl(ehci, &ehci->caps->hcs_params);
hcd->has_tt = 1;
ehci->sbrn = HCD_USB2;
retval = ehci_halt(ehci);
if (retval)
return retval;
/* data structure init */
retval = ehci_init(hcd);
if (retval)
return retval;
retval = ehci_reset(ehci);
if (retval)
return retval;
/* bursts of unspecified length. */
writel_relaxed(0, USB_AHBBURST);
/* Use the AHB transactor */
writel_relaxed(0x08, USB_AHBMODE);
/* Disable streaming mode and select host mode */
writel_relaxed(0x13, USB_USBMODE);
pdata = mhcd->dev->platform_data;
if (pdata && pdata->use_sec_phy)
writel_relaxed(readl_relaxed(USB_PHY_CTRL2) | (1<<16),
USB_PHY_CTRL2);
ehci_port_power(ehci, 1);
return 0;
}
static struct hc_driver msm_hc2_driver = {
.description = hcd_name,
.product_desc = "Qualcomm EHCI Host Controller",
.hcd_priv_size = sizeof(struct msm_hcd),
/*
* generic hardware linkage
*/
.irq = msm_ehci_irq,
.flags = HCD_USB2 | HCD_MEMORY,
.reset = msm_ehci_reset,
.start = ehci_run,
.stop = ehci_stop,
.shutdown = ehci_shutdown,
/*
* managing i/o requests and associated device resources
*/
.urb_enqueue = ehci_urb_enqueue,
.urb_dequeue = ehci_urb_dequeue,
.endpoint_disable = ehci_endpoint_disable,
.endpoint_reset = ehci_endpoint_reset,
.clear_tt_buffer_complete = ehci_clear_tt_buffer_complete,
/*
* scheduling support
*/
.get_frame_number = ehci_get_frame,
/*
* root hub support
*/
.hub_status_data = ehci_hub_status_data,
.hub_control = ehci_hub_control,
.relinquish_port = ehci_relinquish_port,
.port_handed_over = ehci_port_handed_over,
/*
* PM support
*/
.bus_suspend = ehci_bus_suspend,
.bus_resume = ehci_bus_resume,
};
static int msm_ehci_init_clocks(struct msm_hcd *mhcd, u32 init)
{
int ret = 0;
if (!init)
goto put_clocks;
/* 60MHz alt_core_clk is for LINK to be used during PHY RESET */
mhcd->alt_core_clk = clk_get(mhcd->dev, "alt_core_clk");
if (IS_ERR(mhcd->alt_core_clk))
dev_dbg(mhcd->dev, "failed to get alt_core_clk\n");
else
clk_set_rate(mhcd->alt_core_clk, 60000000);
/* iface_clk is required for data transfers */
mhcd->iface_clk = clk_get(mhcd->dev, "iface_clk");
if (IS_ERR(mhcd->iface_clk)) {
dev_err(mhcd->dev, "failed to get iface_clk\n");
ret = PTR_ERR(mhcd->iface_clk);
goto put_alt_core_clk;
}
/* Link's protocol engine is based on pclk which must
* be running >55Mhz and frequency should also not change.
* Hence, vote for maximum clk frequency on its source
*/
mhcd->core_clk = clk_get(mhcd->dev, "core_clk");
if (IS_ERR(mhcd->core_clk)) {
dev_err(mhcd->dev, "failed to get core_clk\n");
ret = PTR_ERR(mhcd->core_clk);
goto put_iface_clk;
}
clk_set_rate(mhcd->core_clk, INT_MAX);
mhcd->phy_sleep_clk = clk_get(mhcd->dev, "sleep_clk");
if (IS_ERR(mhcd->phy_sleep_clk))
dev_dbg(mhcd->dev, "failed to get sleep_clk\n");
else
clk_prepare_enable(mhcd->phy_sleep_clk);
clk_prepare_enable(mhcd->core_clk);
clk_prepare_enable(mhcd->iface_clk);
return 0;
put_clocks:
if (!atomic_read(&mhcd->in_lpm)) {
clk_disable_unprepare(mhcd->iface_clk);
clk_disable_unprepare(mhcd->core_clk);
}
clk_put(mhcd->core_clk);
if (!IS_ERR(mhcd->phy_sleep_clk)) {
clk_disable_unprepare(mhcd->phy_sleep_clk);
clk_put(mhcd->phy_sleep_clk);
}
put_iface_clk:
clk_put(mhcd->iface_clk);
put_alt_core_clk:
if (!IS_ERR(mhcd->alt_core_clk))
clk_put(mhcd->alt_core_clk);
return ret;
}
struct msm_usb_host_platform_data *ehci_msm2_dt_to_pdata(
struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct msm_usb_host_platform_data *pdata;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&pdev->dev, "unable to allocate platform data\n");
return NULL;
}
pdata->use_sec_phy = of_property_read_bool(node,
"qcom,usb2-enable-hsphy2");
of_property_read_u32(node, "qcom,usb2-power-budget",
&pdata->power_budget);
return pdata;
}
static u64 ehci_msm_dma_mask = DMA_BIT_MASK(64);
static int __devinit ehci_msm2_probe(struct platform_device *pdev)
{
struct usb_hcd *hcd;
struct resource *res;
struct msm_hcd *mhcd;
const struct msm_usb_host_platform_data *pdata;
char pdev_name[PDEV_NAME_LEN];
int ret;
dev_dbg(&pdev->dev, "ehci_msm2 probe\n");
if (pdev->dev.of_node) {
dev_dbg(&pdev->dev, "device tree enabled\n");
pdev->dev.platform_data = ehci_msm2_dt_to_pdata(pdev);
}
if (!pdev->dev.platform_data)
dev_dbg(&pdev->dev, "No platform data given\n");
if (!pdev->dev.dma_mask)
pdev->dev.dma_mask = &ehci_msm_dma_mask;
if (!pdev->dev.coherent_dma_mask)
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
hcd = usb_create_hcd(&msm_hc2_driver, &pdev->dev,
dev_name(&pdev->dev));
if (!hcd) {
dev_err(&pdev->dev, "Unable to create HCD\n");
return -ENOMEM;
}
hcd->irq = platform_get_irq(pdev, 0);
if (hcd->irq < 0) {
dev_err(&pdev->dev, "Unable to get IRQ resource\n");
ret = hcd->irq;
goto put_hcd;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Unable to get memory resource\n");
ret = -ENODEV;
goto put_hcd;
}
hcd->rsrc_start = res->start;
hcd->rsrc_len = resource_size(res);
hcd->regs = ioremap(hcd->rsrc_start, hcd->rsrc_len);
if (!hcd->regs) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENOMEM;
goto put_hcd;
}
mhcd = hcd_to_mhcd(hcd);
mhcd->dev = &pdev->dev;
spin_lock_init(&mhcd->wakeup_lock);
mhcd->async_irq = platform_get_irq_byname(pdev, "async_irq");
if (mhcd->async_irq < 0) {
dev_dbg(&pdev->dev, "platform_get_irq for async_int failed\n");
mhcd->async_irq = 0;
} else {
ret = request_irq(mhcd->async_irq, msm_async_irq,
IRQF_TRIGGER_RISING, "msm_ehci_host", mhcd);
if (ret) {
dev_err(&pdev->dev, "request irq failed (ASYNC INT)\n");
goto unmap;
}
disable_irq(mhcd->async_irq);
}
snprintf(pdev_name, PDEV_NAME_LEN, "%s.%d", pdev->name, pdev->id);
mhcd->xo_clk = clk_get(&pdev->dev, "xo");
if (!IS_ERR(mhcd->xo_clk)) {
ret = clk_prepare_enable(mhcd->xo_clk);
} else {
mhcd->xo_handle = msm_xo_get(MSM_XO_TCXO_D0, pdev_name);
if (IS_ERR(mhcd->xo_handle)) {
dev_err(&pdev->dev, "%s fail to get handle for X0 D0\n",
__func__);
ret = PTR_ERR(mhcd->xo_handle);
goto free_async_irq;
} else {
ret = msm_xo_mode_vote(mhcd->xo_handle, MSM_XO_MODE_ON);
}
}
if (ret) {
dev_err(&pdev->dev, "%s failed to vote for TCXO %d\n",
__func__, ret);
goto free_xo_handle;
}
ret = msm_ehci_init_clocks(mhcd, 1);
if (ret) {
dev_err(&pdev->dev, "unable to initialize clocks\n");
ret = -ENODEV;
goto devote_xo_handle;
}
ret = msm_ehci_init_vddcx(mhcd, 1);
if (ret) {
dev_err(&pdev->dev, "unable to initialize VDDCX\n");
ret = -ENODEV;
goto deinit_clocks;
}
ret = msm_ehci_config_vddcx(mhcd, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vddcx configuration failed\n");
goto deinit_vddcx;
}
ret = msm_ehci_ldo_init(mhcd, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg configuration failed\n");
goto deinit_vddcx;
}
ret = msm_ehci_ldo_enable(mhcd, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg enable failed\n");
goto deinit_ldo;
}
ret = msm_ehci_init_vbus(mhcd, 1);
if (ret) {
dev_err(&pdev->dev, "unable to get vbus\n");
goto disable_ldo;
}
ret = msm_hsusb_reset(mhcd);
if (ret) {
dev_err(&pdev->dev, "hsusb PHY initialization failed\n");
goto vbus_deinit;
}
ret = usb_add_hcd(hcd, hcd->irq, IRQF_SHARED);
if (ret) {
dev_err(&pdev->dev, "unable to register HCD\n");
goto vbus_deinit;
}
pdata = mhcd->dev->platform_data;
if (pdata && (!pdata->dock_connect_irq ||
!irq_read_line(pdata->dock_connect_irq)))
msm_ehci_vbus_power(mhcd, 1);
device_init_wakeup(&pdev->dev, 1);
wake_lock_init(&mhcd->wlock, WAKE_LOCK_SUSPEND, dev_name(&pdev->dev));
wake_lock(&mhcd->wlock);
INIT_WORK(&mhcd->phy_susp_fail_work, msm_ehci_phy_susp_fail_work);
/*
* This pdev->dev is assigned parent of root-hub by USB core,
* hence, runtime framework automatically calls this driver's
* runtime APIs based on root-hub's state.
*/
/* configure pmic_gpio_irq for D+ change */
if (pdata && pdata->pmic_gpio_dp_irq)
mhcd->pmic_gpio_dp_irq = pdata->pmic_gpio_dp_irq;
if (mhcd->pmic_gpio_dp_irq) {
ret = request_threaded_irq(mhcd->pmic_gpio_dp_irq, NULL,
msm_ehci_host_wakeup_irq,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
"msm_ehci_host_wakeup", mhcd);
if (!ret) {
disable_irq_nosync(mhcd->pmic_gpio_dp_irq);
} else {
dev_err(&pdev->dev, "request_irq(%d) failed: %d\n",
mhcd->pmic_gpio_dp_irq, ret);
mhcd->pmic_gpio_dp_irq = 0;
}
}
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
return 0;
vbus_deinit:
msm_ehci_init_vbus(mhcd, 0);
disable_ldo:
msm_ehci_ldo_enable(mhcd, 0);
deinit_ldo:
msm_ehci_ldo_init(mhcd, 0);
deinit_vddcx:
msm_ehci_init_vddcx(mhcd, 0);
deinit_clocks:
msm_ehci_init_clocks(mhcd, 0);
devote_xo_handle:
if (!IS_ERR(mhcd->xo_clk))
clk_disable_unprepare(mhcd->xo_clk);
else
msm_xo_mode_vote(mhcd->xo_handle, MSM_XO_MODE_OFF);
free_xo_handle:
if (!IS_ERR(mhcd->xo_clk))
clk_put(mhcd->xo_clk);
else
msm_xo_put(mhcd->xo_handle);
free_async_irq:
if (mhcd->async_irq)
free_irq(mhcd->async_irq, mhcd);
unmap:
iounmap(hcd->regs);
put_hcd:
usb_put_hcd(hcd);
return ret;
}
static int __devexit ehci_msm2_remove(struct platform_device *pdev)
{
struct usb_hcd *hcd = platform_get_drvdata(pdev);
struct msm_hcd *mhcd = hcd_to_mhcd(hcd);
if (mhcd->pmic_gpio_dp_irq) {
if (mhcd->pmic_gpio_dp_irq_enabled)
disable_irq_wake(mhcd->pmic_gpio_dp_irq);
free_irq(mhcd->pmic_gpio_dp_irq, mhcd);
}
if (mhcd->async_irq) {
if (mhcd->async_irq_enabled)
disable_irq_wake(mhcd->async_irq);
free_irq(mhcd->async_irq, mhcd);
}
device_init_wakeup(&pdev->dev, 0);
pm_runtime_set_suspended(&pdev->dev);
usb_remove_hcd(hcd);
if (!IS_ERR(mhcd->xo_clk)) {
clk_disable_unprepare(mhcd->xo_clk);
clk_put(mhcd->xo_clk);
} else {
msm_xo_put(mhcd->xo_handle);
}
msm_ehci_vbus_power(mhcd, 0);
msm_ehci_init_vbus(mhcd, 0);
msm_ehci_ldo_enable(mhcd, 0);
msm_ehci_ldo_init(mhcd, 0);
msm_ehci_init_vddcx(mhcd, 0);
msm_ehci_init_clocks(mhcd, 0);
wake_lock_destroy(&mhcd->wlock);
iounmap(hcd->regs);
usb_put_hcd(hcd);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int ehci_msm2_pm_suspend(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hcd *mhcd = hcd_to_mhcd(hcd);
dev_dbg(dev, "ehci-msm2 PM suspend\n");
if (device_may_wakeup(dev))
enable_irq_wake(hcd->irq);
return msm_ehci_suspend(mhcd);
}
static int ehci_msm2_pm_resume(struct device *dev)
{
int ret;
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hcd *mhcd = hcd_to_mhcd(hcd);
dev_dbg(dev, "ehci-msm2 PM resume\n");
if (device_may_wakeup(dev))
disable_irq_wake(hcd->irq);
ret = msm_ehci_resume(mhcd);
if (ret)
return ret;
/* Bring the device to full powered state upon system resume */
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return 0;
}
#endif
#ifdef CONFIG_PM_RUNTIME
static int ehci_msm2_runtime_idle(struct device *dev)
{
dev_dbg(dev, "EHCI runtime idle\n");
return 0;
}
static int ehci_msm2_runtime_suspend(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hcd *mhcd = hcd_to_mhcd(hcd);
dev_dbg(dev, "EHCI runtime suspend\n");
return msm_ehci_suspend(mhcd);
}
static int ehci_msm2_runtime_resume(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hcd *mhcd = hcd_to_mhcd(hcd);
dev_dbg(dev, "EHCI runtime resume\n");
return msm_ehci_resume(mhcd);
}
#endif
#ifdef CONFIG_PM
static const struct dev_pm_ops ehci_msm2_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(ehci_msm2_pm_suspend, ehci_msm2_pm_resume)
SET_RUNTIME_PM_OPS(ehci_msm2_runtime_suspend, ehci_msm2_runtime_resume,
ehci_msm2_runtime_idle)
};
#endif
static const struct of_device_id ehci_msm2_dt_match[] = {
{ .compatible = "qcom,ehci-host",
},
{}
};
static struct platform_driver ehci_msm2_driver = {
.probe = ehci_msm2_probe,
.remove = __devexit_p(ehci_msm2_remove),
.driver = {
.name = "msm_ehci_host",
#ifdef CONFIG_PM
.pm = &ehci_msm2_dev_pm_ops,
#endif
.of_match_table = ehci_msm2_dt_match,
},
};