blob: b35d9042dfd2765ceb7aa6d84ace059cd4a9e384 [file] [log] [blame]
/* Copyright (c) 2009-2013, Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/uaccess.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/dma-mapping.h>
#include <linux/usb.h>
#include <linux/usb/otg.h>
#include <linux/usb/ulpi.h>
#include <linux/usb/gadget.h>
#include <linux/usb/hcd.h>
#include <linux/usb/quirks.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/usb/msm_hsusb_hw.h>
#include <linux/regulator/consumer.h>
#include <linux/mfd/pm8xxx/pm8921-charger.h>
#include <linux/mfd/pm8xxx/misc.h>
#include <linux/mhl_8334.h>
#include <mach/scm.h>
#include <mach/clk.h>
#include <mach/mpm.h>
#include <mach/msm_xo.h>
#include <mach/msm_bus.h>
#include <mach/rpm-regulator.h>
#define MSM_USB_BASE (motg->regs)
#define DRIVER_NAME "msm_otg"
#define ID_TIMER_FREQ (jiffies + msecs_to_jiffies(500))
#define CHG_RECHECK_DELAY (jiffies + msecs_to_jiffies(2000))
#define ULPI_IO_TIMEOUT_USEC (10 * 1000)
#define USB_PHY_3P3_VOL_MIN 3050000 /* uV */
#define USB_PHY_3P3_VOL_MAX 3300000 /* uV */
#define USB_PHY_3P3_HPM_LOAD 50000 /* uA */
#define USB_PHY_3P3_LPM_LOAD 4000 /* uA */
#define USB_PHY_1P8_VOL_MIN 1800000 /* uV */
#define USB_PHY_1P8_VOL_MAX 1800000 /* uV */
#define USB_PHY_1P8_HPM_LOAD 50000 /* uA */
#define USB_PHY_1P8_LPM_LOAD 4000 /* uA */
#define USB_PHY_VDD_DIG_VOL_NONE 0 /*uV */
#define USB_PHY_VDD_DIG_VOL_MIN 1045000 /* uV */
#define USB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */
#define USB_SUSPEND_DELAY_TIME (500 * HZ/1000) /* 500 msec */
enum msm_otg_phy_reg_mode {
USB_PHY_REG_OFF,
USB_PHY_REG_ON,
USB_PHY_REG_LPM_ON,
USB_PHY_REG_LPM_OFF,
};
static char *override_phy_init;
module_param(override_phy_init, charp, S_IRUGO|S_IWUSR);
MODULE_PARM_DESC(override_phy_init,
"Override HSUSB PHY Init Settings");
unsigned int lpm_disconnect_thresh = 1000;
module_param(lpm_disconnect_thresh , uint, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(lpm_disconnect_thresh,
"Delay before entering LPM on USB disconnect");
static DECLARE_COMPLETION(pmic_vbus_init);
static struct msm_otg *the_msm_otg;
static bool debug_aca_enabled;
static bool debug_bus_voting_enabled;
static bool mhl_det_in_progress;
static struct regulator *hsusb_3p3;
static struct regulator *hsusb_1p8;
static struct regulator *hsusb_vdd;
static struct regulator *vbus_otg;
static struct regulator *mhl_usb_hs_switch;
static struct power_supply *psy;
static bool aca_id_turned_on;
static bool legacy_power_supply;
static inline bool aca_enabled(void)
{
#ifdef CONFIG_USB_MSM_ACA
return true;
#else
return debug_aca_enabled;
#endif
}
static int vdd_val[VDD_TYPE_MAX][VDD_VAL_MAX] = {
{ /* VDD_CX CORNER Voting */
[VDD_NONE] = RPM_VREG_CORNER_NONE,
[VDD_MIN] = RPM_VREG_CORNER_NOMINAL,
[VDD_MAX] = RPM_VREG_CORNER_HIGH,
},
{ /* VDD_CX Voltage Voting */
[VDD_NONE] = USB_PHY_VDD_DIG_VOL_NONE,
[VDD_MIN] = USB_PHY_VDD_DIG_VOL_MIN,
[VDD_MAX] = USB_PHY_VDD_DIG_VOL_MAX,
},
};
static int msm_hsusb_ldo_init(struct msm_otg *motg, int init)
{
int rc = 0;
if (init) {
hsusb_3p3 = devm_regulator_get(motg->phy.dev, "HSUSB_3p3");
if (IS_ERR(hsusb_3p3)) {
dev_err(motg->phy.dev, "unable to get hsusb 3p3\n");
return PTR_ERR(hsusb_3p3);
}
rc = regulator_set_voltage(hsusb_3p3, USB_PHY_3P3_VOL_MIN,
USB_PHY_3P3_VOL_MAX);
if (rc) {
dev_err(motg->phy.dev, "unable to set voltage level for"
"hsusb 3p3\n");
return rc;
}
hsusb_1p8 = devm_regulator_get(motg->phy.dev, "HSUSB_1p8");
if (IS_ERR(hsusb_1p8)) {
dev_err(motg->phy.dev, "unable to get hsusb 1p8\n");
rc = PTR_ERR(hsusb_1p8);
goto put_3p3_lpm;
}
rc = regulator_set_voltage(hsusb_1p8, USB_PHY_1P8_VOL_MIN,
USB_PHY_1P8_VOL_MAX);
if (rc) {
dev_err(motg->phy.dev, "unable to set voltage level for"
"hsusb 1p8\n");
goto put_1p8;
}
return 0;
}
put_1p8:
regulator_set_voltage(hsusb_1p8, 0, USB_PHY_1P8_VOL_MAX);
put_3p3_lpm:
regulator_set_voltage(hsusb_3p3, 0, USB_PHY_3P3_VOL_MAX);
return rc;
}
static int msm_hsusb_config_vddcx(int high)
{
struct msm_otg *motg = the_msm_otg;
enum usb_vdd_type vdd_type = motg->vdd_type;
int max_vol = vdd_val[vdd_type][VDD_MAX];
int min_vol;
int ret;
min_vol = vdd_val[vdd_type][!!high];
ret = regulator_set_voltage(hsusb_vdd, min_vol, max_vol);
if (ret) {
pr_err("%s: unable to set the voltage for regulator "
"HSUSB_VDDCX\n", __func__);
return ret;
}
pr_debug("%s: min_vol:%d max_vol:%d\n", __func__, min_vol, max_vol);
return ret;
}
static int msm_hsusb_ldo_enable(struct msm_otg *motg,
enum msm_otg_phy_reg_mode mode)
{
int ret = 0;
if (IS_ERR(hsusb_1p8)) {
pr_err("%s: HSUSB_1p8 is not initialized\n", __func__);
return -ENODEV;
}
if (IS_ERR(hsusb_3p3)) {
pr_err("%s: HSUSB_3p3 is not initialized\n", __func__);
return -ENODEV;
}
switch (mode) {
case USB_PHY_REG_ON:
ret = regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator:"
"HSUSB_1p8\n", __func__);
return ret;
}
ret = regulator_enable(hsusb_1p8);
if (ret) {
dev_err(motg->phy.dev, "%s: unable to enable the hsusb 1p8\n",
__func__);
regulator_set_optimum_mode(hsusb_1p8, 0);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_3p3,
USB_PHY_3P3_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator:"
"HSUSB_3p3\n", __func__);
regulator_set_optimum_mode(hsusb_1p8, 0);
regulator_disable(hsusb_1p8);
return ret;
}
ret = regulator_enable(hsusb_3p3);
if (ret) {
dev_err(motg->phy.dev, "%s: unable to enable the hsusb 3p3\n",
__func__);
regulator_set_optimum_mode(hsusb_3p3, 0);
regulator_set_optimum_mode(hsusb_1p8, 0);
regulator_disable(hsusb_1p8);
return ret;
}
break;
case USB_PHY_REG_OFF:
ret = regulator_disable(hsusb_1p8);
if (ret) {
dev_err(motg->phy.dev, "%s: unable to disable the hsusb 1p8\n",
__func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_1p8, 0);
if (ret < 0)
pr_err("%s: Unable to set LPM of the regulator:"
"HSUSB_1p8\n", __func__);
ret = regulator_disable(hsusb_3p3);
if (ret) {
dev_err(motg->phy.dev, "%s: unable to disable the hsusb 3p3\n",
__func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_3p3, 0);
if (ret < 0)
pr_err("%s: Unable to set LPM of the regulator:"
"HSUSB_3p3\n", __func__);
break;
case USB_PHY_REG_LPM_ON:
ret = regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_LPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set LPM of the regulator: HSUSB_1p8\n",
__func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_3p3,
USB_PHY_3P3_LPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set LPM of the regulator: HSUSB_3p3\n",
__func__);
regulator_set_optimum_mode(hsusb_1p8, USB_PHY_REG_ON);
return ret;
}
break;
case USB_PHY_REG_LPM_OFF:
ret = regulator_set_optimum_mode(hsusb_1p8,
USB_PHY_1P8_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator: HSUSB_1p8\n",
__func__);
return ret;
}
ret = regulator_set_optimum_mode(hsusb_3p3,
USB_PHY_3P3_HPM_LOAD);
if (ret < 0) {
pr_err("%s: Unable to set HPM of the regulator: HSUSB_3p3\n",
__func__);
regulator_set_optimum_mode(hsusb_1p8, USB_PHY_REG_ON);
return ret;
}
break;
default:
pr_err("%s: Unsupported mode (%d).", __func__, mode);
return -ENOTSUPP;
}
pr_debug("%s: USB reg mode (%d) (OFF/HPM/LPM)\n", __func__, mode);
return ret < 0 ? ret : 0;
}
static void msm_hsusb_mhl_switch_enable(struct msm_otg *motg, bool on)
{
struct msm_otg_platform_data *pdata = motg->pdata;
if (!pdata->mhl_enable)
return;
if (!mhl_usb_hs_switch) {
pr_err("%s: mhl_usb_hs_switch is NULL.\n", __func__);
return;
}
if (on) {
if (regulator_enable(mhl_usb_hs_switch))
pr_err("unable to enable mhl_usb_hs_switch\n");
} else {
regulator_disable(mhl_usb_hs_switch);
}
}
static int ulpi_read(struct usb_phy *phy, u32 reg)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
/* initiate read operation */
writel(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(phy->dev, "ulpi_read: timeout %08x\n",
readl(USB_ULPI_VIEWPORT));
return -ETIMEDOUT;
}
return ULPI_DATA_READ(readl(USB_ULPI_VIEWPORT));
}
static int ulpi_write(struct usb_phy *phy, u32 val, u32 reg)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
int cnt = 0;
/* initiate write operation */
writel(ULPI_RUN | ULPI_WRITE |
ULPI_ADDR(reg) | ULPI_DATA(val),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(phy->dev, "ulpi_write: timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static struct usb_phy_io_ops msm_otg_io_ops = {
.read = ulpi_read,
.write = ulpi_write,
};
static void ulpi_init(struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata = motg->pdata;
int aseq[10];
int *seq = NULL;
if (override_phy_init) {
pr_debug("%s(): HUSB PHY Init:%s\n", __func__,
override_phy_init);
get_options(override_phy_init, ARRAY_SIZE(aseq), aseq);
seq = &aseq[1];
} else {
seq = pdata->phy_init_seq;
}
if (!seq)
return;
while (seq[0] >= 0) {
if (override_phy_init)
pr_debug("ulpi: write 0x%02x to 0x%02x\n",
seq[0], seq[1]);
dev_vdbg(motg->phy.dev, "ulpi: write 0x%02x to 0x%02x\n",
seq[0], seq[1]);
ulpi_write(&motg->phy, seq[0], seq[1]);
seq += 2;
}
}
static int msm_otg_link_clk_reset(struct msm_otg *motg, bool assert)
{
int ret;
if (assert) {
if (!IS_ERR(motg->clk)) {
ret = clk_reset(motg->clk, CLK_RESET_ASSERT);
} else {
/* Using asynchronous block reset to the hardware */
dev_dbg(motg->phy.dev, "block_reset ASSERT\n");
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->core_clk);
ret = clk_reset(motg->core_clk, CLK_RESET_ASSERT);
}
if (ret)
dev_err(motg->phy.dev, "usb hs_clk assert failed\n");
} else {
if (!IS_ERR(motg->clk)) {
ret = clk_reset(motg->clk, CLK_RESET_DEASSERT);
} else {
dev_dbg(motg->phy.dev, "block_reset DEASSERT\n");
ret = clk_reset(motg->core_clk, CLK_RESET_DEASSERT);
ndelay(200);
clk_prepare_enable(motg->core_clk);
clk_prepare_enable(motg->pclk);
}
if (ret)
dev_err(motg->phy.dev, "usb hs_clk deassert failed\n");
}
return ret;
}
static int msm_otg_phy_clk_reset(struct msm_otg *motg)
{
int ret;
if (IS_ERR(motg->phy_reset_clk))
return 0;
ret = clk_reset(motg->phy_reset_clk, CLK_RESET_ASSERT);
if (ret) {
dev_err(motg->phy.dev, "usb phy clk assert failed\n");
return ret;
}
usleep_range(10000, 12000);
ret = clk_reset(motg->phy_reset_clk, CLK_RESET_DEASSERT);
if (ret)
dev_err(motg->phy.dev, "usb phy clk deassert failed\n");
return ret;
}
static int msm_otg_phy_reset(struct msm_otg *motg)
{
u32 val;
int ret;
int retries;
ret = msm_otg_link_clk_reset(motg, 1);
if (ret)
return ret;
ret = msm_otg_phy_clk_reset(motg);
if (ret)
return ret;
/*
* 10 usec delay is required according to spec. Using larger value
* since the exact value proved to not work 100% of the time.
*/
if (IS_ERR(motg->phy_reset_clk))
usleep_range(100, 120);
ret = msm_otg_link_clk_reset(motg, 0);
if (ret)
return ret;
val = readl(USB_PORTSC) & ~PORTSC_PTS_MASK;
writel(val | PORTSC_PTS_ULPI, USB_PORTSC);
for (retries = 3; retries > 0; retries--) {
ret = ulpi_write(&motg->phy, ULPI_FUNC_CTRL_SUSPENDM,
ULPI_CLR(ULPI_FUNC_CTRL));
if (!ret)
break;
ret = msm_otg_phy_clk_reset(motg);
if (ret)
return ret;
}
if (!retries)
return -ETIMEDOUT;
/* This reset calibrates the phy, if the above write succeeded */
ret = msm_otg_phy_clk_reset(motg);
if (ret)
return ret;
for (retries = 3; retries > 0; retries--) {
ret = ulpi_read(&motg->phy, ULPI_DEBUG);
if (ret != -ETIMEDOUT)
break;
ret = msm_otg_phy_clk_reset(motg);
if (ret)
return ret;
}
if (!retries)
return -ETIMEDOUT;
dev_info(motg->phy.dev, "phy_reset: success\n");
return 0;
}
#define LINK_RESET_TIMEOUT_USEC (250 * 1000)
static int msm_otg_link_reset(struct msm_otg *motg)
{
int cnt = 0;
writel_relaxed(USBCMD_RESET, USB_USBCMD);
while (cnt < LINK_RESET_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_USBCMD) & USBCMD_RESET))
break;
udelay(1);
cnt++;
}
if (cnt >= LINK_RESET_TIMEOUT_USEC)
return -ETIMEDOUT;
/* select ULPI phy */
writel_relaxed(0x80000000, USB_PORTSC);
writel_relaxed(0x0, USB_AHBBURST);
writel_relaxed(0x08, USB_AHBMODE);
return 0;
}
static int msm_otg_reset(struct usb_phy *phy)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
int ret;
u32 val = 0;
u32 ulpi_val = 0;
/*
* USB PHY and Link reset also reset the USB BAM.
* Thus perform reset operation only once to avoid
* USB BAM reset on other cases e.g. USB cable disconnections.
*/
if (pdata->disable_reset_on_disconnect) {
if (motg->reset_counter)
return 0;
else
motg->reset_counter++;
}
if (!IS_ERR(motg->clk))
clk_prepare_enable(motg->clk);
ret = msm_otg_phy_reset(motg);
if (ret) {
dev_err(phy->dev, "phy_reset failed\n");
return ret;
}
aca_id_turned_on = false;
ret = msm_otg_link_reset(motg);
if (ret) {
dev_err(phy->dev, "link reset failed\n");
return ret;
}
msleep(100);
ulpi_init(motg);
/* Ensure that RESET operation is completed before turning off clock */
mb();
if (!IS_ERR(motg->clk))
clk_disable_unprepare(motg->clk);
if (pdata->otg_control == OTG_PHY_CONTROL) {
val = readl_relaxed(USB_OTGSC);
if (pdata->mode == USB_OTG) {
ulpi_val = ULPI_INT_IDGRD | ULPI_INT_SESS_VALID;
val |= OTGSC_IDIE | OTGSC_BSVIE;
} else if (pdata->mode == USB_PERIPHERAL) {
ulpi_val = ULPI_INT_SESS_VALID;
val |= OTGSC_BSVIE;
}
writel_relaxed(val, USB_OTGSC);
ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_RISE);
ulpi_write(phy, ulpi_val, ULPI_USB_INT_EN_FALL);
} else if (pdata->otg_control == OTG_PMIC_CONTROL) {
ulpi_write(phy, OTG_COMP_DISABLE,
ULPI_SET(ULPI_PWR_CLK_MNG_REG));
/* Enable PMIC pull-up */
pm8xxx_usb_id_pullup(1);
}
return 0;
}
static const char *timer_string(int bit)
{
switch (bit) {
case A_WAIT_VRISE: return "a_wait_vrise";
case A_WAIT_VFALL: return "a_wait_vfall";
case B_SRP_FAIL: return "b_srp_fail";
case A_WAIT_BCON: return "a_wait_bcon";
case A_AIDL_BDIS: return "a_aidl_bdis";
case A_BIDL_ADIS: return "a_bidl_adis";
case B_ASE0_BRST: return "b_ase0_brst";
case A_TST_MAINT: return "a_tst_maint";
case B_TST_SRP: return "b_tst_srp";
case B_TST_CONFIG: return "b_tst_config";
default: return "UNDEFINED";
}
}
static enum hrtimer_restart msm_otg_timer_func(struct hrtimer *hrtimer)
{
struct msm_otg *motg = container_of(hrtimer, struct msm_otg, timer);
switch (motg->active_tmout) {
case A_WAIT_VRISE:
/* TODO: use vbus_vld interrupt */
set_bit(A_VBUS_VLD, &motg->inputs);
break;
case A_TST_MAINT:
/* OTG PET: End session after TA_TST_MAINT */
set_bit(A_BUS_DROP, &motg->inputs);
break;
case B_TST_SRP:
/*
* OTG PET: Initiate SRP after TB_TST_SRP of
* previous session end.
*/
set_bit(B_BUS_REQ, &motg->inputs);
break;
case B_TST_CONFIG:
clear_bit(A_CONN, &motg->inputs);
break;
default:
set_bit(motg->active_tmout, &motg->tmouts);
}
pr_debug("expired %s timer\n", timer_string(motg->active_tmout));
queue_work(system_nrt_wq, &motg->sm_work);
return HRTIMER_NORESTART;
}
static void msm_otg_del_timer(struct msm_otg *motg)
{
int bit = motg->active_tmout;
pr_debug("deleting %s timer. remaining %lld msec\n", timer_string(bit),
div_s64(ktime_to_us(hrtimer_get_remaining(
&motg->timer)), 1000));
hrtimer_cancel(&motg->timer);
clear_bit(bit, &motg->tmouts);
}
static void msm_otg_start_timer(struct msm_otg *motg, int time, int bit)
{
clear_bit(bit, &motg->tmouts);
motg->active_tmout = bit;
pr_debug("starting %s timer\n", timer_string(bit));
hrtimer_start(&motg->timer,
ktime_set(time / 1000, (time % 1000) * 1000000),
HRTIMER_MODE_REL);
}
static void msm_otg_init_timer(struct msm_otg *motg)
{
hrtimer_init(&motg->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
motg->timer.function = msm_otg_timer_func;
}
static int msm_otg_start_hnp(struct usb_otg *otg)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
if (otg->phy->state != OTG_STATE_A_HOST) {
pr_err("HNP can not be initiated in %s state\n",
otg_state_string(otg->phy->state));
return -EINVAL;
}
pr_debug("A-Host: HNP initiated\n");
clear_bit(A_BUS_REQ, &motg->inputs);
queue_work(system_nrt_wq, &motg->sm_work);
return 0;
}
static int msm_otg_start_srp(struct usb_otg *otg)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
u32 val;
int ret = 0;
if (otg->phy->state != OTG_STATE_B_IDLE) {
pr_err("SRP can not be initiated in %s state\n",
otg_state_string(otg->phy->state));
ret = -EINVAL;
goto out;
}
if ((jiffies - motg->b_last_se0_sess) < msecs_to_jiffies(TB_SRP_INIT)) {
pr_debug("initial conditions of SRP are not met. Try again"
"after some time\n");
ret = -EAGAIN;
goto out;
}
pr_debug("B-Device SRP started\n");
/*
* PHY won't pull D+ high unless it detects Vbus valid.
* Since by definition, SRP is only done when Vbus is not valid,
* software work-around needs to be used to spoof the PHY into
* thinking it is valid. This can be done using the VBUSVLDEXTSEL and
* VBUSVLDEXT register bits.
*/
ulpi_write(otg->phy, 0x03, 0x97);
/*
* Harware auto assist data pulsing: Data pulse is given
* for 7msec; wait for vbus
*/
val = readl_relaxed(USB_OTGSC);
writel_relaxed((val & ~OTGSC_INTSTS_MASK) | OTGSC_HADP, USB_OTGSC);
/* VBUS plusing is obsoleted in OTG 2.0 supplement */
out:
return ret;
}
static void msm_otg_host_hnp_enable(struct usb_otg *otg, bool enable)
{
struct usb_hcd *hcd = bus_to_hcd(otg->host);
struct usb_device *rhub = otg->host->root_hub;
if (enable) {
pm_runtime_disable(&rhub->dev);
rhub->state = USB_STATE_NOTATTACHED;
hcd->driver->bus_suspend(hcd);
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
} else {
usb_remove_hcd(hcd);
msm_otg_reset(otg->phy);
usb_add_hcd(hcd, hcd->irq, IRQF_SHARED);
}
}
static int msm_otg_set_suspend(struct usb_phy *phy, int suspend)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
if (aca_enabled())
return 0;
/*
* UDC and HCD call usb_phy_set_suspend() to enter/exit LPM
* during bus suspend/resume. Update the relevant state
* machine inputs and trigger LPM entry/exit. Checking
* in_lpm flag would avoid unnecessary work scheduling.
*/
if (suspend) {
switch (phy->state) {
case OTG_STATE_A_WAIT_BCON:
if (TA_WAIT_BCON > 0)
break;
/* fall through */
case OTG_STATE_A_HOST:
pr_debug("host bus suspend\n");
clear_bit(A_BUS_REQ, &motg->inputs);
if (!atomic_read(&motg->in_lpm))
queue_work(system_nrt_wq, &motg->sm_work);
break;
case OTG_STATE_B_PERIPHERAL:
pr_debug("peripheral bus suspend\n");
if (!(motg->caps & ALLOW_LPM_ON_DEV_SUSPEND))
break;
set_bit(A_BUS_SUSPEND, &motg->inputs);
if (!atomic_read(&motg->in_lpm))
queue_delayed_work(system_nrt_wq,
&motg->suspend_work,
USB_SUSPEND_DELAY_TIME);
break;
default:
break;
}
} else {
switch (phy->state) {
case OTG_STATE_A_WAIT_BCON:
/* Remote wakeup or resume */
set_bit(A_BUS_REQ, &motg->inputs);
/* ensure hardware is not in low power mode */
if (atomic_read(&motg->in_lpm))
pm_runtime_resume(phy->dev);
break;
case OTG_STATE_A_SUSPEND:
/* Remote wakeup or resume */
set_bit(A_BUS_REQ, &motg->inputs);
phy->state = OTG_STATE_A_HOST;
/* ensure hardware is not in low power mode */
if (atomic_read(&motg->in_lpm))
pm_runtime_resume(phy->dev);
break;
case OTG_STATE_B_PERIPHERAL:
pr_debug("peripheral bus resume\n");
if (!(motg->caps & ALLOW_LPM_ON_DEV_SUSPEND))
break;
clear_bit(A_BUS_SUSPEND, &motg->inputs);
if (atomic_read(&motg->in_lpm))
queue_work(system_nrt_wq, &motg->sm_work);
break;
default:
break;
}
}
return 0;
}
#define PHY_SUSPEND_TIMEOUT_USEC (500 * 1000)
#define PHY_RESUME_TIMEOUT_USEC (100 * 1000)
#ifdef CONFIG_PM_SLEEP
static int msm_otg_suspend(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
struct usb_bus *bus = phy->otg->host;
struct msm_otg_platform_data *pdata = motg->pdata;
int cnt = 0;
bool host_bus_suspend, device_bus_suspend, dcp;
u32 phy_ctrl_val = 0, cmd_val;
unsigned ret;
u32 portsc;
if (atomic_read(&motg->in_lpm))
return 0;
disable_irq(motg->irq);
host_bus_suspend = !test_bit(MHL, &motg->inputs) && phy->otg->host &&
!test_bit(ID, &motg->inputs);
device_bus_suspend = phy->otg->gadget && test_bit(ID, &motg->inputs) &&
test_bit(A_BUS_SUSPEND, &motg->inputs) &&
motg->caps & ALLOW_LPM_ON_DEV_SUSPEND;
dcp = motg->chg_type == USB_DCP_CHARGER;
/*
* Abort suspend when,
* 1. charging detection in progress due to cable plug-in
* 2. host mode activation in progress due to Micro-A cable insertion
*/
if ((test_bit(B_SESS_VLD, &motg->inputs) && !device_bus_suspend &&
!dcp) || test_bit(A_BUS_REQ, &motg->inputs)) {
enable_irq(motg->irq);
return -EBUSY;
}
/*
* Chipidea 45-nm PHY suspend sequence:
*
* Interrupt Latch Register auto-clear feature is not present
* in all PHY versions. Latch register is clear on read type.
* Clear latch register to avoid spurious wakeup from
* low power mode (LPM).
*
* PHY comparators are disabled when PHY enters into low power
* mode (LPM). Keep PHY comparators ON in LPM only when we expect
* VBUS/Id notifications from USB PHY. Otherwise turn off USB
* PHY comparators. This save significant amount of power.
*
* PLL is not turned off when PHY enters into low power mode (LPM).
* Disable PLL for maximum power savings.
*/
if (motg->pdata->phy_type == CI_45NM_INTEGRATED_PHY) {
ulpi_read(phy, 0x14);
if (pdata->otg_control == OTG_PHY_CONTROL)
ulpi_write(phy, 0x01, 0x30);
ulpi_write(phy, 0x08, 0x09);
}
/* Set the PHCD bit, only if it is not set by the controller.
* PHY may take some time or even fail to enter into low power
* mode (LPM). Hence poll for 500 msec and reset the PHY and link
* in failure case.
*/
portsc = readl_relaxed(USB_PORTSC);
if (!(portsc & PORTSC_PHCD)) {
writel_relaxed(portsc | PORTSC_PHCD,
USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl_relaxed(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC) {
dev_err(phy->dev, "Unable to suspend PHY\n");
msm_otg_reset(phy);
enable_irq(motg->irq);
return -ETIMEDOUT;
}
/*
* PHY has capability to generate interrupt asynchronously in low
* power mode (LPM). This interrupt is level triggered. So USB IRQ
* line must be disabled till async interrupt enable bit is cleared
* in USBCMD register. Assert STP (ULPI interface STOP signal) to
* block data communication from PHY.
*
* PHY retention mode is disallowed while entering to LPM with wall
* charger connected. But PHY is put into suspend mode. Hence
* enable asynchronous interrupt to detect charger disconnection when
* PMIC notifications are unavailable.
*/
cmd_val = readl_relaxed(USB_USBCMD);
if (host_bus_suspend || device_bus_suspend ||
(motg->pdata->otg_control == OTG_PHY_CONTROL && dcp))
cmd_val |= ASYNC_INTR_CTRL | ULPI_STP_CTRL;
else
cmd_val |= ULPI_STP_CTRL;
writel_relaxed(cmd_val, USB_USBCMD);
/*
* BC1.2 spec mandates PD to enable VDP_SRC when charging from DCP.
* PHY retention and collapse can not happen with VDP_SRC enabled.
*/
if (motg->caps & ALLOW_PHY_RETENTION && !host_bus_suspend &&
!device_bus_suspend && !dcp) {
phy_ctrl_val = readl_relaxed(USB_PHY_CTRL);
if (motg->pdata->otg_control == OTG_PHY_CONTROL) {
/* Enable PHY HV interrupts to wake MPM/Link */
if ((motg->pdata->mode == USB_OTG) ||
(motg->pdata->mode == USB_HOST))
phy_ctrl_val |= (PHY_IDHV_INTEN |
PHY_OTGSESSVLDHV_INTEN);
else
phy_ctrl_val |= PHY_OTGSESSVLDHV_INTEN;
}
writel_relaxed(phy_ctrl_val & ~PHY_RETEN, USB_PHY_CTRL);
motg->lpm_flags |= PHY_RETENTIONED;
}
/* Ensure that above operation is completed before turning off clocks */
mb();
/* Consider clocks on workaround flag only in case of bus suspend */
if (!(phy->state == OTG_STATE_B_PERIPHERAL &&
test_bit(A_BUS_SUSPEND, &motg->inputs)) ||
!motg->pdata->core_clk_always_on_workaround) {
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->core_clk);
motg->lpm_flags |= CLOCKS_DOWN;
}
/* usb phy no more require TCXO clock, hence vote for TCXO disable */
if (!host_bus_suspend) {
if (!IS_ERR(motg->xo_clk)) {
clk_disable_unprepare(motg->xo_clk);
motg->lpm_flags |= XO_SHUTDOWN;
} else {
ret = msm_xo_mode_vote(motg->xo_handle,
MSM_XO_MODE_OFF);
if (ret)
dev_err(phy->dev, "%s fail to devote XO %d\n",
__func__, ret);
else
motg->lpm_flags |= XO_SHUTDOWN;
}
}
if (motg->caps & ALLOW_PHY_POWER_COLLAPSE &&
!host_bus_suspend && !dcp) {
msm_hsusb_ldo_enable(motg, USB_PHY_REG_OFF);
motg->lpm_flags |= PHY_PWR_COLLAPSED;
} else if (motg->caps & ALLOW_PHY_REGULATORS_LPM &&
!host_bus_suspend && !device_bus_suspend && !dcp) {
msm_hsusb_ldo_enable(motg, USB_PHY_REG_LPM_ON);
motg->lpm_flags |= PHY_REGULATORS_LPM;
}
if (motg->lpm_flags & PHY_RETENTIONED) {
msm_hsusb_config_vddcx(0);
msm_hsusb_mhl_switch_enable(motg, 0);
}
if (device_may_wakeup(phy->dev)) {
if (motg->async_irq)
enable_irq_wake(motg->async_irq);
else
enable_irq_wake(motg->irq);
if (motg->pdata->pmic_id_irq)
enable_irq_wake(motg->pdata->pmic_id_irq);
if (pdata->otg_control == OTG_PHY_CONTROL &&
pdata->mpm_otgsessvld_int)
msm_mpm_set_pin_wake(pdata->mpm_otgsessvld_int, 1);
}
if (bus)
clear_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags);
atomic_set(&motg->in_lpm, 1);
/* Enable ASYNC IRQ (if present) during LPM */
if (motg->async_irq)
enable_irq(motg->async_irq);
enable_irq(motg->irq);
wake_unlock(&motg->wlock);
dev_info(phy->dev, "USB in low power mode\n");
return 0;
}
static int msm_otg_resume(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
struct usb_bus *bus = phy->otg->host;
struct msm_otg_platform_data *pdata = motg->pdata;
int cnt = 0;
unsigned temp;
u32 phy_ctrl_val = 0;
unsigned ret;
if (!atomic_read(&motg->in_lpm))
return 0;
disable_irq(motg->irq);
wake_lock(&motg->wlock);
/* Vote for TCXO when waking up the phy */
if (motg->lpm_flags & XO_SHUTDOWN) {
if (!IS_ERR(motg->xo_clk)) {
clk_prepare_enable(motg->xo_clk);
} else {
ret = msm_xo_mode_vote(motg->xo_handle, MSM_XO_MODE_ON);
if (ret)
dev_err(phy->dev, "%s fail to vote for XO %d\n",
__func__, ret);
}
motg->lpm_flags &= ~XO_SHUTDOWN;
}
if (motg->lpm_flags & CLOCKS_DOWN) {
clk_prepare_enable(motg->core_clk);
clk_prepare_enable(motg->pclk);
motg->lpm_flags &= ~CLOCKS_DOWN;
}
if (motg->lpm_flags & PHY_PWR_COLLAPSED) {
msm_hsusb_ldo_enable(motg, USB_PHY_REG_ON);
motg->lpm_flags &= ~PHY_PWR_COLLAPSED;
} else if (motg->lpm_flags & PHY_REGULATORS_LPM) {
msm_hsusb_ldo_enable(motg, USB_PHY_REG_LPM_OFF);
motg->lpm_flags &= ~PHY_REGULATORS_LPM;
}
if (motg->lpm_flags & PHY_RETENTIONED) {
msm_hsusb_mhl_switch_enable(motg, 1);
msm_hsusb_config_vddcx(1);
phy_ctrl_val = readl_relaxed(USB_PHY_CTRL);
phy_ctrl_val |= PHY_RETEN;
if (motg->pdata->otg_control == OTG_PHY_CONTROL)
/* Disable PHY HV interrupts */
phy_ctrl_val &=
~(PHY_IDHV_INTEN | PHY_OTGSESSVLDHV_INTEN);
writel_relaxed(phy_ctrl_val, USB_PHY_CTRL);
motg->lpm_flags &= ~PHY_RETENTIONED;
}
temp = readl(USB_USBCMD);
temp &= ~ASYNC_INTR_CTRL;
temp &= ~ULPI_STP_CTRL;
writel(temp, USB_USBCMD);
/*
* PHY comes out of low power mode (LPM) in case of wakeup
* from asynchronous interrupt.
*/
if (!(readl(USB_PORTSC) & PORTSC_PHCD))
goto skip_phy_resume;
writel(readl(USB_PORTSC) & ~PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_RESUME_TIMEOUT_USEC) {
if (!(readl(USB_PORTSC) & PORTSC_PHCD))
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_RESUME_TIMEOUT_USEC) {
/*
* This is a fatal error. Reset the link and
* PHY. USB state can not be restored. Re-insertion
* of USB cable is the only way to get USB working.
*/
dev_err(phy->dev, "Unable to resume USB."
"Re-plugin the cable\n");
msm_otg_reset(phy);
}
skip_phy_resume:
if (device_may_wakeup(phy->dev)) {
if (motg->async_irq)
disable_irq_wake(motg->async_irq);
else
disable_irq_wake(motg->irq);
if (motg->pdata->pmic_id_irq)
disable_irq_wake(motg->pdata->pmic_id_irq);
if (pdata->otg_control == OTG_PHY_CONTROL &&
pdata->mpm_otgsessvld_int)
msm_mpm_set_pin_wake(pdata->mpm_otgsessvld_int, 0);
}
if (bus)
set_bit(HCD_FLAG_HW_ACCESSIBLE, &(bus_to_hcd(bus))->flags);
atomic_set(&motg->in_lpm, 0);
if (motg->async_int) {
/* Match the disable_irq call from ISR */
enable_irq(motg->async_int);
motg->async_int = 0;
}
enable_irq(motg->irq);
/* If ASYNC IRQ is present then keep it enabled only during LPM */
if (motg->async_irq)
disable_irq(motg->async_irq);
dev_info(phy->dev, "USB exited from low power mode\n");
return 0;
}
#endif
static void msm_otg_notify_host_mode(struct msm_otg *motg, bool host_mode)
{
if (!psy) {
pr_err("No USB power supply registered!\n");
return;
}
if (legacy_power_supply) {
/* legacy support */
if (host_mode) {
power_supply_set_scope(psy, POWER_SUPPLY_SCOPE_SYSTEM);
} else {
power_supply_set_scope(psy, POWER_SUPPLY_SCOPE_DEVICE);
/*
* VBUS comparator is disabled by PMIC charging driver
* when SYSTEM scope is selected. For ID_GND->ID_A
* transition, give 50 msec delay so that PMIC charger
* driver detect the VBUS and ready for accepting
* charging current value from USB.
*/
if (test_bit(ID_A, &motg->inputs))
msleep(50);
}
} else {
motg->host_mode = host_mode;
power_supply_changed(psy);
}
}
static int msm_otg_notify_chg_type(struct msm_otg *motg)
{
static int charger_type;
/*
* TODO
* Unify OTG driver charger types and power supply charger types
*/
if (charger_type == motg->chg_type)
return 0;
if (motg->chg_type == USB_SDP_CHARGER)
charger_type = POWER_SUPPLY_TYPE_USB;
else if (motg->chg_type == USB_CDP_CHARGER)
charger_type = POWER_SUPPLY_TYPE_USB_CDP;
else if (motg->chg_type == USB_DCP_CHARGER ||
motg->chg_type == USB_PROPRIETARY_CHARGER)
charger_type = POWER_SUPPLY_TYPE_USB_DCP;
else if ((motg->chg_type == USB_ACA_DOCK_CHARGER ||
motg->chg_type == USB_ACA_A_CHARGER ||
motg->chg_type == USB_ACA_B_CHARGER ||
motg->chg_type == USB_ACA_C_CHARGER))
charger_type = POWER_SUPPLY_TYPE_USB_ACA;
else
charger_type = POWER_SUPPLY_TYPE_UNKNOWN;
if (!psy) {
pr_err("No USB power supply registered!\n");
return -EINVAL;
}
pr_debug("setting usb power supply type %d\n", charger_type);
power_supply_set_supply_type(psy, charger_type);
return 0;
}
static int msm_otg_notify_power_supply(struct msm_otg *motg, unsigned mA)
{
if (!psy) {
dev_dbg(motg->phy.dev, "no usb power supply registered\n");
goto psy_error;
}
if (motg->cur_power == 0 && mA > 2) {
/* Enable charging */
if (power_supply_set_online(psy, true))
goto psy_error;
if (power_supply_set_current_limit(psy, 1000*mA))
goto psy_error;
} else if (motg->cur_power > 0 && (mA == 0 || mA == 2)) {
/* Disable charging */
if (power_supply_set_online(psy, false))
goto psy_error;
/* Set max current limit */
if (power_supply_set_current_limit(psy, 0))
goto psy_error;
}
power_supply_changed(psy);
return 0;
psy_error:
dev_dbg(motg->phy.dev, "power supply error when setting property\n");
return -ENXIO;
}
static void msm_otg_notify_charger(struct msm_otg *motg, unsigned mA)
{
struct usb_gadget *g = motg->phy.otg->gadget;
if (g && g->is_a_peripheral)
return;
if ((motg->chg_type == USB_ACA_DOCK_CHARGER ||
motg->chg_type == USB_ACA_A_CHARGER ||
motg->chg_type == USB_ACA_B_CHARGER ||
motg->chg_type == USB_ACA_C_CHARGER) &&
mA > IDEV_ACA_CHG_LIMIT)
mA = IDEV_ACA_CHG_LIMIT;
if (msm_otg_notify_chg_type(motg))
dev_err(motg->phy.dev,
"Failed notifying %d charger type to PMIC\n",
motg->chg_type);
if (motg->cur_power == mA)
return;
dev_info(motg->phy.dev, "Avail curr from USB = %u\n", mA);
/*
* Use Power Supply API if supported, otherwise fallback
* to legacy pm8921 API.
*/
if (msm_otg_notify_power_supply(motg, mA))
pm8921_charger_vbus_draw(mA);
motg->cur_power = mA;
}
static int msm_otg_set_power(struct usb_phy *phy, unsigned mA)
{
struct msm_otg *motg = container_of(phy, struct msm_otg, phy);
/*
* Gadget driver uses set_power method to notify about the
* available current based on suspend/configured states.
*
* IDEV_CHG can be drawn irrespective of suspend/un-configured
* states when CDP/ACA is connected.
*/
if (motg->chg_type == USB_SDP_CHARGER)
msm_otg_notify_charger(motg, mA);
return 0;
}
static void msm_otg_start_host(struct usb_otg *otg, int on)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
struct usb_hcd *hcd;
if (!otg->host)
return;
hcd = bus_to_hcd(otg->host);
if (on) {
dev_dbg(otg->phy->dev, "host on\n");
if (pdata->otg_control == OTG_PHY_CONTROL)
ulpi_write(otg->phy, OTG_COMP_DISABLE,
ULPI_SET(ULPI_PWR_CLK_MNG_REG));
/*
* Some boards have a switch cotrolled by gpio
* to enable/disable internal HUB. Enable internal
* HUB before kicking the host.
*/
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_A_HOST);
usb_add_hcd(hcd, hcd->irq, IRQF_SHARED);
} else {
dev_dbg(otg->phy->dev, "host off\n");
usb_remove_hcd(hcd);
/* HCD core reset all bits of PORTSC. select ULPI phy */
writel_relaxed(0x80000000, USB_PORTSC);
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_UNDEFINED);
if (pdata->otg_control == OTG_PHY_CONTROL)
ulpi_write(otg->phy, OTG_COMP_DISABLE,
ULPI_CLR(ULPI_PWR_CLK_MNG_REG));
}
}
static int msm_otg_usbdev_notify(struct notifier_block *self,
unsigned long action, void *priv)
{
struct msm_otg *motg = container_of(self, struct msm_otg, usbdev_nb);
struct usb_otg *otg = motg->phy.otg;
struct usb_device *udev = priv;
if (action == USB_BUS_ADD || action == USB_BUS_REMOVE)
goto out;
if (udev->bus != otg->host)
goto out;
/*
* Interested in devices connected directly to the root hub.
* ACA dock can supply IDEV_CHG irrespective devices connected
* on the accessory port.
*/
if (!udev->parent || udev->parent->parent ||
motg->chg_type == USB_ACA_DOCK_CHARGER)
goto out;
switch (action) {
case USB_DEVICE_ADD:
if (aca_enabled())
usb_disable_autosuspend(udev);
if (otg->phy->state == OTG_STATE_A_WAIT_BCON) {
pr_debug("B_CONN set\n");
set_bit(B_CONN, &motg->inputs);
msm_otg_del_timer(motg);
otg->phy->state = OTG_STATE_A_HOST;
/*
* OTG PET: A-device must end session within
* 10 sec after PET enumeration.
*/
if (udev->quirks & USB_QUIRK_OTG_PET)
msm_otg_start_timer(motg, TA_TST_MAINT,
A_TST_MAINT);
}
/* fall through */
case USB_DEVICE_CONFIG:
if (udev->actconfig)
motg->mA_port = udev->actconfig->desc.bMaxPower * 2;
else
motg->mA_port = IUNIT;
if (otg->phy->state == OTG_STATE_B_HOST)
msm_otg_del_timer(motg);
break;
case USB_DEVICE_REMOVE:
if ((otg->phy->state == OTG_STATE_A_HOST) ||
(otg->phy->state == OTG_STATE_A_SUSPEND)) {
pr_debug("B_CONN clear\n");
clear_bit(B_CONN, &motg->inputs);
/*
* OTG PET: A-device must end session after
* PET disconnection if it is enumerated
* with bcdDevice[0] = 1. USB core sets
* bus->otg_vbus_off for us. clear it here.
*/
if (udev->bus->otg_vbus_off) {
udev->bus->otg_vbus_off = 0;
set_bit(A_BUS_DROP, &motg->inputs);
}
queue_work(system_nrt_wq, &motg->sm_work);
}
default:
break;
}
if (test_bit(ID_A, &motg->inputs))
msm_otg_notify_charger(motg, IDEV_ACA_CHG_MAX -
motg->mA_port);
out:
return NOTIFY_OK;
}
static void msm_hsusb_vbus_power(struct msm_otg *motg, bool on)
{
int ret;
static bool vbus_is_on;
if (vbus_is_on == on)
return;
if (motg->pdata->vbus_power) {
ret = motg->pdata->vbus_power(on);
if (!ret)
vbus_is_on = on;
return;
}
if (!vbus_otg) {
pr_err("vbus_otg is NULL.");
return;
}
/*
* if entering host mode tell the charger to not draw any current
* from usb before turning on the boost.
* if exiting host mode disable the boost before enabling to draw
* current from the source.
*/
if (on) {
msm_otg_notify_host_mode(motg, on);
ret = regulator_enable(vbus_otg);
if (ret) {
pr_err("unable to enable vbus_otg\n");
return;
}
vbus_is_on = true;
} else {
ret = regulator_disable(vbus_otg);
if (ret) {
pr_err("unable to disable vbus_otg\n");
return;
}
msm_otg_notify_host_mode(motg, on);
vbus_is_on = false;
}
}
static int msm_otg_set_host(struct usb_otg *otg, struct usb_bus *host)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
struct usb_hcd *hcd;
/*
* Fail host registration if this board can support
* only peripheral configuration.
*/
if (motg->pdata->mode == USB_PERIPHERAL) {
dev_info(otg->phy->dev, "Host mode is not supported\n");
return -ENODEV;
}
if (!motg->pdata->vbus_power && host) {
vbus_otg = devm_regulator_get(motg->phy.dev, "vbus_otg");
if (IS_ERR(vbus_otg)) {
pr_err("Unable to get vbus_otg\n");
return -ENODEV;
}
}
if (!host) {
if (otg->phy->state == OTG_STATE_A_HOST) {
pm_runtime_get_sync(otg->phy->dev);
usb_unregister_notify(&motg->usbdev_nb);
msm_otg_start_host(otg, 0);
msm_hsusb_vbus_power(motg, 0);
otg->host = NULL;
otg->phy->state = OTG_STATE_UNDEFINED;
queue_work(system_nrt_wq, &motg->sm_work);
} else {
otg->host = NULL;
}
return 0;
}
hcd = bus_to_hcd(host);
hcd->power_budget = motg->pdata->power_budget;
#ifdef CONFIG_USB_OTG
host->otg_port = 1;
#endif
motg->usbdev_nb.notifier_call = msm_otg_usbdev_notify;
usb_register_notify(&motg->usbdev_nb);
otg->host = host;
dev_dbg(otg->phy->dev, "host driver registered w/ tranceiver\n");
/*
* Kick the state machine work, if peripheral is not supported
* or peripheral is already registered with us.
*/
if (motg->pdata->mode == USB_HOST || otg->gadget) {
pm_runtime_get_sync(otg->phy->dev);
queue_work(system_nrt_wq, &motg->sm_work);
}
return 0;
}
static void msm_otg_start_peripheral(struct usb_otg *otg, int on)
{
int ret;
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
struct msm_otg_platform_data *pdata = motg->pdata;
if (!otg->gadget)
return;
if (on) {
dev_dbg(otg->phy->dev, "gadget on\n");
/*
* Some boards have a switch cotrolled by gpio
* to enable/disable internal HUB. Disable internal
* HUB before kicking the gadget.
*/
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_B_PERIPHERAL);
/* Configure BUS performance parameters for MAX bandwidth */
if (motg->bus_perf_client && debug_bus_voting_enabled) {
ret = msm_bus_scale_client_update_request(
motg->bus_perf_client, 1);
if (ret)
dev_err(motg->phy.dev, "%s: Failed to vote for "
"bus bandwidth %d\n", __func__, ret);
}
usb_gadget_vbus_connect(otg->gadget);
} else {
dev_dbg(otg->phy->dev, "gadget off\n");
usb_gadget_vbus_disconnect(otg->gadget);
/* Configure BUS performance parameters to default */
if (motg->bus_perf_client) {
ret = msm_bus_scale_client_update_request(
motg->bus_perf_client, 0);
if (ret)
dev_err(motg->phy.dev, "%s: Failed to devote "
"for bus bw %d\n", __func__, ret);
}
if (pdata->setup_gpio)
pdata->setup_gpio(OTG_STATE_UNDEFINED);
}
}
static int msm_otg_set_peripheral(struct usb_otg *otg,
struct usb_gadget *gadget)
{
struct msm_otg *motg = container_of(otg->phy, struct msm_otg, phy);
/*
* Fail peripheral registration if this board can support
* only host configuration.
*/
if (motg->pdata->mode == USB_HOST) {
dev_info(otg->phy->dev, "Peripheral mode is not supported\n");
return -ENODEV;
}
if (!gadget) {
if (otg->phy->state == OTG_STATE_B_PERIPHERAL) {
pm_runtime_get_sync(otg->phy->dev);
msm_otg_start_peripheral(otg, 0);
otg->gadget = NULL;
otg->phy->state = OTG_STATE_UNDEFINED;
queue_work(system_nrt_wq, &motg->sm_work);
} else {
otg->gadget = NULL;
}
return 0;
}
otg->gadget = gadget;
dev_dbg(otg->phy->dev, "peripheral driver registered w/ tranceiver\n");
/*
* Kick the state machine work, if host is not supported
* or host is already registered with us.
*/
if (motg->pdata->mode == USB_PERIPHERAL || otg->host) {
pm_runtime_get_sync(otg->phy->dev);
queue_work(system_nrt_wq, &motg->sm_work);
}
return 0;
}
static bool msm_otg_read_pmic_id_state(struct msm_otg *motg)
{
unsigned long flags;
int id;
if (!motg->pdata->pmic_id_irq)
return -ENODEV;
local_irq_save(flags);
id = irq_read_line(motg->pdata->pmic_id_irq);
local_irq_restore(flags);
/*
* If we can not read ID line state for some reason, treat
* it as float. This would prevent MHL discovery and kicking
* host mode unnecessarily.
*/
return !!id;
}
static int msm_otg_mhl_register_callback(struct msm_otg *motg,
void (*callback)(int on))
{
struct usb_phy *phy = &motg->phy;
int ret;
if (!motg->pdata->mhl_enable) {
dev_dbg(phy->dev, "MHL feature not enabled\n");
return -ENODEV;
}
if (motg->pdata->otg_control != OTG_PMIC_CONTROL ||
!motg->pdata->pmic_id_irq) {
dev_dbg(phy->dev, "MHL can not be supported without PMIC Id\n");
return -ENODEV;
}
if (!motg->pdata->mhl_dev_name) {
dev_dbg(phy->dev, "MHL device name does not exist.\n");
return -ENODEV;
}
if (callback)
ret = mhl_register_callback(motg->pdata->mhl_dev_name,
callback);
else
ret = mhl_unregister_callback(motg->pdata->mhl_dev_name);
if (ret)
dev_dbg(phy->dev, "mhl_register_callback(%s) return error=%d\n",
motg->pdata->mhl_dev_name, ret);
else
motg->mhl_enabled = true;
return ret;
}
static void msm_otg_mhl_notify_online(int on)
{
struct msm_otg *motg = the_msm_otg;
struct usb_phy *phy = &motg->phy;
bool queue = false;
dev_dbg(phy->dev, "notify MHL %s%s\n", on ? "" : "dis", "connected");
if (on) {
set_bit(MHL, &motg->inputs);
} else {
clear_bit(MHL, &motg->inputs);
queue = true;
}
if (queue && phy->state != OTG_STATE_UNDEFINED)
schedule_work(&motg->sm_work);
}
static bool msm_otg_is_mhl(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
int is_mhl, ret;
ret = mhl_device_discovery(motg->pdata->mhl_dev_name, &is_mhl);
if (ret || is_mhl != MHL_DISCOVERY_RESULT_MHL) {
/*
* MHL driver calls our callback saying that MHL connected
* if RID_GND is detected. But at later part of discovery
* it may figure out MHL is not connected and returns
* false. Hence clear MHL input here.
*/
clear_bit(MHL, &motg->inputs);
dev_dbg(phy->dev, "MHL device not found\n");
return false;
}
set_bit(MHL, &motg->inputs);
dev_dbg(phy->dev, "MHL device found\n");
return true;
}
static bool msm_chg_mhl_detect(struct msm_otg *motg)
{
bool ret, id;
if (!motg->mhl_enabled)
return false;
id = msm_otg_read_pmic_id_state(motg);
if (id)
return false;
mhl_det_in_progress = true;
ret = msm_otg_is_mhl(motg);
mhl_det_in_progress = false;
return ret;
}
static void msm_otg_chg_check_timer_func(unsigned long data)
{
struct msm_otg *motg = (struct msm_otg *) data;
struct usb_otg *otg = motg->phy.otg;
if (atomic_read(&motg->in_lpm) ||
!test_bit(B_SESS_VLD, &motg->inputs) ||
otg->phy->state != OTG_STATE_B_PERIPHERAL ||
otg->gadget->speed != USB_SPEED_UNKNOWN) {
dev_dbg(otg->phy->dev, "Nothing to do in chg_check_timer\n");
return;
}
if ((readl_relaxed(USB_PORTSC) & PORTSC_LS) == PORTSC_LS) {
dev_dbg(otg->phy->dev, "DCP is detected as SDP\n");
set_bit(B_FALSE_SDP, &motg->inputs);
queue_work(system_nrt_wq, &motg->sm_work);
}
}
static bool msm_chg_aca_detect(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 int_sts;
bool ret = false;
if (!aca_enabled())
goto out;
if (motg->pdata->phy_type == CI_45NM_INTEGRATED_PHY)
goto out;
int_sts = ulpi_read(phy, 0x87);
switch (int_sts & 0x1C) {
case 0x08:
if (!test_and_set_bit(ID_A, &motg->inputs)) {
dev_dbg(phy->dev, "ID_A\n");
motg->chg_type = USB_ACA_A_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
clear_bit(ID_B, &motg->inputs);
clear_bit(ID_C, &motg->inputs);
set_bit(ID, &motg->inputs);
ret = true;
}
break;
case 0x0C:
if (!test_and_set_bit(ID_B, &motg->inputs)) {
dev_dbg(phy->dev, "ID_B\n");
motg->chg_type = USB_ACA_B_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
clear_bit(ID_A, &motg->inputs);
clear_bit(ID_C, &motg->inputs);
set_bit(ID, &motg->inputs);
ret = true;
}
break;
case 0x10:
if (!test_and_set_bit(ID_C, &motg->inputs)) {
dev_dbg(phy->dev, "ID_C\n");
motg->chg_type = USB_ACA_C_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
clear_bit(ID_A, &motg->inputs);
clear_bit(ID_B, &motg->inputs);
set_bit(ID, &motg->inputs);
ret = true;
}
break;
case 0x04:
if (test_and_clear_bit(ID, &motg->inputs)) {
dev_dbg(phy->dev, "ID_GND\n");
motg->chg_type = USB_INVALID_CHARGER;
motg->chg_state = USB_CHG_STATE_UNDEFINED;
clear_bit(ID_A, &motg->inputs);
clear_bit(ID_B, &motg->inputs);
clear_bit(ID_C, &motg->inputs);
ret = true;
}
break;
default:
ret = test_and_clear_bit(ID_A, &motg->inputs) |
test_and_clear_bit(ID_B, &motg->inputs) |
test_and_clear_bit(ID_C, &motg->inputs) |
!test_and_set_bit(ID, &motg->inputs);
if (ret) {
dev_dbg(phy->dev, "ID A/B/C/GND is no more\n");
motg->chg_type = USB_INVALID_CHARGER;
motg->chg_state = USB_CHG_STATE_UNDEFINED;
}
}
out:
return ret;
}
static void msm_chg_enable_aca_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
if (!aca_enabled())
return;
switch (motg->pdata->phy_type) {
case SNPS_28NM_INTEGRATED_PHY:
/* Disable ID_GND in link and PHY */
writel_relaxed(readl_relaxed(USB_OTGSC) & ~(OTGSC_IDPU |
OTGSC_IDIE), USB_OTGSC);
ulpi_write(phy, 0x01, 0x0C);
ulpi_write(phy, 0x10, 0x0F);
ulpi_write(phy, 0x10, 0x12);
/* Disable PMIC ID pull-up */
pm8xxx_usb_id_pullup(0);
/* Enable ACA ID detection */
ulpi_write(phy, 0x20, 0x85);
aca_id_turned_on = true;
break;
default:
break;
}
}
static void msm_chg_enable_aca_intr(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
if (!aca_enabled())
return;
switch (motg->pdata->phy_type) {
case SNPS_28NM_INTEGRATED_PHY:
/* Enable ACA Detection interrupt (on any RID change) */
ulpi_write(phy, 0x01, 0x94);
break;
default:
break;
}
}
static void msm_chg_disable_aca_intr(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
if (!aca_enabled())
return;
switch (motg->pdata->phy_type) {
case SNPS_28NM_INTEGRATED_PHY:
ulpi_write(phy, 0x01, 0x95);
break;
default:
break;
}
}
static bool msm_chg_check_aca_intr(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
bool ret = false;
if (!aca_enabled())
return ret;
switch (motg->pdata->phy_type) {
case SNPS_28NM_INTEGRATED_PHY:
if (ulpi_read(phy, 0x91) & 1) {
dev_dbg(phy->dev, "RID change\n");
ulpi_write(phy, 0x01, 0x92);
ret = msm_chg_aca_detect(motg);
}
default:
break;
}
return ret;
}
static void msm_otg_id_timer_func(unsigned long data)
{
struct msm_otg *motg = (struct msm_otg *) data;
if (!aca_enabled())
return;
if (atomic_read(&motg->in_lpm)) {
dev_dbg(motg->phy.dev, "timer: in lpm\n");
return;
}
if (motg->phy.state == OTG_STATE_A_SUSPEND)
goto out;
if (msm_chg_check_aca_intr(motg)) {
dev_dbg(motg->phy.dev, "timer: aca work\n");
queue_work(system_nrt_wq, &motg->sm_work);
}
out:
if (!test_bit(ID, &motg->inputs) || test_bit(ID_A, &motg->inputs))
mod_timer(&motg->id_timer, ID_TIMER_FREQ);
}
static bool msm_chg_check_secondary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
ret = chg_det & (1 << 4);
break;
case SNPS_28NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x87);
ret = chg_det & 1;
break;
default:
break;
}
return ret;
}
static void msm_chg_enable_secondary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn off charger block */
chg_det |= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
/* control chg block via ULPI */
chg_det &= ~(1 << 3);
ulpi_write(phy, chg_det, 0x34);
/* put it in host mode for enabling D- source */
chg_det &= ~(1 << 2);
ulpi_write(phy, chg_det, 0x34);
/* Turn on chg detect block */
chg_det &= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
/* enable chg detection */
chg_det &= ~(1 << 0);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/*
* Configure DM as current source, DP as current sink
* and enable battery charging comparators.
*/
ulpi_write(phy, 0x8, 0x85);
ulpi_write(phy, 0x2, 0x85);
ulpi_write(phy, 0x1, 0x85);
break;
default:
break;
}
}
static bool msm_chg_check_primary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
ret = chg_det & (1 << 4);
break;
case SNPS_28NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x87);
ret = chg_det & 1;
/* Turn off VDP_SRC */
ulpi_write(phy, 0x3, 0x86);
msleep(20);
break;
default:
break;
}
return ret;
}
static void msm_chg_enable_primary_det(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* enable chg detection */
chg_det &= ~(1 << 0);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/*
* Configure DP as current source, DM as current sink
* and enable battery charging comparators.
*/
ulpi_write(phy, 0x2, 0x85);
ulpi_write(phy, 0x1, 0x85);
break;
default:
break;
}
}
static bool msm_chg_check_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 line_state;
bool ret = false;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
line_state = ulpi_read(phy, 0x15);
ret = !(line_state & 1);
break;
case SNPS_28NM_INTEGRATED_PHY:
line_state = ulpi_read(phy, 0x87);
ret = line_state & 2;
break;
default:
break;
}
return ret;
}
static void msm_chg_disable_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
chg_det &= ~(1 << 5);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
ulpi_write(phy, 0x10, 0x86);
break;
default:
break;
}
}
static void msm_chg_enable_dcd(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn on D+ current source */
chg_det |= (1 << 5);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* Data contact detection enable */
ulpi_write(phy, 0x10, 0x85);
break;
default:
break;
}
}
static void msm_chg_block_on(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 func_ctrl, chg_det;
/* put the controller in non-driving mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NONDRIVING;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* control chg block via ULPI */
chg_det &= ~(1 << 3);
ulpi_write(phy, chg_det, 0x34);
/* Turn on chg detect block */
chg_det &= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
udelay(20);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* disable DP and DM pull down resistors */
ulpi_write(phy, 0x6, 0xC);
/* Clear charger detecting control bits */
ulpi_write(phy, 0x1F, 0x86);
/* Clear alt interrupt latch and enable bits */
ulpi_write(phy, 0x1F, 0x92);
ulpi_write(phy, 0x1F, 0x95);
udelay(100);
break;
default:
break;
}
}
static void msm_chg_block_off(struct msm_otg *motg)
{
struct usb_phy *phy = &motg->phy;
u32 func_ctrl, chg_det;
switch (motg->pdata->phy_type) {
case CI_45NM_INTEGRATED_PHY:
chg_det = ulpi_read(phy, 0x34);
/* Turn off charger block */
chg_det |= ~(1 << 1);
ulpi_write(phy, chg_det, 0x34);
break;
case SNPS_28NM_INTEGRATED_PHY:
/* Clear charger detecting control bits */
ulpi_write(phy, 0x3F, 0x86);
/* Clear alt interrupt latch and enable bits */
ulpi_write(phy, 0x1F, 0x92);
ulpi_write(phy, 0x1F, 0x95);
break;
default:
break;
}
/* put the controller in normal mode */
func_ctrl = ulpi_read(phy, ULPI_FUNC_CTRL);
func_ctrl &= ~ULPI_FUNC_CTRL_OPMODE_MASK;
func_ctrl |= ULPI_FUNC_CTRL_OPMODE_NORMAL;
ulpi_write(phy, func_ctrl, ULPI_FUNC_CTRL);
}
static const char *chg_to_string(enum usb_chg_type chg_type)
{
switch (chg_type) {
case USB_SDP_CHARGER: return "USB_SDP_CHARGER";
case USB_DCP_CHARGER: return "USB_DCP_CHARGER";
case USB_CDP_CHARGER: return "USB_CDP_CHARGER";
case USB_ACA_A_CHARGER: return "USB_ACA_A_CHARGER";
case USB_ACA_B_CHARGER: return "USB_ACA_B_CHARGER";
case USB_ACA_C_CHARGER: return "USB_ACA_C_CHARGER";
case USB_ACA_DOCK_CHARGER: return "USB_ACA_DOCK_CHARGER";
case USB_PROPRIETARY_CHARGER: return "USB_PROPRIETARY_CHARGER";
default: return "INVALID_CHARGER";
}
}
#define MSM_CHG_DCD_TIMEOUT (750 * HZ/1000) /* 750 msec */
#define MSM_CHG_DCD_POLL_TIME (50 * HZ/1000) /* 50 msec */
#define MSM_CHG_PRIMARY_DET_TIME (50 * HZ/1000) /* TVDPSRC_ON */
#define MSM_CHG_SECONDARY_DET_TIME (50 * HZ/1000) /* TVDMSRC_ON */
static void msm_chg_detect_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg, chg_work.work);
struct usb_phy *phy = &motg->phy;
bool is_dcd = false, tmout, vout, is_aca;
u32 line_state, dm_vlgc;
unsigned long delay;
dev_dbg(phy->dev, "chg detection work\n");
if (test_bit(MHL, &motg->inputs)) {
dev_dbg(phy->dev, "detected MHL, escape chg detection work\n");
return;
}
switch (motg->chg_state) {
case USB_CHG_STATE_UNDEFINED:
msm_chg_block_on(motg);
msm_chg_enable_dcd(motg);
msm_chg_enable_aca_det(motg);
motg->chg_state = USB_CHG_STATE_WAIT_FOR_DCD;
motg->dcd_time = 0;
delay = MSM_CHG_DCD_POLL_TIME;
break;
case USB_CHG_STATE_WAIT_FOR_DCD:
if (msm_chg_mhl_detect(motg)) {
msm_chg_block_off(motg);
motg->chg_state = USB_CHG_STATE_DETECTED;
motg->chg_type = USB_INVALID_CHARGER;
queue_work(system_nrt_wq, &motg->sm_work);
return;
}
is_aca = msm_chg_aca_detect(motg);
if (is_aca) {
/*
* ID_A can be ACA dock too. continue
* primary detection after DCD.
*/
if (test_bit(ID_A, &motg->inputs)) {
motg->chg_state = USB_CHG_STATE_WAIT_FOR_DCD;
} else {
delay = 0;
break;
}
}
is_dcd = msm_chg_check_dcd(motg);
motg->dcd_time += MSM_CHG_DCD_POLL_TIME;
tmout = motg->dcd_time >= MSM_CHG_DCD_TIMEOUT;
if (is_dcd || tmout) {
msm_chg_disable_dcd(motg);
msm_chg_enable_primary_det(motg);
delay = MSM_CHG_PRIMARY_DET_TIME;
motg->chg_state = USB_CHG_STATE_DCD_DONE;
} else {
delay = MSM_CHG_DCD_POLL_TIME;
}
break;
case USB_CHG_STATE_DCD_DONE:
vout = msm_chg_check_primary_det(motg);
line_state = readl_relaxed(USB_PORTSC) & PORTSC_LS;
dm_vlgc = line_state & PORTSC_LS_DM;
if (vout && !dm_vlgc) { /* VDAT_REF < DM < VLGC */
if (test_bit(ID_A, &motg->inputs)) {
motg->chg_type = USB_ACA_DOCK_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
break;
}
if (line_state) { /* DP > VLGC */
motg->chg_type = USB_PROPRIETARY_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
} else {
msm_chg_enable_secondary_det(motg);
delay = MSM_CHG_SECONDARY_DET_TIME;
motg->chg_state = USB_CHG_STATE_PRIMARY_DONE;
}
} else { /* DM < VDAT_REF || DM > VLGC */
if (test_bit(ID_A, &motg->inputs)) {
motg->chg_type = USB_ACA_A_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
break;
}
if (line_state) /* DP > VLGC or/and DM > VLGC */
motg->chg_type = USB_PROPRIETARY_CHARGER;
else
motg->chg_type = USB_SDP_CHARGER;
motg->chg_state = USB_CHG_STATE_DETECTED;
delay = 0;
}
break;
case USB_CHG_STATE_PRIMARY_DONE:
vout = msm_chg_check_secondary_det(motg);
if (vout)
motg->chg_type = USB_DCP_CHARGER;
else
motg->chg_type = USB_CDP_CHARGER;
motg->chg_state = USB_CHG_STATE_SECONDARY_DONE;
/* fall through */
case USB_CHG_STATE_SECONDARY_DONE:
motg->chg_state = USB_CHG_STATE_DETECTED;
case USB_CHG_STATE_DETECTED:
/*
* Notify the charger type to power supply
* owner as soon as we determine the charger.
*/
msm_otg_notify_chg_type(motg);
msm_chg_block_off(motg);
msm_chg_enable_aca_det(motg);
/*
* Spurious interrupt is seen after enabling ACA detection
* due to which charger detection fails in case of PET.
* Add delay of 100 microsec to avoid that.
*/
udelay(100);
msm_chg_enable_aca_intr(motg);
dev_dbg(phy->dev, "chg_type = %s\n",
chg_to_string(motg->chg_type));
queue_work(system_nrt_wq, &motg->sm_work);
return;
default:
return;
}
queue_delayed_work(system_nrt_wq, &motg->chg_work, delay);
}
/*
* We support OTG, Peripheral only and Host only configurations. In case
* of OTG, mode switch (host-->peripheral/peripheral-->host) can happen
* via Id pin status or user request (debugfs). Id/BSV interrupts are not
* enabled when switch is controlled by user and default mode is supplied
* by board file, which can be changed by userspace later.
*/
static void msm_otg_init_sm(struct msm_otg *motg)
{
struct msm_otg_platform_data *pdata = motg->pdata;
u32 otgsc = readl(USB_OTGSC);
switch (pdata->mode) {
case USB_OTG:
if (pdata->otg_control == OTG_USER_CONTROL) {
if (pdata->default_mode == USB_HOST) {
clear_bit(ID, &motg->inputs);
} else if (pdata->default_mode == USB_PERIPHERAL) {
set_bit(ID, &motg->inputs);
set_bit(B_SESS_VLD, &motg->inputs);
} else {
set_bit(ID, &motg->inputs);
clear_bit(B_SESS_VLD, &motg->inputs);
}
} else if (pdata->otg_control == OTG_PHY_CONTROL) {
if (otgsc & OTGSC_ID) {
set_bit(ID, &motg->inputs);
} else {
clear_bit(ID, &motg->inputs);
set_bit(A_BUS_REQ, &motg->inputs);
}
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
} else if (pdata->otg_control == OTG_PMIC_CONTROL) {
if (pdata->pmic_id_irq) {
if (msm_otg_read_pmic_id_state(motg))
set_bit(ID, &motg->inputs);
else
clear_bit(ID, &motg->inputs);
}
/*
* VBUS initial state is reported after PMIC
* driver initialization. Wait for it.
*/
wait_for_completion(&pmic_vbus_init);
}
break;
case USB_HOST:
clear_bit(ID, &motg->inputs);
break;
case USB_PERIPHERAL:
set_bit(ID, &motg->inputs);
if (pdata->otg_control == OTG_PHY_CONTROL) {
if (otgsc & OTGSC_BSV)
set_bit(B_SESS_VLD, &motg->inputs);
else
clear_bit(B_SESS_VLD, &motg->inputs);
} else if (pdata->otg_control == OTG_PMIC_CONTROL) {
/*
* VBUS initial state is reported after PMIC
* driver initialization. Wait for it.
*/
wait_for_completion(&pmic_vbus_init);
}
break;
default:
break;
}
}
static void msm_otg_sm_work(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg, sm_work);
struct usb_otg *otg = motg->phy.otg;
bool work = 0, srp_reqd;
pm_runtime_resume(otg->phy->dev);
pr_debug("%s work\n", otg_state_string(otg->phy->state));
switch (otg->phy->state) {
case OTG_STATE_UNDEFINED:
msm_otg_reset(otg->phy);
msm_otg_init_sm(motg);
if (!psy && legacy_power_supply) {
psy = power_supply_get_by_name("usb");
if (!psy)
pr_err("couldn't get usb power supply\n");
}
otg->phy->state = OTG_STATE_B_IDLE;
if (!test_bit(B_SESS_VLD, &motg->inputs) &&
test_bit(ID, &motg->inputs)) {
pm_runtime_put_noidle(otg->phy->dev);
pm_runtime_suspend(otg->phy->dev);
break;
}
/* FALL THROUGH */
case OTG_STATE_B_IDLE:
if (test_bit(MHL, &motg->inputs)) {
/* allow LPM */
pm_runtime_put_noidle(otg->phy->dev);
pm_runtime_suspend(otg->phy->dev);
} else if ((!test_bit(ID, &motg->inputs) ||
test_bit(ID_A, &motg->inputs)) && otg->host) {
pr_debug("!id || id_A\n");
if (msm_chg_mhl_detect(motg)) {
work = 1;
break;
}
clear_bit(B_BUS_REQ, &motg->inputs);
set_bit(A_BUS_REQ, &motg->inputs);
otg->phy->state = OTG_STATE_A_IDLE;
work = 1;
} else if (test_bit(B_SESS_VLD, &motg->inputs)) {
pr_debug("b_sess_vld\n");
switch (motg->chg_state) {
case USB_CHG_STATE_UNDEFINED:
msm_chg_detect_work(&motg->chg_work.work);
break;
case USB_CHG_STATE_DETECTED:
switch (motg->chg_type) {
case USB_DCP_CHARGER:
/* Enable VDP_SRC */
ulpi_write(otg->phy, 0x2, 0x85);
/* fall through */
case USB_PROPRIETARY_CHARGER:
msm_otg_notify_charger(motg,
IDEV_CHG_MAX);
pm_runtime_put_noidle(otg->phy->dev);
pm_runtime_suspend(otg->phy->dev);
break;
case USB_ACA_B_CHARGER:
msm_otg_notify_charger(motg,
IDEV_ACA_CHG_MAX);
/*
* (ID_B --> ID_C) PHY_ALT interrupt can
* not be detected in LPM.
*/
break;
case USB_CDP_CHARGER:
msm_otg_notify_charger(motg,
IDEV_CHG_MAX);
msm_otg_start_peripheral(otg, 1);
otg->phy->state =
OTG_STATE_B_PERIPHERAL;
break;
case USB_ACA_C_CHARGER:
msm_otg_notify_charger(motg,
IDEV_ACA_CHG_MAX);
msm_otg_start_peripheral(otg, 1);
otg->phy->state =
OTG_STATE_B_PERIPHERAL;
break;
case USB_SDP_CHARGER:
msm_otg_start_peripheral(otg, 1);
otg->phy->state =
OTG_STATE_B_PERIPHERAL;
mod_timer(&motg->chg_check_timer,
CHG_RECHECK_DELAY);
break;
default:
break;
}
break;
default:
break;
}
} else if (test_bit(B_BUS_REQ, &motg->inputs)) {
pr_debug("b_sess_end && b_bus_req\n");
if (msm_otg_start_srp(otg) < 0) {
clear_bit(B_BUS_REQ, &motg->inputs);
work = 1;
break;
}
otg->phy->state = OTG_STATE_B_SRP_INIT;
msm_otg_start_timer(motg, TB_SRP_FAIL, B_SRP_FAIL);
break;
} else {
pr_debug("chg_work cancel");
del_timer_sync(&motg->chg_check_timer);
clear_bit(B_FALSE_SDP, &motg->inputs);
clear_bit(A_BUS_REQ, &motg->inputs);
cancel_delayed_work_sync(&motg->chg_work);
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
msm_otg_notify_charger(motg, 0);
msm_otg_reset(otg->phy);
/*
* There is a small window where ID interrupt
* is not monitored during ID detection circuit
* switch from ACA to PMIC. Check ID state
* before entering into low power mode.
*/
if (!msm_otg_read_pmic_id_state(motg)) {
pr_debug("process missed ID intr\n");
clear_bit(ID, &motg->inputs);
work = 1;
break;
}
pm_runtime_put_noidle(otg->phy->dev);
/*
* Only if autosuspend was enabled in probe, it will be
* used here. Otherwise, no delay will be used.
*/
pm_runtime_mark_last_busy(otg->phy->dev);
pm_runtime_autosuspend(otg->phy->dev);
}
break;
case OTG_STATE_B_SRP_INIT:
if (!test_bit(ID, &motg->inputs) ||
test_bit(ID_A, &motg->inputs) ||
test_bit(ID_C, &motg->inputs) ||
(test_bit(B_SESS_VLD, &motg->inputs) &&
!test_bit(ID_B, &motg->inputs))) {
pr_debug("!id || id_a/c || b_sess_vld+!id_b\n");
msm_otg_del_timer(motg);
otg->phy->state = OTG_STATE_B_IDLE;
/*
* clear VBUSVLDEXTSEL and VBUSVLDEXT register
* bits after SRP initiation.
*/
ulpi_write(otg->phy, 0x0, 0x98);
work = 1;
} else if (test_bit(B_SRP_FAIL, &motg->tmouts)) {
pr_debug("b_srp_fail\n");
pr_info("A-device did not respond to SRP\n");
clear_bit(B_BUS_REQ, &motg->inputs);
clear_bit(B_SRP_FAIL, &motg->tmouts);
otg_send_event(OTG_EVENT_NO_RESP_FOR_SRP);
ulpi_write(otg->phy, 0x0, 0x98);
otg->phy->state = OTG_STATE_B_IDLE;
motg->b_last_se0_sess = jiffies;
work = 1;
}
break;
case OTG_STATE_B_PERIPHERAL:
if (test_bit(B_SESS_VLD, &motg->inputs) &&
test_bit(B_FALSE_SDP, &motg->inputs)) {
pr_debug("B_FALSE_SDP\n");
msm_otg_start_peripheral(otg, 0);
motg->chg_type = USB_DCP_CHARGER;
clear_bit(B_FALSE_SDP, &motg->inputs);
otg->phy->state = OTG_STATE_B_IDLE;
work = 1;
} else if (!test_bit(ID, &motg->inputs) ||
test_bit(ID_A, &motg->inputs) ||
test_bit(ID_B, &motg->inputs) ||
!test_bit(B_SESS_VLD, &motg->inputs)) {
pr_debug("!id || id_a/b || !b_sess_vld\n");
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
msm_otg_notify_charger(motg, 0);
srp_reqd = otg->gadget->otg_srp_reqd;
msm_otg_start_peripheral(otg, 0);
if (test_bit(ID_B, &motg->inputs))
clear_bit(ID_B, &motg->inputs);
clear_bit(B_BUS_REQ, &motg->inputs);
otg->phy->state = OTG_STATE_B_IDLE;
motg->b_last_se0_sess = jiffies;
if (srp_reqd)
msm_otg_start_timer(motg,
TB_TST_SRP, B_TST_SRP);
else
work = 1;
} else if (test_bit(B_BUS_REQ, &motg->inputs) &&
otg->gadget->b_hnp_enable &&
test_bit(A_BUS_SUSPEND, &motg->inputs)) {
pr_debug("b_bus_req && b_hnp_en && a_bus_suspend\n");
msm_otg_start_timer(motg, TB_ASE0_BRST, B_ASE0_BRST);
/* D+ pullup should not be disconnected within 4msec
* after A device suspends the bus. Otherwise PET will
* fail the compliance test.
*/
udelay(1000);
msm_otg_start_peripheral(otg, 0);
otg->phy->state = OTG_STATE_B_WAIT_ACON;
/*
* start HCD even before A-device enable
* pull-up to meet HNP timings.
*/
otg->host->is_b_host = 1;
msm_otg_start_host(otg, 1);
} else if (test_bit(A_BUS_SUSPEND, &motg->inputs) &&
test_bit(B_SESS_VLD, &motg->inputs)) {
pr_debug("a_bus_suspend && b_sess_vld\n");
if (motg->caps & ALLOW_LPM_ON_DEV_SUSPEND) {
pm_runtime_put_noidle(otg->phy->dev);
pm_runtime_suspend(otg->phy->dev);
}
} else if (test_bit(ID_C, &motg->inputs)) {
msm_otg_notify_charger(motg, IDEV_ACA_CHG_MAX);
}
break;
case OTG_STATE_B_WAIT_ACON:
if (!test_bit(ID, &motg->inputs) ||
test_bit(ID_A, &motg->inputs) ||
test_bit(ID_B, &motg->inputs) ||
!test_bit(B_SESS_VLD, &motg->inputs)) {
pr_debug("!id || id_a/b || !b_sess_vld\n");
msm_otg_del_timer(motg);
/*
* A-device is physically disconnected during
* HNP. Remove HCD.
*/
msm_otg_start_host(otg, 0);
otg->host->is_b_host = 0;
clear_bit(B_BUS_REQ, &motg->inputs);
clear_bit(A_BUS_SUSPEND, &motg->inputs);
motg->b_last_se0_sess = jiffies;
otg->phy->state = OTG_STATE_B_IDLE;
msm_otg_reset(otg->phy);
work = 1;
} else if (test_bit(A_CONN, &motg->inputs)) {
pr_debug("a_conn\n");
clear_bit(A_BUS_SUSPEND, &motg->inputs);
otg->phy->state = OTG_STATE_B_HOST;
/*
* PET disconnects D+ pullup after reset is generated
* by B device in B_HOST role which is not detected by
* B device. As workaorund , start timer of 300msec
* and stop timer if A device is enumerated else clear
* A_CONN.
*/
msm_otg_start_timer(motg, TB_TST_CONFIG,
B_TST_CONFIG);
} else if (test_bit(B_ASE0_BRST, &motg->tmouts)) {
pr_debug("b_ase0_brst_tmout\n");
pr_info("B HNP fail:No response from A device\n");
msm_otg_start_host(otg, 0);
msm_otg_reset(otg->phy);
otg->host->is_b_host = 0;
clear_bit(B_ASE0_BRST, &motg->tmouts);
clear_bit(A_BUS_SUSPEND, &motg->inputs);
clear_bit(B_BUS_REQ, &motg->inputs);
otg_send_event(OTG_EVENT_HNP_FAILED);
otg->phy->state = OTG_STATE_B_IDLE;
work = 1;
} else if (test_bit(ID_C, &motg->inputs)) {
msm_otg_notify_charger(motg, IDEV_ACA_CHG_MAX);
}
break;
case OTG_STATE_B_HOST:
if (!test_bit(B_BUS_REQ, &motg->inputs) ||
!test_bit(A_CONN, &motg->inputs) ||
!test_bit(B_SESS_VLD, &motg->inputs)) {
pr_debug("!b_bus_req || !a_conn || !b_sess_vld\n");
clear_bit(A_CONN, &motg->inputs);
clear_bit(B_BUS_REQ, &motg->inputs);
msm_otg_start_host(otg, 0);
otg->host->is_b_host = 0;
otg->phy->state = OTG_STATE_B_IDLE;
msm_otg_reset(otg->phy);
work = 1;
} else if (test_bit(ID_C, &motg->inputs)) {
msm_otg_notify_charger(motg, IDEV_ACA_CHG_MAX);
}
break;
case OTG_STATE_A_IDLE:
otg->default_a = 1;
if (test_bit(ID, &motg->inputs) &&
!test_bit(ID_A, &motg->inputs)) {
pr_debug("id && !id_a\n");
otg->default_a = 0;
clear_bit(A_BUS_DROP, &motg->inputs);
otg->phy->state = OTG_STATE_B_IDLE;
del_timer_sync(&motg->id_timer);
msm_otg_link_reset(motg);
msm_chg_enable_aca_intr(motg);
msm_otg_notify_charger(motg, 0);
work = 1;
} else if (!test_bit(A_BUS_DROP, &motg->inputs) &&
(test_bit(A_SRP_DET, &motg->inputs) ||
test_bit(A_BUS_REQ, &motg->inputs))) {
pr_debug("!a_bus_drop && (a_srp_det || a_bus_req)\n");
clear_bit(A_SRP_DET, &motg->inputs);
/* Disable SRP detection */
writel_relaxed((readl_relaxed(USB_OTGSC) &
~OTGSC_INTSTS_MASK) &
~OTGSC_DPIE, USB_OTGSC);
otg->phy->state = OTG_STATE_A_WAIT_VRISE;
/* VBUS should not be supplied before end of SRP pulse
* generated by PET, if not complaince test fail.
*/
usleep_range(10000, 12000);
/* ACA: ID_A: Stop charging untill enumeration */
if (test_bit(ID_A, &motg->inputs))
msm_otg_notify_charger(motg, 0);
else
msm_hsusb_vbus_power(motg, 1);
msm_otg_start_timer(motg, TA_WAIT_VRISE, A_WAIT_VRISE);
} else {
pr_debug("No session requested\n");
clear_bit(A_BUS_DROP, &motg->inputs);
if (test_bit(ID_A, &motg->inputs)) {
msm_otg_notify_charger(motg,
IDEV_ACA_CHG_MAX);
} else if (!test_bit(ID, &motg->inputs)) {
msm_otg_notify_charger(motg, 0);
/*
* A-device is not providing power on VBUS.
* Enable SRP detection.
*/
writel_relaxed(0x13, USB_USBMODE);
writel_relaxed((readl_relaxed(USB_OTGSC) &
~OTGSC_INTSTS_MASK) |
OTGSC_DPIE, USB_OTGSC);
mb();
}
}
break;
case OTG_STATE_A_WAIT_VRISE:
if ((test_bit(ID, &motg->inputs) &&
!test_bit(ID_A, &motg->inputs)) ||
test_bit(A_BUS_DROP, &motg->inputs) ||
test_bit(A_WAIT_VRISE, &motg->tmouts)) {
pr_debug("id || a_bus_drop || a_wait_vrise_tmout\n");
clear_bit(A_BUS_REQ, &motg->inputs);
msm_otg_del_timer(motg);
msm_hsusb_vbus_power(motg, 0);
otg->phy->state = OTG_STATE_A_WAIT_VFALL;
msm_otg_start_timer(motg, TA_WAIT_VFALL, A_WAIT_VFALL);
} else if (test_bit(A_VBUS_VLD, &motg->inputs)) {
pr_debug("a_vbus_vld\n");
otg->phy->state = OTG_STATE_A_WAIT_BCON;
if (TA_WAIT_BCON > 0)
msm_otg_start_timer(motg, TA_WAIT_BCON,
A_WAIT_BCON);
msm_otg_start_host(otg, 1);
msm_chg_enable_aca_det(motg);
msm_chg_disable_aca_intr(motg);
mod_timer(&motg->id_timer, ID_TIMER_FREQ);
if (msm_chg_check_aca_intr(motg))
work = 1;
}
break;
case OTG_STATE_A_WAIT_BCON:
if ((test_bit(ID, &motg->inputs) &&
!test_bit(ID_A, &motg->inputs)) ||
test_bit(A_BUS_DROP, &motg->inputs) ||
test_bit(A_WAIT_BCON, &motg->tmouts)) {
pr_debug("(id && id_a/b/c) || a_bus_drop ||"
"a_wait_bcon_tmout\n");
if (test_bit(A_WAIT_BCON, &motg->tmouts)) {
pr_info("Device No Response\n");
otg_send_event(OTG_EVENT_DEV_CONN_TMOUT);
}
msm_otg_del_timer(motg);
clear_bit(A_BUS_REQ, &motg->inputs);
clear_bit(B_CONN, &motg->inputs);
msm_otg_start_host(otg, 0);
/*
* ACA: ID_A with NO accessory, just the A plug is
* attached to ACA: Use IDCHG_MAX for charging
*/
if (test_bit(ID_A, &motg->inputs))
msm_otg_notify_charger(motg, IDEV_CHG_MIN);
else
msm_hsusb_vbus_power(motg, 0);
otg->phy->state = OTG_STATE_A_WAIT_VFALL;
msm_otg_start_timer(motg, TA_WAIT_VFALL, A_WAIT_VFALL);
} else if (!test_bit(A_VBUS_VLD, &motg->inputs)) {
pr_debug("!a_vbus_vld\n");
clear_bit(B_CONN, &motg->inputs);
msm_otg_del_timer(motg);
msm_otg_start_host(otg, 0);
otg->phy->state = OTG_STATE_A_VBUS_ERR;
msm_otg_reset(otg->phy);
} else if (test_bit(ID_A, &motg->inputs)) {
msm_hsusb_vbus_power(motg, 0);
} else if (!test_bit(A_BUS_REQ, &motg->inputs)) {
/*
* If TA_WAIT_BCON is infinite, we don;t
* turn off VBUS. Enter low power mode.
*/
if (TA_WAIT_BCON < 0)
pm_runtime_put_sync(otg->phy->dev);
} else if (!test_bit(ID, &motg->inputs)) {
msm_hsusb_vbus_power(motg, 1);
}
break;
case OTG_STATE_A_HOST:
if ((test_bit(ID, &motg->inputs) &&
!test_bit(ID_A, &motg->inputs)) ||
test_bit(A_BUS_DROP, &motg->inputs)) {
pr_debug("id_a/b/c || a_bus_drop\n");
clear_bit(B_CONN, &motg->inputs);
clear_bit(A_BUS_REQ, &motg->inputs);
msm_otg_del_timer(motg);
otg->phy->state = OTG_STATE_A_WAIT_VFALL;
msm_otg_start_host(otg, 0);
if (!test_bit(ID_A, &motg->inputs))
msm_hsusb_vbus_power(motg, 0);
msm_otg_start_timer(motg, TA_WAIT_VFALL, A_WAIT_VFALL);
} else if (!test_bit(A_VBUS_VLD, &motg->inputs)) {
pr_debug("!a_vbus_vld\n");
clear_bit(B_CONN, &motg->inputs);
msm_otg_del_timer(motg);
otg->phy->state = OTG_STATE_A_VBUS_ERR;
msm_otg_start_host(otg, 0);
msm_otg_reset(otg->phy);
} else if (!test_bit(A_BUS_REQ, &motg->inputs)) {
/*
* a_bus_req is de-asserted when root hub is
* suspended or HNP is in progress.
*/
pr_debug("!a_bus_req\n");
msm_otg_del_timer(motg);
otg->phy->state = OTG_STATE_A_SUSPEND;
if (otg->host->b_hnp_enable)
msm_otg_start_timer(motg, TA_AIDL_BDIS,
A_AIDL_BDIS);
else
pm_runtime_put_sync(otg->phy->dev);
} else if (!test_bit(B_CONN, &motg->inputs)) {
pr_debug("!b_conn\n");
msm_otg_del_timer(motg);
otg->phy->state = OTG_STATE_A_WAIT_BCON;
if (TA_WAIT_BCON > 0)
msm_otg_start_timer(motg, TA_WAIT_BCON,
A_WAIT_BCON);
if (msm_chg_check_aca_intr(motg))
work = 1;
} else if (test_bit(ID_A, &motg->inputs)) {
msm_otg_del_timer(motg);
msm_hsusb_vbus_power(motg, 0);
if (motg->chg_type == USB_ACA_DOCK_CHARGER)
msm_otg_notify_charger(motg,
IDEV_ACA_CHG_MAX);
else
msm_otg_notify_charger(motg,
IDEV_CHG_MIN - motg->mA_port);
} else if (!test_bit(ID, &motg->inputs)) {
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
msm_otg_notify_charger(motg, 0);
msm_hsusb_vbus_power(motg, 1);
}
break;
case OTG_STATE_A_SUSPEND:
if ((test_bit(ID, &motg->inputs) &&
!test_bit(ID_A, &motg->inputs)) ||
test_bit(A_BUS_DROP, &motg->inputs) ||
test_bit(A_AIDL_BDIS, &motg->tmouts)) {
pr_debug("id_a/b/c || a_bus_drop ||"
"a_aidl_bdis_tmout\n");
msm_otg_del_timer(motg);
clear_bit(B_CONN, &motg->inputs);
otg->phy->state = OTG_STATE_A_WAIT_VFALL;
msm_otg_start_host(otg, 0);
msm_otg_reset(otg->phy);
if (!test_bit(ID_A, &motg->inputs))
msm_hsusb_vbus_power(motg, 0);
msm_otg_start_timer(motg, TA_WAIT_VFALL, A_WAIT_VFALL);
} else if (!test_bit(A_VBUS_VLD, &motg->inputs)) {
pr_debug("!a_vbus_vld\n");
msm_otg_del_timer(motg);
clear_bit(B_CONN, &motg->inputs);
otg->phy->state = OTG_STATE_A_VBUS_ERR;
msm_otg_start_host(otg, 0);
msm_otg_reset(otg->phy);
} else if (!test_bit(B_CONN, &motg->inputs) &&
otg->host->b_hnp_enable) {
pr_debug("!b_conn && b_hnp_enable");
otg->phy->state = OTG_STATE_A_PERIPHERAL;
msm_otg_host_hnp_enable(otg, 1);
otg->gadget->is_a_peripheral = 1;
msm_otg_start_peripheral(otg, 1);
} else if (!test_bit(B_CONN, &motg->inputs) &&
!otg->host->b_hnp_enable) {
pr_debug("!b_conn && !b_hnp_enable");
/*
* bus request is dropped during suspend.
* acquire again for next device.
*/
set_bit(A_BUS_REQ, &motg->inputs);
otg->phy->state = OTG_STATE_A_WAIT_BCON;
if (TA_WAIT_BCON > 0)
msm_otg_start_timer(motg, TA_WAIT_BCON,
A_WAIT_BCON);
} else if (test_bit(ID_A, &motg->inputs)) {
msm_hsusb_vbus_power(motg, 0);
msm_otg_notify_charger(motg,
IDEV_CHG_MIN - motg->mA_port);
} else if (!test_bit(ID, &motg->inputs)) {
msm_otg_notify_charger(motg, 0);
msm_hsusb_vbus_power(motg, 1);
}
break;
case OTG_STATE_A_PERIPHERAL:
if ((test_bit(ID, &motg->inputs) &&
!test_bit(ID_A, &motg->inputs)) ||
test_bit(A_BUS_DROP, &motg->inputs)) {
pr_debug("id _f/b/c || a_bus_drop\n");
/* Clear BIDL_ADIS timer */
msm_otg_del_timer(motg);
otg->phy->state = OTG_STATE_A_WAIT_VFALL;
msm_otg_start_peripheral(otg, 0);
otg->gadget->is_a_peripheral = 0;
msm_otg_start_host(otg, 0);
msm_otg_reset(otg->phy);
if (!test_bit(ID_A, &motg->inputs))
msm_hsusb_vbus_power(motg, 0);
msm_otg_start_timer(motg, TA_WAIT_VFALL, A_WAIT_VFALL);
} else if (!test_bit(A_VBUS_VLD, &motg->inputs)) {
pr_debug("!a_vbus_vld\n");
/* Clear BIDL_ADIS timer */
msm_otg_del_timer(motg);
otg->phy->state = OTG_STATE_A_VBUS_ERR;
msm_otg_start_peripheral(otg, 0);
otg->gadget->is_a_peripheral = 0;
msm_otg_start_host(otg, 0);
} else if (test_bit(A_BIDL_ADIS, &motg->tmouts)) {
pr_debug("a_bidl_adis_tmout\n");
msm_otg_start_peripheral(otg, 0);
otg->gadget->is_a_peripheral = 0;
otg->phy->state = OTG_STATE_A_WAIT_BCON;
set_bit(A_BUS_REQ, &motg->inputs);
msm_otg_host_hnp_enable(otg, 0);
if (TA_WAIT_BCON > 0)
msm_otg_start_timer(motg, TA_WAIT_BCON,
A_WAIT_BCON);
} else if (test_bit(ID_A, &motg->inputs)) {
msm_hsusb_vbus_power(motg, 0);
msm_otg_notify_charger(motg,
IDEV_CHG_MIN - motg->mA_port);
} else if (!test_bit(ID, &motg->inputs)) {
msm_otg_notify_charger(motg, 0);
msm_hsusb_vbus_power(motg, 1);
}
break;
case OTG_STATE_A_WAIT_VFALL:
if (test_bit(A_WAIT_VFALL, &motg->tmouts)) {
clear_bit(A_VBUS_VLD, &motg->inputs);
otg->phy->state = OTG_STATE_A_IDLE;
work = 1;
}
break;
case OTG_STATE_A_VBUS_ERR:
if ((test_bit(ID, &motg->inputs) &&
!test_bit(ID_A, &motg->inputs)) ||
test_bit(A_BUS_DROP, &motg->inputs) ||
test_bit(A_CLR_ERR, &motg->inputs)) {
otg->phy->state = OTG_STATE_A_WAIT_VFALL;
if (!test_bit(ID_A, &motg->inputs))
msm_hsusb_vbus_power(motg, 0);
msm_otg_start_timer(motg, TA_WAIT_VFALL, A_WAIT_VFALL);
motg->chg_state = USB_CHG_STATE_UNDEFINED;
motg->chg_type = USB_INVALID_CHARGER;
msm_otg_notify_charger(motg, 0);
}
break;
default:
break;
}
if (work)
queue_work(system_nrt_wq, &motg->sm_work);
}
static void msm_otg_suspend_work(struct work_struct *w)
{
struct msm_otg *motg =
container_of(w, struct msm_otg, suspend_work.work);
/* This work is only for device bus suspend */
if (test_bit(A_BUS_SUSPEND, &motg->inputs))
msm_otg_sm_work(&motg->sm_work);
}
static irqreturn_t msm_otg_irq(int irq, void *data)
{
struct msm_otg *motg = data;
struct usb_otg *otg = motg->phy.otg;
u32 otgsc = 0, usbsts, pc;
bool work = 0;
irqreturn_t ret = IRQ_HANDLED;
if (atomic_read(&motg->in_lpm)) {
pr_debug("OTG IRQ: %d in LPM\n", irq);
disable_irq_nosync(irq);
motg->async_int = irq;
if (!atomic_read(&motg->pm_suspended))
pm_request_resume(otg->phy->dev);
return IRQ_HANDLED;
}
usbsts = readl(USB_USBSTS);
otgsc = readl(USB_OTGSC);
if (!(otgsc & OTG_OTGSTS_MASK) && !(usbsts & OTG_USBSTS_MASK))
return IRQ_NONE;
if ((otgsc & OTGSC_IDIS) && (otgsc & OTGSC_IDIE)) {
if (otgsc & OTGSC_ID) {
pr_debug("Id set\n");
set_bit(ID, &motg->inputs);
} else {
pr_debug("Id clear\n");
/*
* Assert a_bus_req to supply power on
* VBUS when Micro/Mini-A cable is connected
* with out user intervention.
*/
set_bit(A_BUS_REQ, &motg->inputs);
clear_bit(ID, &motg->inputs);
msm_chg_enable_aca_det(motg);
}
writel_relaxed(otgsc, USB_OTGSC);
work = 1;
} else if (otgsc & OTGSC_DPIS) {
pr_debug("DPIS detected\n");
writel_relaxed(otgsc, USB_OTGSC);
set_bit(A_SRP_DET, &motg->inputs);
set_bit(A_BUS_REQ, &motg->inputs);
work = 1;
} else if ((otgsc & OTGSC_BSVIE) && (otgsc & OTGSC_BSVIS)) {
writel_relaxed(otgsc, USB_OTGSC);
/*
* BSV interrupt comes when operating as an A-device
* (VBUS on/off).
* But, handle BSV when charger is removed from ACA in ID_A
*/
if ((otg->phy->state >= OTG_STATE_A_IDLE) &&
!test_bit(ID_A, &motg->inputs))
return IRQ_HANDLED;
if (otgsc & OTGSC_BSV) {
pr_debug("BSV set\n");
set_bit(B_SESS_VLD, &motg->inputs);
} else {
pr_debug("BSV clear\n");
clear_bit(B_SESS_VLD, &motg->inputs);
clear_bit(A_BUS_SUSPEND, &motg->inputs);
msm_chg_check_aca_intr(motg);
}
work = 1;
} else if (usbsts & STS_PCI) {
pc = readl_relaxed(USB_PORTSC);
pr_debug("portsc = %x\n", pc);
ret = IRQ_NONE;
/*
* HCD Acks PCI interrupt. We use this to switch
* between different OTG states.
*/
work = 1;
switch (otg->phy->state) {
case OTG_STATE_A_SUSPEND:
if (otg->host->b_hnp_enable && (pc & PORTSC_CSC) &&
!(pc & PORTSC_CCS)) {
pr_debug("B_CONN clear\n");
clear_bit(B_CONN, &motg->inputs);
msm_otg_del_timer(motg);
}
break;
case OTG_STATE_A_PERIPHERAL:
/*
* A-peripheral observed activity on bus.
* clear A_BIDL_ADIS timer.
*/
msm_otg_del_timer(motg);
work = 0;
break;
case OTG_STATE_B_WAIT_ACON:
if ((pc & PORTSC_CSC) && (pc & PORTSC_CCS)) {
pr_debug("A_CONN set\n");
set_bit(A_CONN, &motg->inputs);
/* Clear ASE0_BRST timer */
msm_otg_del_timer(motg);
}
break;
case OTG_STATE_B_HOST:
if ((pc & PORTSC_CSC) && !(pc & PORTSC_CCS)) {
pr_debug("A_CONN clear\n");
clear_bit(A_CONN, &motg->inputs);
msm_otg_del_timer(motg);
}
break;
case OTG_STATE_A_WAIT_BCON:
if (TA_WAIT_BCON < 0)
set_bit(A_BUS_REQ, &motg->inputs);
default:
work = 0;
break;
}
} else if (usbsts & STS_URI) {
ret = IRQ_NONE;
switch (otg->phy->state) {
case OTG_STATE_A_PERIPHERAL:
/*
* A-peripheral observed activity on bus.
* clear A_BIDL_ADIS timer.
*/
msm_otg_del_timer(motg);
work = 0;
break;
default:
work = 0;
break;
}
} else if (usbsts & STS_SLI) {
ret = IRQ_NONE;
work = 0;
switch (otg->phy->state) {
case OTG_STATE_B_PERIPHERAL:
if (otg->gadget->b_hnp_enable) {
set_bit(A_BUS_SUSPEND, &motg->inputs);
set_bit(B_BUS_REQ, &motg->inputs);
work = 1;
}
break;
case OTG_STATE_A_PERIPHERAL:
msm_otg_start_timer(motg, TA_BIDL_ADIS,
A_BIDL_ADIS);
break;
default:
break;
}
} else if ((usbsts & PHY_ALT_INT)) {
writel_relaxed(PHY_ALT_INT, USB_USBSTS);
if (msm_chg_check_aca_intr(motg))
work = 1;
ret = IRQ_HANDLED;
}
if (work)
queue_work(system_nrt_wq, &motg->sm_work);
return ret;
}
static void msm_otg_set_vbus_state(int online)
{
static bool init;
struct msm_otg *motg = the_msm_otg;
if (online) {
pr_debug("PMIC: BSV set\n");
set_bit(B_SESS_VLD, &motg->inputs);
} else {
pr_debug("PMIC: BSV clear\n");
clear_bit(B_SESS_VLD, &motg->inputs);
}
/* do not queue state m/c work if id is grounded */
if (!test_bit(ID, &motg->inputs)) {
/*
* state machine work waits for initial VBUS
* completion in UNDEFINED state. Process
* the initial VBUS event in ID_GND state.
*/
if (init)
return;
}
if (!init) {
init = true;
complete(&pmic_vbus_init);
pr_debug("PMIC: BSV init complete\n");
return;
}
if (test_bit(MHL, &motg->inputs) ||
mhl_det_in_progress) {
pr_debug("PMIC: BSV interrupt ignored in MHL\n");
return;
}
if (atomic_read(&motg->pm_suspended))
motg->sm_work_pending = true;
else
queue_work(system_nrt_wq, &motg->sm_work);
}
static void msm_pmic_id_status_w(struct work_struct *w)
{
struct msm_otg *motg = container_of(w, struct msm_otg,
pmic_id_status_work.work);
int work = 0;
if (msm_otg_read_pmic_id_state(motg)) {
if (!test_and_set_bit(ID, &motg->inputs)) {
pr_debug("PMIC: ID set\n");
work = 1;
}
} else {
if (test_and_clear_bit(ID, &motg->inputs)) {
pr_debug("PMIC: ID clear\n");
set_bit(A_BUS_REQ, &motg->inputs);
work = 1;
}
}
if (work && (motg->phy.state != OTG_STATE_UNDEFINED)) {
if (atomic_read(&motg->pm_suspended))
motg->sm_work_pending = true;
else
queue_work(system_nrt_wq, &motg->sm_work);
}
}
#define MSM_PMIC_ID_STATUS_DELAY 5 /* 5msec */
static irqreturn_t msm_pmic_id_irq(int irq, void *data)
{
struct msm_otg *motg = data;
if (test_bit(MHL, &motg->inputs) ||
mhl_det_in_progress) {
pr_debug("PMIC: Id interrupt ignored in MHL\n");
return IRQ_HANDLED;
}
if (!aca_id_turned_on)
/*schedule delayed work for 5msec for ID line state to settle*/
queue_delayed_work(system_nrt_wq, &motg->pmic_id_status_work,
msecs_to_jiffies(MSM_PMIC_ID_STATUS_DELAY));
return IRQ_HANDLED;
}
static int msm_otg_mode_show(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
struct usb_phy *phy = &motg->phy;
switch (phy->state) {
case OTG_STATE_A_HOST:
seq_printf(s, "host\n");
break;
case OTG_STATE_B_PERIPHERAL:
seq_printf(s, "peripheral\n");
break;
default:
seq_printf(s, "none\n");
break;
}
return 0;
}
static int msm_otg_mode_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_mode_show, inode->i_private);
}
static ssize_t msm_otg_mode_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *ppos)
{
struct seq_file *s = file->private_data;
struct msm_otg *motg = s->private;
char buf[16];
struct usb_phy *phy = &motg->phy;
int status = count;
enum usb_mode_type req_mode;
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count))) {
status = -EFAULT;
goto out;
}
if (!strncmp(buf, "host", 4)) {
req_mode = USB_HOST;
} else if (!strncmp(buf, "peripheral", 10)) {
req_mode = USB_PERIPHERAL;
} else if (!strncmp(buf, "none", 4)) {
req_mode = USB_NONE;
} else {
status = -EINVAL;
goto out;
}
switch (req_mode) {
case USB_NONE:
switch (phy->state) {
case OTG_STATE_A_HOST:
case OTG_STATE_B_PERIPHERAL:
set_bit(ID, &motg->inputs);
clear_bit(B_SESS_VLD, &motg->inputs);
break;
default:
goto out;
}
break;
case USB_PERIPHERAL:
switch (phy->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_A_HOST:
set_bit(ID, &motg->inputs);
set_bit(B_SESS_VLD, &motg->inputs);
break;
default:
goto out;
}
break;
case USB_HOST:
switch (phy->state) {
case OTG_STATE_B_IDLE:
case OTG_STATE_B_PERIPHERAL:
clear_bit(ID, &motg->inputs);
break;
default:
goto out;
}
break;
default:
goto out;
}
pm_runtime_resume(phy->dev);
queue_work(system_nrt_wq, &motg->sm_work);
out:
return status;
}
const struct file_operations msm_otg_mode_fops = {
.open = msm_otg_mode_open,
.read = seq_read,
.write = msm_otg_mode_write,
.llseek = seq_lseek,
.release = single_release,
};
static int msm_otg_show_otg_state(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
struct usb_phy *phy = &motg->phy;
seq_printf(s, "%s\n", otg_state_string(phy->state));
return 0;
}
static int msm_otg_otg_state_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_show_otg_state, inode->i_private);
}
const struct file_operations msm_otg_state_fops = {
.open = msm_otg_otg_state_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int msm_otg_show_chg_type(struct seq_file *s, void *unused)
{
struct msm_otg *motg = s->private;
seq_printf(s, "%s\n", chg_to_string(motg->chg_type));
return 0;
}
static int msm_otg_chg_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_show_chg_type, inode->i_private);
}
const struct file_operations msm_otg_chg_fops = {
.open = msm_otg_chg_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int msm_otg_aca_show(struct seq_file *s, void *unused)
{
if (debug_aca_enabled)
seq_printf(s, "enabled\n");
else
seq_printf(s, "disabled\n");
return 0;
}
static int msm_otg_aca_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_aca_show, inode->i_private);
}
static ssize_t msm_otg_aca_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *ppos)
{
char buf[8];
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
return -EFAULT;
if (!strncmp(buf, "enable", 6))
debug_aca_enabled = true;
else
debug_aca_enabled = false;
return count;
}
const struct file_operations msm_otg_aca_fops = {
.open = msm_otg_aca_open,
.read = seq_read,
.write = msm_otg_aca_write,
.llseek = seq_lseek,
.release = single_release,
};
static int msm_otg_bus_show(struct seq_file *s, void *unused)
{
if (debug_bus_voting_enabled)
seq_printf(s, "enabled\n");
else
seq_printf(s, "disabled\n");
return 0;
}
static int msm_otg_bus_open(struct inode *inode, struct file *file)
{
return single_open(file, msm_otg_bus_show, inode->i_private);
}
static ssize_t msm_otg_bus_write(struct file *file, const char __user *ubuf,
size_t count, loff_t *ppos)
{
char buf[8];
int ret;
struct seq_file *s = file->private_data;
struct msm_otg *motg = s->private;
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
return -EFAULT;
if (!strncmp(buf, "enable", 6)) {
/* Do not vote here. Let OTG statemachine decide when to vote */
debug_bus_voting_enabled = true;
} else {
debug_bus_voting_enabled = false;
if (motg->bus_perf_client) {
ret = msm_bus_scale_client_update_request(
motg->bus_perf_client, 0);
if (ret)
dev_err(motg->phy.dev, "%s: Failed to devote "
"for bus bw %d\n", __func__, ret);
}
}
return count;
}
static int otg_power_get_property_usb(struct power_supply *psy,
enum power_supply_property psp,
union power_supply_propval *val)
{
struct msm_otg *motg = container_of(psy, struct msm_otg, usb_psy);
switch (psp) {
case POWER_SUPPLY_PROP_SCOPE:
if (motg->host_mode)
val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
else
val->intval = POWER_SUPPLY_SCOPE_DEVICE;
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
val->intval = motg->current_max;
break;
/* Reflect USB enumeration */
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_ONLINE:
val->intval = motg->online;
break;
default:
return -EINVAL;
}
return 0;
}
static int otg_power_set_property_usb(struct power_supply *psy,
enum power_supply_property psp,
const union power_supply_propval *val)
{
struct msm_otg *motg = container_of(psy, struct msm_otg, usb_psy);
switch (psp) {
/* Process PMIC notification in PRESENT prop */
case POWER_SUPPLY_PROP_PRESENT:
msm_otg_set_vbus_state(val->intval);
break;
/* The ONLINE property reflects if usb has enumerated */
case POWER_SUPPLY_PROP_ONLINE:
motg->online = val->intval;
break;
case POWER_SUPPLY_PROP_CURRENT_MAX:
motg->current_max = val->intval;
break;
default:
return -EINVAL;
}
power_supply_changed(&motg->usb_psy);
return 0;
}
static int otg_power_property_is_writeable_usb(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_PRESENT:
case POWER_SUPPLY_PROP_ONLINE:
case POWER_SUPPLY_PROP_CURRENT_MAX:
return 1;
default:
break;
}
return 0;
}
static char *otg_pm_power_supplied_to[] = {
"battery",
};
static enum power_supply_property otg_pm_power_props_usb[] = {
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_ONLINE,
POWER_SUPPLY_PROP_CURRENT_MAX,
POWER_SUPPLY_PROP_SCOPE,
};
const struct file_operations msm_otg_bus_fops = {
.open = msm_otg_bus_open,
.read = seq_read,
.write = msm_otg_bus_write,
.llseek = seq_lseek,
.release = single_release,
};
static struct dentry *msm_otg_dbg_root;
static int msm_otg_debugfs_init(struct msm_otg *motg)
{
struct dentry *msm_otg_dentry;
msm_otg_dbg_root = debugfs_create_dir("msm_otg", NULL);
if (!msm_otg_dbg_root || IS_ERR(msm_otg_dbg_root))
return -ENODEV;
if (motg->pdata->mode == USB_OTG &&
motg->pdata->otg_control == OTG_USER_CONTROL) {
msm_otg_dentry = debugfs_create_file("mode", S_IRUGO |
S_IWUSR, msm_otg_dbg_root, motg,
&msm_otg_mode_fops);
if (!msm_otg_dentry) {
debugfs_remove(msm_otg_dbg_root);
msm_otg_dbg_root = NULL;
return -ENODEV;
}
}
msm_otg_dentry = debugfs_create_file("chg_type", S_IRUGO,
msm_otg_dbg_root, motg,
&msm_otg_chg_fops);
if (!msm_otg_dentry) {
debugfs_remove_recursive(msm_otg_dbg_root);
return -ENODEV;
}
msm_otg_dentry = debugfs_create_file("aca", S_IRUGO | S_IWUSR,
msm_otg_dbg_root, motg,
&msm_otg_aca_fops);
if (!msm_otg_dentry) {
debugfs_remove_recursive(msm_otg_dbg_root);
return -ENODEV;
}
msm_otg_dentry = debugfs_create_file("bus_voting", S_IRUGO | S_IWUSR,
msm_otg_dbg_root, motg,
&msm_otg_bus_fops);
if (!msm_otg_dentry) {
debugfs_remove_recursive(msm_otg_dbg_root);
return -ENODEV;
}
msm_otg_dentry = debugfs_create_file("otg_state", S_IRUGO,
msm_otg_dbg_root, motg, &msm_otg_state_fops);
if (!msm_otg_dentry) {
debugfs_remove_recursive(msm_otg_dbg_root);
return -ENODEV;
}
return 0;
}
static void msm_otg_debugfs_cleanup(void)
{
debugfs_remove_recursive(msm_otg_dbg_root);
}
#define MSM_OTG_CMD_ID 0x09
#define MSM_OTG_DEVICE_ID 0x04
#define MSM_OTG_VMID_IDX 0xFF
#define MSM_OTG_MEM_TYPE 0x02
struct msm_otg_scm_cmd_buf {
unsigned int device_id;
unsigned int vmid_idx;
unsigned int mem_type;
} __attribute__ ((__packed__));
static void msm_otg_pnoc_errata_fix(struct msm_otg *motg)
{
int ret;
struct msm_otg_platform_data *pdata = motg->pdata;
struct msm_otg_scm_cmd_buf cmd_buf;
if (!pdata->pnoc_errata_fix)
return;
dev_dbg(motg->phy.dev, "applying fix for pnoc h/w issue\n");
cmd_buf.device_id = MSM_OTG_DEVICE_ID;
cmd_buf.vmid_idx = MSM_OTG_VMID_IDX;
cmd_buf.mem_type = MSM_OTG_MEM_TYPE;
ret = scm_call(SCM_SVC_CP, MSM_OTG_CMD_ID, &cmd_buf,
sizeof(cmd_buf), NULL, 0);
if (ret)
dev_err(motg->phy.dev, "scm command failed to update VMIDMT\n");
}
static u64 msm_otg_dma_mask = DMA_BIT_MASK(64);
static struct platform_device *msm_otg_add_pdev(
struct platform_device *ofdev, const char *name)
{
struct platform_device *pdev;
const struct resource *res = ofdev->resource;
unsigned int num = ofdev->num_resources;
int retval;
pdev = platform_device_alloc(name, -1);
if (!pdev) {
retval = -ENOMEM;
goto error;
}
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
pdev->dev.dma_mask = &msm_otg_dma_mask;
if (num) {
retval = platform_device_add_resources(pdev, res, num);
if (retval)
goto error;
}
retval = platform_device_add(pdev);
if (retval)
goto error;
return pdev;
error:
platform_device_put(pdev);
return ERR_PTR(retval);
}
static int msm_otg_setup_devices(struct platform_device *ofdev,
enum usb_mode_type mode, bool init)
{
const char *gadget_name = "msm_hsusb";
const char *host_name = "msm_hsusb_host";
static struct platform_device *gadget_pdev;
static struct platform_device *host_pdev;
int retval = 0;
if (!init) {
if (gadget_pdev)
platform_device_unregister(gadget_pdev);
if (host_pdev)
platform_device_unregister(host_pdev);
return 0;
}
switch (mode) {
case USB_OTG:
/* fall through */
case USB_PERIPHERAL:
gadget_pdev = msm_otg_add_pdev(ofdev, gadget_name);
if (IS_ERR(gadget_pdev)) {
retval = PTR_ERR(gadget_pdev);
break;
}
if (mode == USB_PERIPHERAL)
break;
/* fall through */
case USB_HOST:
host_pdev = msm_otg_add_pdev(ofdev, host_name);
if (IS_ERR(host_pdev)) {
retval = PTR_ERR(host_pdev);
if (mode == USB_OTG)
platform_device_unregister(gadget_pdev);
}
break;
default:
break;
}
return retval;
}
static int msm_otg_register_power_supply(struct platform_device *pdev,
struct msm_otg *motg)
{
int ret;
ret = power_supply_register(&pdev->dev, &motg->usb_psy);
if (ret < 0) {
dev_err(motg->phy.dev,
"%s:power_supply_register usb failed\n",
__func__);
return ret;
}
legacy_power_supply = false;
return 0;
}
struct msm_otg_platform_data *msm_otg_dt_to_pdata(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct msm_otg_platform_data *pdata;
int len = 0;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
pr_err("unable to allocate platform data\n");
return NULL;
}
of_get_property(node, "qcom,hsusb-otg-phy-init-seq", &len);
if (len) {
pdata->phy_init_seq = devm_kzalloc(&pdev->dev, len, GFP_KERNEL);
if (!pdata->phy_init_seq)
return NULL;
of_property_read_u32_array(node, "qcom,hsusb-otg-phy-init-seq",
pdata->phy_init_seq,
len/sizeof(*pdata->phy_init_seq));
}
of_property_read_u32(node, "qcom,hsusb-otg-power-budget",
&pdata->power_budget);
of_property_read_u32(node, "qcom,hsusb-otg-mode",
&pdata->mode);
of_property_read_u32(node, "qcom,hsusb-otg-otg-control",
&pdata->otg_control);
of_property_read_u32(node, "qcom,hsusb-otg-default-mode",
&pdata->default_mode);
of_property_read_u32(node, "qcom,hsusb-otg-phy-type",
&pdata->phy_type);
of_property_read_u32(node, "qcom,hsusb-otg-pmic-id-irq",
&pdata->pmic_id_irq);
pdata->disable_reset_on_disconnect = of_property_read_bool(node,
"qcom,hsusb-otg-disable-reset");
pdata->pnoc_errata_fix = of_property_read_bool(node,
"qcom,hsusb-otg-pnoc-errata-fix");
pdata->enable_lpm_on_dev_suspend = of_property_read_bool(node,
"qcom,hsusb-otg-lpm-on-dev-suspend");
pdata->core_clk_always_on_workaround = of_property_read_bool(node,
"qcom,hsusb-otg-clk-always-on-workaround");
pdata->delay_lpm_on_disconnect = of_property_read_bool(node,
"qcom,hsusb-otg-delay-lpm");
return pdata;
}
static int __init msm_otg_probe(struct platform_device *pdev)
{
int ret = 0;
int len = 0;
u32 tmp[3];
struct resource *res;
struct msm_otg *motg;
struct usb_phy *phy;
struct msm_otg_platform_data *pdata;
dev_info(&pdev->dev, "msm_otg probe\n");
if (pdev->dev.of_node) {
dev_dbg(&pdev->dev, "device tree enabled\n");
pdata = msm_otg_dt_to_pdata(pdev);
if (!pdata)
return -ENOMEM;
pdata->bus_scale_table = msm_bus_cl_get_pdata(pdev);
if (!pdata->bus_scale_table)
dev_dbg(&pdev->dev, "bus scaling is disabled\n");
ret = msm_otg_setup_devices(pdev, pdata->mode, true);
if (ret) {
dev_err(&pdev->dev, "devices setup failed\n");
return ret;
}
} else if (!pdev->dev.platform_data) {
dev_err(&pdev->dev, "No platform data given. Bailing out\n");
return -ENODEV;
} else {
pdata = pdev->dev.platform_data;
}
motg = kzalloc(sizeof(struct msm_otg), GFP_KERNEL);
if (!motg) {
dev_err(&pdev->dev, "unable to allocate msm_otg\n");
return -ENOMEM;
}
motg->phy.otg = kzalloc(sizeof(struct usb_otg), GFP_KERNEL);
if (!motg->phy.otg) {
dev_err(&pdev->dev, "unable to allocate usb_otg\n");
ret = -ENOMEM;
goto free_motg;
}
the_msm_otg = motg;
motg->pdata = pdata;
phy = &motg->phy;
phy->dev = &pdev->dev;
/*
* ACA ID_GND threshold range is overlapped with OTG ID_FLOAT. Hence
* PHY treat ACA ID_GND as float and no interrupt is generated. But
* PMIC can detect ACA ID_GND and generate an interrupt.
*/
if (aca_enabled() && motg->pdata->otg_control != OTG_PMIC_CONTROL) {
dev_err(&pdev->dev, "ACA can not be enabled without PMIC\n");
ret = -EINVAL;
goto free_otg;
}
/* initialize reset counter */
motg->reset_counter = 0;
/* Some targets don't support PHY clock. */
motg->phy_reset_clk = clk_get(&pdev->dev, "phy_clk");
if (IS_ERR(motg->phy_reset_clk))
dev_err(&pdev->dev, "failed to get phy_clk\n");
/*
* Targets on which link uses asynchronous reset methodology,
* free running clock is not required during the reset.
*/
motg->clk = clk_get(&pdev->dev, "alt_core_clk");
if (IS_ERR(motg->clk))
dev_dbg(&pdev->dev, "alt_core_clk is not present\n");
else
clk_set_rate(motg->clk, 60000000);
/*
* USB Core is running its protocol engine based on CORE CLK,
* CORE CLK must be running at >55Mhz for correct HSUSB
* operation and USB core cannot tolerate frequency changes on
* CORE CLK. For such USB cores, vote for maximum clk frequency
* on pclk source
*/
motg->core_clk = clk_get(&pdev->dev, "core_clk");
if (IS_ERR(motg->core_clk)) {
motg->core_clk = NULL;
dev_err(&pdev->dev, "failed to get core_clk\n");
ret = PTR_ERR(motg->core_clk);
goto put_clk;
}
clk_set_rate(motg->core_clk, INT_MAX);
motg->pclk = clk_get(&pdev->dev, "iface_clk");
if (IS_ERR(motg->pclk)) {
dev_err(&pdev->dev, "failed to get iface_clk\n");
ret = PTR_ERR(motg->pclk);
goto put_core_clk;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "failed to get platform resource mem\n");
ret = -ENODEV;
goto put_pclk;
}
motg->regs = ioremap(res->start, resource_size(res));
if (!motg->regs) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENOMEM;
goto put_pclk;
}
dev_info(&pdev->dev, "OTG regs = %p\n", motg->regs);
motg->irq = platform_get_irq(pdev, 0);
if (!motg->irq) {
dev_err(&pdev->dev, "platform_get_irq failed\n");
ret = -ENODEV;
goto free_regs;
}
motg->async_irq = platform_get_irq_byname(pdev, "async_irq");
if (motg->async_irq < 0) {
dev_dbg(&pdev->dev, "platform_get_irq for async_int failed\n");
motg->async_irq = 0;
}
motg->xo_clk = clk_get(&pdev->dev, "xo");
if (IS_ERR(motg->xo_clk)) {
motg->xo_handle = msm_xo_get(MSM_XO_TCXO_D0, "usb");
if (IS_ERR(motg->xo_handle)) {
dev_err(&pdev->dev, "%s fail to get handle for TCXO\n",
__func__);
ret = PTR_ERR(motg->xo_handle);
goto free_regs;
} else {
ret = msm_xo_mode_vote(motg->xo_handle, MSM_XO_MODE_ON);
if (ret) {
dev_err(&pdev->dev, "%s XO voting failed %d\n",
__func__, ret);
goto free_xo_handle;
}
}
} else {
ret = clk_prepare_enable(motg->xo_clk);
if (ret) {
dev_err(&pdev->dev, "%s failed to vote for TCXO %d\n",
__func__, ret);
goto free_xo_handle;
}
}
clk_prepare_enable(motg->pclk);
motg->vdd_type = VDDCX_CORNER;
hsusb_vdd = devm_regulator_get(motg->phy.dev, "hsusb_vdd_dig");
if (IS_ERR(hsusb_vdd)) {
hsusb_vdd = devm_regulator_get(motg->phy.dev, "HSUSB_VDDCX");
if (IS_ERR(hsusb_vdd)) {
dev_err(motg->phy.dev, "unable to get hsusb vddcx\n");
ret = PTR_ERR(hsusb_vdd);
goto devote_xo_handle;
}
motg->vdd_type = VDDCX;
}
if (pdev->dev.of_node) {
of_get_property(pdev->dev.of_node,
"qcom,vdd-voltage-level",
&len);
if (len == sizeof(tmp)) {
of_property_read_u32_array(pdev->dev.of_node,
"qcom,vdd-voltage-level",
tmp, len/sizeof(*tmp));
vdd_val[motg->vdd_type][0] = tmp[0];
vdd_val[motg->vdd_type][1] = tmp[1];
vdd_val[motg->vdd_type][2] = tmp[2];
} else {
dev_dbg(&pdev->dev, "Using default hsusb vdd config.\n");
}
}
ret = msm_hsusb_config_vddcx(1);
if (ret) {
dev_err(&pdev->dev, "hsusb vddcx configuration failed\n");
goto devote_xo_handle;
}
ret = regulator_enable(hsusb_vdd);
if (ret) {
dev_err(&pdev->dev, "unable to enable the hsusb vddcx\n");
goto free_config_vddcx;
}
ret = msm_hsusb_ldo_init(motg, 1);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg configuration failed\n");
goto free_hsusb_vdd;
}
if (pdata->mhl_enable) {
mhl_usb_hs_switch = devm_regulator_get(motg->phy.dev,
"mhl_usb_hs_switch");
if (IS_ERR(mhl_usb_hs_switch)) {
dev_err(&pdev->dev, "Unable to get mhl_usb_hs_switch\n");
ret = PTR_ERR(mhl_usb_hs_switch);
goto free_ldo_init;
}
}
ret = msm_hsusb_ldo_enable(motg, USB_PHY_REG_ON);
if (ret) {
dev_err(&pdev->dev, "hsusb vreg enable failed\n");
goto free_ldo_init;
}
clk_prepare_enable(motg->core_clk);
/* Check if USB mem_type change is needed to workaround PNOC hw issue */
msm_otg_pnoc_errata_fix(motg);
writel(0, USB_USBINTR);
writel(0, USB_OTGSC);
/* Ensure that above STOREs are completed before enabling interrupts */
mb();
ret = msm_otg_mhl_register_callback(motg, msm_otg_mhl_notify_online);
if (ret)
dev_dbg(&pdev->dev, "MHL can not be supported\n");
wake_lock_init(&motg->wlock, WAKE_LOCK_SUSPEND, "msm_otg");
msm_otg_init_timer(motg);
INIT_WORK(&motg->sm_work, msm_otg_sm_work);
INIT_DELAYED_WORK(&motg->chg_work, msm_chg_detect_work);
INIT_DELAYED_WORK(&motg->pmic_id_status_work, msm_pmic_id_status_w);
INIT_DELAYED_WORK(&motg->suspend_work, msm_otg_suspend_work);
setup_timer(&motg->id_timer, msm_otg_id_timer_func,
(unsigned long) motg);
setup_timer(&motg->chg_check_timer, msm_otg_chg_check_timer_func,
(unsigned long) motg);
ret = request_irq(motg->irq, msm_otg_irq, IRQF_SHARED,
"msm_otg", motg);
if (ret) {
dev_err(&pdev->dev, "request irq failed\n");
goto destroy_wlock;
}
if (motg->async_irq) {
ret = request_irq(motg->async_irq, msm_otg_irq,
IRQF_TRIGGER_RISING, "msm_otg", motg);
if (ret) {
dev_err(&pdev->dev, "request irq failed (ASYNC INT)\n");
goto free_irq;
}
disable_irq(motg->async_irq);
}
if (pdata->otg_control == OTG_PHY_CONTROL && pdata->mpm_otgsessvld_int)
msm_mpm_enable_pin(pdata->mpm_otgsessvld_int, 1);
phy->init = msm_otg_reset;
phy->set_power = msm_otg_set_power;
phy->set_suspend = msm_otg_set_suspend;
phy->io_ops = &msm_otg_io_ops;
phy->otg->phy = &motg->phy;
phy->otg->set_host = msm_otg_set_host;
phy->otg->set_peripheral = msm_otg_set_peripheral;
phy->otg->start_hnp = msm_otg_start_hnp;
phy->otg->start_srp = msm_otg_start_srp;
ret = usb_set_transceiver(&motg->phy);
if (ret) {
dev_err(&pdev->dev, "usb_set_transceiver failed\n");
goto free_async_irq;
}
if (motg->pdata->mode == USB_OTG &&
motg->pdata->otg_control == OTG_PMIC_CONTROL) {
if (motg->pdata->pmic_id_irq) {
ret = request_irq(motg->pdata->pmic_id_irq,
msm_pmic_id_irq,
IRQF_TRIGGER_RISING |
IRQF_TRIGGER_FALLING,
"msm_otg", motg);
if (ret) {
dev_err(&pdev->dev, "request irq failed for PMIC ID\n");
goto remove_phy;
}
} else {
ret = -ENODEV;
dev_err(&pdev->dev, "PMIC IRQ for ID notifications doesn't exist\n");
goto remove_phy;
}
}
msm_hsusb_mhl_switch_enable(motg, 1);
platform_set_drvdata(pdev, motg);
device_init_wakeup(&pdev->dev, 1);
motg->mA_port = IUNIT;
ret = msm_otg_debugfs_init(motg);
if (ret)
dev_dbg(&pdev->dev, "mode debugfs file is"
"not available\n");
if (motg->pdata->phy_type == SNPS_28NM_INTEGRATED_PHY) {
if (motg->pdata->otg_control == OTG_PMIC_CONTROL &&
(!(motg->pdata->mode == USB_OTG) ||
motg->pdata->pmic_id_irq))
motg->caps = ALLOW_PHY_POWER_COLLAPSE |
ALLOW_PHY_RETENTION;
if (motg->pdata->otg_control == OTG_PHY_CONTROL)
motg->caps = ALLOW_PHY_RETENTION |
ALLOW_PHY_REGULATORS_LPM;
}
if (motg->pdata->enable_lpm_on_dev_suspend)
motg->caps |= ALLOW_LPM_ON_DEV_SUSPEND;
wake_lock(&motg->wlock);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
if (motg->pdata->delay_lpm_on_disconnect) {
pm_runtime_set_autosuspend_delay(&pdev->dev,
lpm_disconnect_thresh);
pm_runtime_use_autosuspend(&pdev->dev);
}
if (motg->pdata->bus_scale_table) {
motg->bus_perf_client =
msm_bus_scale_register_client(motg->pdata->bus_scale_table);
if (!motg->bus_perf_client)
dev_err(motg->phy.dev, "%s: Failed to register BUS "
"scaling client!!\n", __func__);
else
debug_bus_voting_enabled = true;
}
motg->usb_psy.name = "usb";
motg->usb_psy.type = POWER_SUPPLY_TYPE_USB;
motg->usb_psy.supplied_to = otg_pm_power_supplied_to;
motg->usb_psy.num_supplicants = ARRAY_SIZE(otg_pm_power_supplied_to);
motg->usb_psy.properties = otg_pm_power_props_usb;
motg->usb_psy.num_properties = ARRAY_SIZE(otg_pm_power_props_usb);
motg->usb_psy.get_property = otg_power_get_property_usb;
motg->usb_psy.set_property = otg_power_set_property_usb;
motg->usb_psy.property_is_writeable
= otg_power_property_is_writeable_usb;
if (!pm8921_charger_register_vbus_sn(NULL)) {
/* if pm8921 use legacy implementation */
dev_dbg(motg->phy.dev, "%s: legacy support\n", __func__);
legacy_power_supply = true;
} else {
/* otherwise register our own power supply */
if (!msm_otg_register_power_supply(pdev, motg))
psy = &motg->usb_psy;
}
if (legacy_power_supply && pdata->otg_control == OTG_PMIC_CONTROL)
pm8921_charger_register_vbus_sn(&msm_otg_set_vbus_state);
return 0;
remove_phy:
usb_set_transceiver(NULL);
free_async_irq:
if (motg->async_irq)
free_irq(motg->async_irq, motg);
free_irq:
free_irq(motg->irq, motg);
destroy_wlock:
wake_lock_destroy(&motg->wlock);
clk_disable_unprepare(motg->core_clk);
msm_hsusb_ldo_enable(motg, USB_PHY_REG_OFF);
free_ldo_init:
msm_hsusb_ldo_init(motg, 0);
free_hsusb_vdd:
regulator_disable(hsusb_vdd);
free_config_vddcx:
regulator_set_voltage(hsusb_vdd,
vdd_val[motg->vdd_type][VDD_NONE],
vdd_val[motg->vdd_type][VDD_MAX]);
devote_xo_handle:
clk_disable_unprepare(motg->pclk);
if (!IS_ERR(motg->xo_clk))
clk_disable_unprepare(motg->xo_clk);
else
msm_xo_mode_vote(motg->xo_handle, MSM_XO_MODE_OFF);
free_xo_handle:
if (!IS_ERR(motg->xo_clk))
clk_put(motg->xo_clk);
else
msm_xo_put(motg->xo_handle);
free_regs:
iounmap(motg->regs);
put_pclk:
clk_put(motg->pclk);
put_core_clk:
clk_put(motg->core_clk);
put_clk:
if (!IS_ERR(motg->clk))
clk_put(motg->clk);
if (!IS_ERR(motg->phy_reset_clk))
clk_put(motg->phy_reset_clk);
free_otg:
kfree(motg->phy.otg);
free_motg:
kfree(motg);
return ret;
}
static int __devexit msm_otg_remove(struct platform_device *pdev)
{
struct msm_otg *motg = platform_get_drvdata(pdev);
struct usb_otg *otg = motg->phy.otg;
int cnt = 0;
if (otg->host || otg->gadget)
return -EBUSY;
if (pdev->dev.of_node)
msm_otg_setup_devices(pdev, motg->pdata->mode, false);
if (motg->pdata->otg_control == OTG_PMIC_CONTROL)
pm8921_charger_unregister_vbus_sn(0);
msm_otg_mhl_register_callback(motg, NULL);
msm_otg_debugfs_cleanup();
cancel_delayed_work_sync(&motg->chg_work);
cancel_delayed_work_sync(&motg->pmic_id_status_work);
cancel_delayed_work_sync(&motg->suspend_work);
cancel_work_sync(&motg->sm_work);
pm_runtime_resume(&pdev->dev);
device_init_wakeup(&pdev->dev, 0);
pm_runtime_disable(&pdev->dev);
wake_lock_destroy(&motg->wlock);
msm_hsusb_mhl_switch_enable(motg, 0);
if (motg->pdata->pmic_id_irq)
free_irq(motg->pdata->pmic_id_irq, motg);
usb_set_transceiver(NULL);
free_irq(motg->irq, motg);
if (motg->pdata->otg_control == OTG_PHY_CONTROL &&
motg->pdata->mpm_otgsessvld_int)
msm_mpm_enable_pin(motg->pdata->mpm_otgsessvld_int, 0);
/*
* Put PHY in low power mode.
*/
ulpi_read(otg->phy, 0x14);
ulpi_write(otg->phy, 0x08, 0x09);
writel(readl(USB_PORTSC) | PORTSC_PHCD, USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC)
dev_err(otg->phy->dev, "Unable to suspend PHY\n");
clk_disable_unprepare(motg->pclk);
clk_disable_unprepare(motg->core_clk);
if (!IS_ERR(motg->xo_clk)) {
clk_disable_unprepare(motg->xo_clk);
clk_put(motg->xo_clk);
} else {
msm_xo_put(motg->xo_handle);
}
msm_hsusb_ldo_enable(motg, USB_PHY_REG_OFF);
msm_hsusb_ldo_init(motg, 0);
regulator_disable(hsusb_vdd);
regulator_set_voltage(hsusb_vdd,
vdd_val[motg->vdd_type][VDD_NONE],
vdd_val[motg->vdd_type][VDD_MAX]);
iounmap(motg->regs);
pm_runtime_set_suspended(&pdev->dev);
if (!IS_ERR(motg->phy_reset_clk))
clk_put(motg->phy_reset_clk);
clk_put(motg->pclk);
if (!IS_ERR(motg->clk))
clk_put(motg->clk);
clk_put(motg->core_clk);
if (motg->bus_perf_client)
msm_bus_scale_unregister_client(motg->bus_perf_client);
kfree(motg->phy.otg);
kfree(motg);
return 0;
}
#ifdef CONFIG_PM_RUNTIME
static int msm_otg_runtime_idle(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
struct usb_phy *phy = &motg->phy;
dev_dbg(dev, "OTG runtime idle\n");
if (phy->state == OTG_STATE_UNDEFINED)
return -EAGAIN;
else
return 0;
}
static int msm_otg_runtime_suspend(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG runtime suspend\n");
return msm_otg_suspend(motg);
}
static int msm_otg_runtime_resume(struct device *dev)
{
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG runtime resume\n");
pm_runtime_get_noresume(dev);
return msm_otg_resume(motg);
}
#endif
#ifdef CONFIG_PM_SLEEP
static int msm_otg_pm_suspend(struct device *dev)
{
int ret = 0;
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG PM suspend\n");
atomic_set(&motg->pm_suspended, 1);
ret = msm_otg_suspend(motg);
if (ret)
atomic_set(&motg->pm_suspended, 0);
return ret;
}
static int msm_otg_pm_resume(struct device *dev)
{
int ret = 0;
struct msm_otg *motg = dev_get_drvdata(dev);
dev_dbg(dev, "OTG PM resume\n");
atomic_set(&motg->pm_suspended, 0);
if (motg->async_int || motg->sm_work_pending) {
pm_runtime_get_noresume(dev);
ret = msm_otg_resume(motg);
/* Update runtime PM status */
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
if (motg->sm_work_pending) {
motg->sm_work_pending = false;
queue_work(system_nrt_wq, &motg->sm_work);
}
}
return ret;
}
#endif
#ifdef CONFIG_PM
static const struct dev_pm_ops msm_otg_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_otg_pm_suspend, msm_otg_pm_resume)
SET_RUNTIME_PM_OPS(msm_otg_runtime_suspend, msm_otg_runtime_resume,
msm_otg_runtime_idle)
};
#endif
static struct of_device_id msm_otg_dt_match[] = {
{ .compatible = "qcom,hsusb-otg",
},
{}
};
static struct platform_driver msm_otg_driver = {
.remove = __devexit_p(msm_otg_remove),
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &msm_otg_dev_pm_ops,
#endif
.of_match_table = msm_otg_dt_match,
},
};
static int __init msm_otg_init(void)
{
return platform_driver_probe(&msm_otg_driver, msm_otg_probe);
}
static void __exit msm_otg_exit(void)
{
platform_driver_unregister(&msm_otg_driver);
}
module_init(msm_otg_init);
module_exit(msm_otg_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("MSM USB transceiver driver");