blob: 1bb9c869712294c9f6df30e782283d65e4211481 [file] [log] [blame]
/* Copyright (c) 2009-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/err.h>
#include <linux/ctype.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <mach/msm_iomap.h>
#include <mach/clk.h>
#include <mach/scm-io.h>
#include "clock.h"
#include "clock-local.h"
#ifdef CONFIG_MSM_SECURE_IO
#undef readl_relaxed
#undef writel_relaxed
#define readl_relaxed secure_readl
#define writel_relaxed secure_writel
#endif
/*
* When enabling/disabling a clock, check the halt bit up to this number
* number of times (with a 1 us delay in between) before continuing.
*/
#define HALT_CHECK_MAX_LOOPS 200
/* For clock without halt checking, wait this long after enables/disables. */
#define HALT_CHECK_DELAY_US 10
DEFINE_SPINLOCK(local_clock_reg_lock);
struct clk_freq_tbl rcg_dummy_freq = F_END;
/*
* Common Set-Rate Functions
*/
/* For clocks with MND dividers. */
void set_rate_mnd(struct rcg_clk *clk, struct clk_freq_tbl *nf)
{
uint32_t ns_reg_val, ctl_reg_val;
/* Assert MND reset. */
ns_reg_val = readl_relaxed(clk->ns_reg);
ns_reg_val |= BIT(7);
writel_relaxed(ns_reg_val, clk->ns_reg);
/* Program M and D values. */
writel_relaxed(nf->md_val, clk->md_reg);
/* If the clock has a separate CC register, program it. */
if (clk->ns_reg != clk->b.ctl_reg) {
ctl_reg_val = readl_relaxed(clk->b.ctl_reg);
ctl_reg_val &= ~(clk->ctl_mask);
ctl_reg_val |= nf->ctl_val;
writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
}
/* Deassert MND reset. */
ns_reg_val &= ~BIT(7);
writel_relaxed(ns_reg_val, clk->ns_reg);
}
void set_rate_nop(struct rcg_clk *clk, struct clk_freq_tbl *nf)
{
/*
* Nothing to do for fixed-rate or integer-divider clocks. Any settings
* in NS registers are applied in the enable path, since power can be
* saved by leaving an un-clocked or slowly-clocked source selected
* until the clock is enabled.
*/
}
void set_rate_mnd_8(struct rcg_clk *clk, struct clk_freq_tbl *nf)
{
uint32_t ctl_reg_val;
/* Assert MND reset. */
ctl_reg_val = readl_relaxed(clk->b.ctl_reg);
ctl_reg_val |= BIT(8);
writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
/* Program M and D values. */
writel_relaxed(nf->md_val, clk->md_reg);
/* Program MN counter Enable and Mode. */
ctl_reg_val &= ~(clk->ctl_mask);
ctl_reg_val |= nf->ctl_val;
writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
/* Deassert MND reset. */
ctl_reg_val &= ~BIT(8);
writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
}
void set_rate_mnd_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf)
{
struct bank_masks *banks = clk->bank_info;
const struct bank_mask_info *new_bank_masks;
const struct bank_mask_info *old_bank_masks;
uint32_t ns_reg_val, ctl_reg_val;
uint32_t bank_sel;
/*
* Determine active bank and program the other one. If the clock is
* off, program the active bank since bank switching won't work if
* both banks aren't running.
*/
ctl_reg_val = readl_relaxed(clk->b.ctl_reg);
bank_sel = !!(ctl_reg_val & banks->bank_sel_mask);
/* If clock isn't running, don't switch banks. */
bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0);
if (bank_sel == 0) {
new_bank_masks = &banks->bank1_mask;
old_bank_masks = &banks->bank0_mask;
} else {
new_bank_masks = &banks->bank0_mask;
old_bank_masks = &banks->bank1_mask;
}
ns_reg_val = readl_relaxed(clk->ns_reg);
/* Assert bank MND reset. */
ns_reg_val |= new_bank_masks->rst_mask;
writel_relaxed(ns_reg_val, clk->ns_reg);
/*
* Program NS only if the clock is enabled, since the NS will be set
* as part of the enable procedure and should remain with a low-power
* MUX input selected until then.
*/
if (clk->enabled) {
ns_reg_val &= ~(new_bank_masks->ns_mask);
ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask);
writel_relaxed(ns_reg_val, clk->ns_reg);
}
writel_relaxed(nf->md_val, new_bank_masks->md_reg);
/* Enable counter only if clock is enabled. */
if (clk->enabled)
ctl_reg_val |= new_bank_masks->mnd_en_mask;
else
ctl_reg_val &= ~(new_bank_masks->mnd_en_mask);
ctl_reg_val &= ~(new_bank_masks->mode_mask);
ctl_reg_val |= (nf->ctl_val & new_bank_masks->mode_mask);
writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
/* Deassert bank MND reset. */
ns_reg_val &= ~(new_bank_masks->rst_mask);
writel_relaxed(ns_reg_val, clk->ns_reg);
/*
* Switch to the new bank if clock is running. If it isn't, then
* no switch is necessary since we programmed the active bank.
*/
if (clk->enabled && clk->current_freq->freq_hz) {
ctl_reg_val ^= banks->bank_sel_mask;
writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
/*
* Wait at least 6 cycles of slowest bank's clock
* for the glitch-free MUX to fully switch sources.
*/
mb();
udelay(1);
/* Disable old bank's MN counter. */
ctl_reg_val &= ~(old_bank_masks->mnd_en_mask);
writel_relaxed(ctl_reg_val, clk->b.ctl_reg);
/* Program old bank to a low-power source and divider. */
ns_reg_val &= ~(old_bank_masks->ns_mask);
ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask);
writel_relaxed(ns_reg_val, clk->ns_reg);
}
/*
* If this freq requires the MN counter to be enabled,
* update the enable mask to match the current bank.
*/
if (nf->mnd_en_mask)
nf->mnd_en_mask = new_bank_masks->mnd_en_mask;
/* Update the NS mask to match the current bank. */
clk->ns_mask = new_bank_masks->ns_mask;
}
void set_rate_div_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf)
{
struct bank_masks *banks = clk->bank_info;
const struct bank_mask_info *new_bank_masks;
const struct bank_mask_info *old_bank_masks;
uint32_t ns_reg_val, bank_sel;
/*
* Determine active bank and program the other one. If the clock is
* off, program the active bank since bank switching won't work if
* both banks aren't running.
*/
ns_reg_val = readl_relaxed(clk->ns_reg);
bank_sel = !!(ns_reg_val & banks->bank_sel_mask);
/* If clock isn't running, don't switch banks. */
bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0);
if (bank_sel == 0) {
new_bank_masks = &banks->bank1_mask;
old_bank_masks = &banks->bank0_mask;
} else {
new_bank_masks = &banks->bank0_mask;
old_bank_masks = &banks->bank1_mask;
}
/*
* Program NS only if the clock is enabled, since the NS will be set
* as part of the enable procedure and should remain with a low-power
* MUX input selected until then.
*/
if (clk->enabled) {
ns_reg_val &= ~(new_bank_masks->ns_mask);
ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask);
writel_relaxed(ns_reg_val, clk->ns_reg);
}
/*
* Switch to the new bank if clock is running. If it isn't, then
* no switch is necessary since we programmed the active bank.
*/
if (clk->enabled && clk->current_freq->freq_hz) {
ns_reg_val ^= banks->bank_sel_mask;
writel_relaxed(ns_reg_val, clk->ns_reg);
/*
* Wait at least 6 cycles of slowest bank's clock
* for the glitch-free MUX to fully switch sources.
*/
mb();
udelay(1);
/* Program old bank to a low-power source and divider. */
ns_reg_val &= ~(old_bank_masks->ns_mask);
ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask);
writel_relaxed(ns_reg_val, clk->ns_reg);
}
/* Update the NS mask to match the current bank. */
clk->ns_mask = new_bank_masks->ns_mask;
}
/*
* Clock enable/disable functions
*/
/* Return non-zero if a clock status registers shows the clock is halted. */
static int branch_clk_is_halted(const struct branch *clk)
{
int invert = (clk->halt_check == ENABLE);
int status_bit = readl_relaxed(clk->halt_reg) & BIT(clk->halt_bit);
return invert ? !status_bit : status_bit;
}
int branch_in_hwcg_mode(const struct branch *b)
{
if (!b->hwcg_mask)
return 0;
return !!(readl_relaxed(b->hwcg_reg) & b->hwcg_mask);
}
void __branch_clk_enable_reg(const struct branch *clk, const char *name)
{
u32 reg_val;
if (clk->en_mask) {
reg_val = readl_relaxed(clk->ctl_reg);
reg_val |= clk->en_mask;
writel_relaxed(reg_val, clk->ctl_reg);
}
/*
* Use a memory barrier since some halt status registers are
* not within the same 1K segment as the branch/root enable
* registers. It's also needed in the udelay() case to ensure
* the delay starts after the branch enable.
*/
mb();
/* Skip checking halt bit if the clock is in hardware gated mode */
if (branch_in_hwcg_mode(clk))
return;
/* Wait for clock to enable before returning. */
if (clk->halt_check == DELAY)
udelay(HALT_CHECK_DELAY_US);
else if (clk->halt_check == ENABLE || clk->halt_check == HALT
|| clk->halt_check == ENABLE_VOTED
|| clk->halt_check == HALT_VOTED) {
int count;
/* Wait up to HALT_CHECK_MAX_LOOPS for clock to enable. */
for (count = HALT_CHECK_MAX_LOOPS; branch_clk_is_halted(clk)
&& count > 0; count--)
udelay(1);
WARN(count == 0, "%s status stuck at 'off'", name);
}
}
/* Perform any register operations required to enable the clock. */
static void __rcg_clk_enable_reg(struct rcg_clk *clk)
{
u32 reg_val;
void __iomem *const reg = clk->b.ctl_reg;
WARN(clk->current_freq == &rcg_dummy_freq,
"Attempting to enable %s before setting its rate. "
"Set the rate first!\n", clk->c.dbg_name);
/*
* Program the NS register, if applicable. NS registers are not
* set in the set_rate path because power can be saved by deferring
* the selection of a clocked source until the clock is enabled.
*/
if (clk->ns_mask) {
reg_val = readl_relaxed(clk->ns_reg);
reg_val &= ~(clk->ns_mask);
reg_val |= (clk->current_freq->ns_val & clk->ns_mask);
writel_relaxed(reg_val, clk->ns_reg);
}
/* Enable MN counter, if applicable. */
reg_val = readl_relaxed(reg);
if (clk->current_freq->mnd_en_mask) {
reg_val |= clk->current_freq->mnd_en_mask;
writel_relaxed(reg_val, reg);
}
/* Enable root. */
if (clk->root_en_mask) {
reg_val |= clk->root_en_mask;
writel_relaxed(reg_val, reg);
}
__branch_clk_enable_reg(&clk->b, clk->c.dbg_name);
}
/* Perform any register operations required to disable the branch. */
u32 __branch_clk_disable_reg(const struct branch *clk, const char *name)
{
u32 reg_val;
reg_val = readl_relaxed(clk->ctl_reg);
if (clk->en_mask) {
reg_val &= ~(clk->en_mask);
writel_relaxed(reg_val, clk->ctl_reg);
}
/*
* Use a memory barrier since some halt status registers are
* not within the same K segment as the branch/root enable
* registers. It's also needed in the udelay() case to ensure
* the delay starts after the branch disable.
*/
mb();
/* Skip checking halt bit if the clock is in hardware gated mode */
if (branch_in_hwcg_mode(clk))
return reg_val;
/* Wait for clock to disable before continuing. */
if (clk->halt_check == DELAY || clk->halt_check == ENABLE_VOTED
|| clk->halt_check == HALT_VOTED)
udelay(HALT_CHECK_DELAY_US);
else if (clk->halt_check == ENABLE || clk->halt_check == HALT) {
int count;
/* Wait up to HALT_CHECK_MAX_LOOPS for clock to disable. */
for (count = HALT_CHECK_MAX_LOOPS; !branch_clk_is_halted(clk)
&& count > 0; count--)
udelay(1);
WARN(count == 0, "%s status stuck at 'on'", name);
}
return reg_val;
}
/* Perform any register operations required to disable the generator. */
static void __rcg_clk_disable_reg(struct rcg_clk *clk)
{
void __iomem *const reg = clk->b.ctl_reg;
uint32_t reg_val;
reg_val = __branch_clk_disable_reg(&clk->b, clk->c.dbg_name);
/* Disable root. */
if (clk->root_en_mask) {
reg_val &= ~(clk->root_en_mask);
writel_relaxed(reg_val, reg);
}
/* Disable MN counter, if applicable. */
if (clk->current_freq->mnd_en_mask) {
reg_val &= ~(clk->current_freq->mnd_en_mask);
writel_relaxed(reg_val, reg);
}
/*
* Program NS register to low-power value with an un-clocked or
* slowly-clocked source selected.
*/
if (clk->ns_mask) {
reg_val = readl_relaxed(clk->ns_reg);
reg_val &= ~(clk->ns_mask);
reg_val |= (clk->freq_tbl->ns_val & clk->ns_mask);
writel_relaxed(reg_val, clk->ns_reg);
}
}
/* Enable a rate-settable clock. */
int rcg_clk_enable(struct clk *c)
{
unsigned long flags;
struct rcg_clk *clk = to_rcg_clk(c);
spin_lock_irqsave(&local_clock_reg_lock, flags);
__rcg_clk_enable_reg(clk);
clk->enabled = true;
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
return 0;
}
/* Disable a rate-settable clock. */
void rcg_clk_disable(struct clk *c)
{
unsigned long flags;
struct rcg_clk *clk = to_rcg_clk(c);
spin_lock_irqsave(&local_clock_reg_lock, flags);
__rcg_clk_disable_reg(clk);
clk->enabled = false;
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
}
/*
* Frequency-related functions
*/
/* Set a clock to an exact rate. */
int rcg_clk_set_rate(struct clk *c, unsigned long rate)
{
struct rcg_clk *clk = to_rcg_clk(c);
struct clk_freq_tbl *nf, *cf;
struct clk *chld;
int rc = 0;
for (nf = clk->freq_tbl; nf->freq_hz != FREQ_END
&& nf->freq_hz != rate; nf++)
;
if (nf->freq_hz == FREQ_END)
return -EINVAL;
/* Check if frequency is actually changed. */
cf = clk->current_freq;
if (nf == cf)
return 0;
if (clk->enabled) {
/* Enable source clock dependency for the new freq. */
rc = clk_enable(nf->src_clk);
if (rc)
return rc;
}
spin_lock(&local_clock_reg_lock);
/* Disable branch if clock isn't dual-banked with a glitch-free MUX. */
if (!clk->bank_info) {
/* Disable all branches to prevent glitches. */
list_for_each_entry(chld, &clk->c.children, siblings) {
struct branch_clk *x = to_branch_clk(chld);
/*
* We don't need to grab the child's lock because
* we hold the local_clock_reg_lock and 'enabled' is
* only modified within lock.
*/
if (x->enabled)
__branch_clk_disable_reg(&x->b, x->c.dbg_name);
}
if (clk->enabled)
__rcg_clk_disable_reg(clk);
}
/* Perform clock-specific frequency switch operations. */
BUG_ON(!clk->set_rate);
clk->set_rate(clk, nf);
/*
* Current freq must be updated before __rcg_clk_enable_reg()
* is called to make sure the MNCNTR_EN bit is set correctly.
*/
clk->current_freq = nf;
/* Enable any clocks that were disabled. */
if (!clk->bank_info) {
if (clk->enabled)
__rcg_clk_enable_reg(clk);
/* Enable only branches that were ON before. */
list_for_each_entry(chld, &clk->c.children, siblings) {
struct branch_clk *x = to_branch_clk(chld);
if (x->enabled)
__branch_clk_enable_reg(&x->b, x->c.dbg_name);
}
}
spin_unlock(&local_clock_reg_lock);
/* Release source requirements of the old freq. */
if (clk->enabled)
clk_disable(cf->src_clk);
return rc;
}
/* Get the currently-set rate of a clock in Hz. */
unsigned long rcg_clk_get_rate(struct clk *c)
{
struct rcg_clk *clk = to_rcg_clk(c);
unsigned long flags;
unsigned ret = 0;
spin_lock_irqsave(&local_clock_reg_lock, flags);
ret = clk->current_freq->freq_hz;
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
/*
* Return 0 if the rate has never been set. Might not be correct,
* but it's good enough.
*/
if (ret == FREQ_END)
ret = 0;
return ret;
}
/* Check if a clock is currently enabled. */
int rcg_clk_is_enabled(struct clk *clk)
{
return to_rcg_clk(clk)->enabled;
}
/* Return a supported rate that's at least the specified rate. */
long rcg_clk_round_rate(struct clk *c, unsigned long rate)
{
struct rcg_clk *clk = to_rcg_clk(c);
struct clk_freq_tbl *f;
for (f = clk->freq_tbl; f->freq_hz != FREQ_END; f++)
if (f->freq_hz >= rate)
return f->freq_hz;
return -EPERM;
}
bool local_clk_is_local(struct clk *clk)
{
return true;
}
/* Return the nth supported frequency for a given clock. */
int rcg_clk_list_rate(struct clk *c, unsigned n)
{
struct rcg_clk *clk = to_rcg_clk(c);
if (!clk->freq_tbl || clk->freq_tbl->freq_hz == FREQ_END)
return -ENXIO;
return (clk->freq_tbl + n)->freq_hz;
}
struct clk *rcg_clk_get_parent(struct clk *clk)
{
return to_rcg_clk(clk)->current_freq->src_clk;
}
/* Disable hw clock gating if not set at boot */
static void branch_handoff(struct branch *clk, struct clk *c)
{
if (!branch_in_hwcg_mode(clk)) {
clk->hwcg_mask = 0;
c->flags &= ~CLKFLAG_HWCG;
} else {
c->flags |= CLKFLAG_HWCG;
}
}
int branch_clk_handoff(struct clk *c)
{
struct branch_clk *clk = to_branch_clk(c);
branch_handoff(&clk->b, &clk->c);
return 0;
}
int rcg_clk_handoff(struct clk *c)
{
struct rcg_clk *clk = to_rcg_clk(c);
uint32_t ctl_val, ns_val, md_val, ns_mask;
struct clk_freq_tbl *freq;
branch_handoff(&clk->b, &clk->c);
ctl_val = readl_relaxed(clk->b.ctl_reg);
if (!(ctl_val & clk->root_en_mask))
return 0;
if (clk->bank_info) {
const struct bank_masks *bank_masks = clk->bank_info;
const struct bank_mask_info *bank_info;
if (!(ctl_val & bank_masks->bank_sel_mask))
bank_info = &bank_masks->bank0_mask;
else
bank_info = &bank_masks->bank1_mask;
ns_mask = bank_info->ns_mask;
md_val = bank_info->md_reg ?
readl_relaxed(bank_info->md_reg) : 0;
} else {
ns_mask = clk->ns_mask;
md_val = clk->md_reg ? readl_relaxed(clk->md_reg) : 0;
}
ns_val = readl_relaxed(clk->ns_reg) & ns_mask;
for (freq = clk->freq_tbl; freq->freq_hz != FREQ_END; freq++) {
if ((freq->ns_val & ns_mask) == ns_val &&
(!freq->mnd_en_mask || freq->md_val == md_val)) {
pr_info("%s rate=%d\n", clk->c.dbg_name, freq->freq_hz);
break;
}
}
if (freq->freq_hz == FREQ_END)
return 0;
clk->current_freq = freq;
return 1;
}
int pll_vote_clk_enable(struct clk *clk)
{
u32 ena;
unsigned long flags;
struct pll_vote_clk *pll = to_pll_vote_clk(clk);
spin_lock_irqsave(&local_clock_reg_lock, flags);
ena = readl_relaxed(pll->en_reg);
ena |= pll->en_mask;
writel_relaxed(ena, pll->en_reg);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
/* Wait until PLL is enabled */
while ((readl_relaxed(pll->status_reg) & BIT(16)) == 0)
cpu_relax();
return 0;
}
void pll_vote_clk_disable(struct clk *clk)
{
u32 ena;
unsigned long flags;
struct pll_vote_clk *pll = to_pll_vote_clk(clk);
spin_lock_irqsave(&local_clock_reg_lock, flags);
ena = readl_relaxed(pll->en_reg);
ena &= ~(pll->en_mask);
writel_relaxed(ena, pll->en_reg);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
}
unsigned long pll_vote_clk_get_rate(struct clk *clk)
{
struct pll_vote_clk *pll = to_pll_vote_clk(clk);
return pll->rate;
}
struct clk *pll_vote_clk_get_parent(struct clk *clk)
{
struct pll_vote_clk *pll = to_pll_vote_clk(clk);
return pll->parent;
}
int pll_vote_clk_is_enabled(struct clk *clk)
{
struct pll_vote_clk *pll = to_pll_vote_clk(clk);
return !!(readl_relaxed(pll->status_reg) & BIT(16));
}
struct clk_ops clk_ops_pll_vote = {
.enable = pll_vote_clk_enable,
.disable = pll_vote_clk_disable,
.auto_off = pll_vote_clk_disable,
.is_enabled = pll_vote_clk_is_enabled,
.get_rate = pll_vote_clk_get_rate,
.get_parent = pll_vote_clk_get_parent,
.is_local = local_clk_is_local,
};
static int pll_clk_enable(struct clk *clk)
{
u32 mode;
unsigned long flags;
struct pll_clk *pll = to_pll_clk(clk);
spin_lock_irqsave(&local_clock_reg_lock, flags);
mode = readl_relaxed(pll->mode_reg);
/* Disable PLL bypass mode. */
mode |= BIT(1);
writel_relaxed(mode, pll->mode_reg);
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset. Delay 10us just to be safe.
*/
mb();
udelay(10);
/* De-assert active-low PLL reset. */
mode |= BIT(2);
writel_relaxed(mode, pll->mode_reg);
/* Wait until PLL is locked. */
mb();
udelay(50);
/* Enable PLL output. */
mode |= BIT(0);
writel_relaxed(mode, pll->mode_reg);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
return 0;
}
static void pll_clk_disable(struct clk *clk)
{
u32 mode;
unsigned long flags;
struct pll_clk *pll = to_pll_clk(clk);
/*
* Disable the PLL output, disable test mode, enable
* the bypass mode, and assert the reset.
*/
spin_lock_irqsave(&local_clock_reg_lock, flags);
mode = readl_relaxed(pll->mode_reg);
mode &= ~BM(3, 0);
writel_relaxed(mode, pll->mode_reg);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
}
static unsigned long pll_clk_get_rate(struct clk *clk)
{
struct pll_clk *pll = to_pll_clk(clk);
return pll->rate;
}
static struct clk *pll_clk_get_parent(struct clk *clk)
{
struct pll_clk *pll = to_pll_clk(clk);
return pll->parent;
}
int sr_pll_clk_enable(struct clk *clk)
{
u32 mode;
unsigned long flags;
struct pll_clk *pll = to_pll_clk(clk);
spin_lock_irqsave(&local_clock_reg_lock, flags);
mode = readl_relaxed(pll->mode_reg);
/* De-assert active-low PLL reset. */
mode |= BIT(2);
writel_relaxed(mode, pll->mode_reg);
/*
* H/W requires a 5us delay between disabling the bypass and
* de-asserting the reset. Delay 10us just to be safe.
*/
mb();
udelay(10);
/* Disable PLL bypass mode. */
mode |= BIT(1);
writel_relaxed(mode, pll->mode_reg);
/* Wait until PLL is locked. */
mb();
udelay(60);
/* Enable PLL output. */
mode |= BIT(0);
writel_relaxed(mode, pll->mode_reg);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
return 0;
}
struct clk_ops clk_ops_pll = {
.enable = pll_clk_enable,
.disable = pll_clk_disable,
.auto_off = pll_clk_disable,
.get_rate = pll_clk_get_rate,
.get_parent = pll_clk_get_parent,
.is_local = local_clk_is_local,
};
struct clk_ops clk_ops_gnd = {
.get_rate = fixed_clk_get_rate,
.is_local = local_clk_is_local,
};
struct fixed_clk gnd_clk = {
.c = {
.dbg_name = "ground_clk",
.ops = &clk_ops_gnd,
CLK_INIT(gnd_clk.c),
},
};
struct clk_ops clk_ops_measure = {
.is_local = local_clk_is_local,
};
int branch_clk_enable(struct clk *clk)
{
unsigned long flags;
struct branch_clk *branch = to_branch_clk(clk);
spin_lock_irqsave(&local_clock_reg_lock, flags);
__branch_clk_enable_reg(&branch->b, branch->c.dbg_name);
branch->enabled = true;
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
return 0;
}
void branch_clk_disable(struct clk *clk)
{
unsigned long flags;
struct branch_clk *branch = to_branch_clk(clk);
spin_lock_irqsave(&local_clock_reg_lock, flags);
__branch_clk_disable_reg(&branch->b, branch->c.dbg_name);
branch->enabled = false;
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
}
struct clk *branch_clk_get_parent(struct clk *clk)
{
struct branch_clk *branch = to_branch_clk(clk);
return branch->parent;
}
int branch_clk_set_parent(struct clk *clk, struct clk *parent)
{
/*
* We setup the parent pointer at init time in msm_clock_init().
* This check is to make sure drivers can't change the parent.
*/
if (parent && list_empty(&clk->siblings)) {
list_add(&clk->siblings, &parent->children);
return 0;
}
return -EINVAL;
}
int branch_clk_is_enabled(struct clk *clk)
{
struct branch_clk *branch = to_branch_clk(clk);
return branch->enabled;
}
static void branch_enable_hwcg(struct branch *b)
{
unsigned long flags;
u32 reg_val;
spin_lock_irqsave(&local_clock_reg_lock, flags);
reg_val = readl_relaxed(b->hwcg_reg);
reg_val |= b->hwcg_mask;
writel_relaxed(reg_val, b->hwcg_reg);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
}
static void branch_disable_hwcg(struct branch *b)
{
unsigned long flags;
u32 reg_val;
spin_lock_irqsave(&local_clock_reg_lock, flags);
reg_val = readl_relaxed(b->hwcg_reg);
reg_val &= ~b->hwcg_mask;
writel_relaxed(reg_val, b->hwcg_reg);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
}
void branch_clk_enable_hwcg(struct clk *clk)
{
struct branch_clk *branch = to_branch_clk(clk);
branch_enable_hwcg(&branch->b);
}
void branch_clk_disable_hwcg(struct clk *clk)
{
struct branch_clk *branch = to_branch_clk(clk);
branch_disable_hwcg(&branch->b);
}
int branch_clk_in_hwcg_mode(struct clk *c)
{
struct branch_clk *clk = to_branch_clk(c);
return branch_in_hwcg_mode(&clk->b);
}
void rcg_clk_enable_hwcg(struct clk *clk)
{
struct rcg_clk *rcg = to_rcg_clk(clk);
branch_enable_hwcg(&rcg->b);
}
void rcg_clk_disable_hwcg(struct clk *clk)
{
struct rcg_clk *rcg = to_rcg_clk(clk);
branch_disable_hwcg(&rcg->b);
}
int rcg_clk_in_hwcg_mode(struct clk *c)
{
struct rcg_clk *clk = to_rcg_clk(c);
return branch_in_hwcg_mode(&clk->b);
}
int branch_reset(struct branch *b, enum clk_reset_action action)
{
int ret = 0;
u32 reg_val;
unsigned long flags;
if (!b->reset_reg)
return -EPERM;
/* Disable hw gating when asserting a reset */
if (b->hwcg_mask && action == CLK_RESET_ASSERT)
branch_disable_hwcg(b);
spin_lock_irqsave(&local_clock_reg_lock, flags);
/* Assert/Deassert reset */
reg_val = readl_relaxed(b->reset_reg);
switch (action) {
case CLK_RESET_ASSERT:
reg_val |= b->reset_mask;
break;
case CLK_RESET_DEASSERT:
reg_val &= ~b->reset_mask;
break;
default:
ret = -EINVAL;
}
writel_relaxed(reg_val, b->reset_reg);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
/* Enable hw gating when deasserting a reset */
if (b->hwcg_mask && action == CLK_RESET_DEASSERT)
branch_enable_hwcg(b);
/* Make sure write is issued before returning. */
mb();
return ret;
}
int branch_clk_reset(struct clk *clk, enum clk_reset_action action)
{
return branch_reset(&to_branch_clk(clk)->b, action);
}
int rcg_clk_reset(struct clk *clk, enum clk_reset_action action)
{
return branch_reset(&to_rcg_clk(clk)->b, action);
}
static int cdiv_clk_enable(struct clk *c)
{
unsigned long flags;
struct cdiv_clk *clk = to_cdiv_clk(c);
spin_lock_irqsave(&local_clock_reg_lock, flags);
__branch_clk_enable_reg(&clk->b, clk->c.dbg_name);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
return 0;
}
static void cdiv_clk_disable(struct clk *c)
{
unsigned long flags;
struct cdiv_clk *clk = to_cdiv_clk(c);
spin_lock_irqsave(&local_clock_reg_lock, flags);
__branch_clk_disable_reg(&clk->b, clk->c.dbg_name);
spin_unlock_irqrestore(&local_clock_reg_lock, flags);
}
static int cdiv_clk_set_rate(struct clk *c, unsigned long rate)
{
struct cdiv_clk *clk = to_cdiv_clk(c);
u32 reg_val;
if (rate > clk->max_div)
return -EINVAL;
/* Check if frequency is actually changed. */
if (rate == clk->cur_div)
return 0;
spin_lock(&local_clock_reg_lock);
reg_val = readl_relaxed(clk->ns_reg);
reg_val &= ~(clk->ext_mask | (clk->max_div - 1) << clk->div_offset);
/* Non-zero rates mean set a divider, zero means use external input */
if (rate)
reg_val |= (rate - 1) << clk->div_offset;
else
reg_val |= clk->ext_mask;
writel_relaxed(reg_val, clk->ns_reg);
spin_unlock(&local_clock_reg_lock);
clk->cur_div = rate;
return 0;
}
static unsigned long cdiv_clk_get_rate(struct clk *c)
{
struct cdiv_clk *clk = to_cdiv_clk(c);
return clk->cur_div;
}
static long cdiv_clk_round_rate(struct clk *c, unsigned long rate)
{
struct cdiv_clk *clk = to_cdiv_clk(c);
return rate > clk->max_div ? -EPERM : rate;
}
static int cdiv_clk_list_rate(struct clk *c, unsigned n)
{
struct cdiv_clk *clk = to_cdiv_clk(c);
return n > clk->max_div ? -ENXIO : n;
}
static int cdiv_clk_handoff(struct clk *c)
{
struct cdiv_clk *clk = to_cdiv_clk(c);
u32 reg_val;
branch_handoff(&clk->b, &clk->c);
reg_val = readl_relaxed(clk->ns_reg);
if (reg_val & clk->ext_mask) {
clk->cur_div = 0;
} else {
reg_val >>= clk->div_offset;
clk->cur_div = (reg_val & (clk->max_div - 1)) + 1;
}
return 0;
}
static void cdiv_clk_enable_hwcg(struct clk *c)
{
struct cdiv_clk *clk = to_cdiv_clk(c);
branch_enable_hwcg(&clk->b);
}
static void cdiv_clk_disable_hwcg(struct clk *c)
{
struct cdiv_clk *clk = to_cdiv_clk(c);
branch_disable_hwcg(&clk->b);
}
static int cdiv_clk_in_hwcg_mode(struct clk *c)
{
struct cdiv_clk *clk = to_cdiv_clk(c);
return branch_in_hwcg_mode(&clk->b);
}
struct clk_ops clk_ops_cdiv = {
.enable = cdiv_clk_enable,
.disable = cdiv_clk_disable,
.in_hwcg_mode = cdiv_clk_in_hwcg_mode,
.enable_hwcg = cdiv_clk_enable_hwcg,
.disable_hwcg = cdiv_clk_disable_hwcg,
.auto_off = cdiv_clk_disable,
.handoff = cdiv_clk_handoff,
.set_rate = cdiv_clk_set_rate,
.get_rate = cdiv_clk_get_rate,
.list_rate = cdiv_clk_list_rate,
.round_rate = cdiv_clk_round_rate,
.is_local = local_clk_is_local,
};