blob: 1f60c6555bd08f9c491147cc0f832f90bd9cd4b2 [file] [log] [blame]
/*
* drivers/cpufreq/cpufreq_ondemand.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
* (c) 2013 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/cpufreq.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/kernel_stat.h>
#include <linux/mutex.h>
#include <linux/hrtimer.h>
#include <linux/tick.h>
#include <linux/ktime.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/slab.h>
/*
* dbs is used in this file as a shortform for demandbased switching
* It helps to keep variable names smaller, simpler
*/
#define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (100000)
#define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
#define MICRO_FREQUENCY_UP_THRESHOLD (95)
#define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
#define MIN_FREQUENCY_UP_THRESHOLD (11)
#define MAX_FREQUENCY_UP_THRESHOLD (100)
#define MIN_FREQUENCY_DOWN_DIFFERENTIAL (1)
/*
* The polling frequency of this governor depends on the capability of
* the processor. Default polling frequency is 1000 times the transition
* latency of the processor. The governor will work on any processor with
* transition latency <= 10mS, using appropriate sampling
* rate.
* For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
* this governor will not work.
* All times here are in uS.
*/
#define MIN_SAMPLING_RATE_RATIO (2)
static unsigned int min_sampling_rate;
#define LATENCY_MULTIPLIER (1000)
#define MIN_LATENCY_MULTIPLIER (100)
#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
#define POWERSAVE_BIAS_MAXLEVEL (1000)
#define POWERSAVE_BIAS_MINLEVEL (-1000)
static void do_dbs_timer(struct work_struct *work);
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event);
#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
static
#endif
struct cpufreq_governor cpufreq_gov_ondemand = {
.name = "ondemand",
.governor = cpufreq_governor_dbs,
.max_transition_latency = TRANSITION_LATENCY_LIMIT,
.owner = THIS_MODULE,
};
/* Sampling types */
enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
struct cpu_dbs_info_s {
cputime64_t prev_cpu_idle;
cputime64_t prev_cpu_iowait;
cputime64_t prev_cpu_wall;
cputime64_t prev_cpu_nice;
struct cpufreq_policy *cur_policy;
struct delayed_work work;
struct cpufreq_frequency_table *freq_table;
unsigned int freq_lo;
unsigned int freq_lo_jiffies;
unsigned int freq_hi_jiffies;
unsigned int rate_mult;
unsigned int prev_load;
unsigned int max_load;
int cpu;
unsigned int sample_type:1;
/*
* percpu mutex that serializes governor limit change with
* do_dbs_timer invocation. We do not want do_dbs_timer to run
* when user is changing the governor or limits.
*/
struct mutex timer_mutex;
struct task_struct *sync_thread;
wait_queue_head_t sync_wq;
atomic_t src_sync_cpu;
atomic_t sync_enabled;
};
static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info);
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info);
static unsigned int dbs_enable; /* number of CPUs using this policy */
/*
* dbs_mutex protects dbs_enable and dbs_info during start/stop.
*/
static DEFINE_MUTEX(dbs_mutex);
static struct workqueue_struct *dbs_wq;
struct dbs_work_struct {
struct work_struct work;
unsigned int cpu;
};
static DEFINE_PER_CPU(struct dbs_work_struct, dbs_refresh_work);
static struct dbs_tuners {
unsigned int sampling_rate;
unsigned int up_threshold;
unsigned int up_threshold_multi_core;
unsigned int down_differential;
unsigned int down_differential_multi_core;
unsigned int optimal_freq;
unsigned int up_threshold_any_cpu_load;
unsigned int sync_freq;
unsigned int ignore_nice;
unsigned int sampling_down_factor;
int powersave_bias;
unsigned int io_is_busy;
} dbs_tuners_ins = {
.up_threshold_multi_core = DEF_FREQUENCY_UP_THRESHOLD,
.up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
.sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
.down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
.down_differential_multi_core = MICRO_FREQUENCY_DOWN_DIFFERENTIAL,
.up_threshold_any_cpu_load = DEF_FREQUENCY_UP_THRESHOLD,
.ignore_nice = 0,
.powersave_bias = 0,
.sync_freq = 0,
.optimal_freq = 0,
};
static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
{
u64 idle_time;
u64 cur_wall_time;
u64 busy_time;
cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
idle_time = cur_wall_time - busy_time;
if (wall)
*wall = jiffies_to_usecs(cur_wall_time);
return jiffies_to_usecs(idle_time);
}
static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
{
u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
if (idle_time == -1ULL)
return get_cpu_idle_time_jiffy(cpu, wall);
else
idle_time += get_cpu_iowait_time_us(cpu, wall);
return idle_time;
}
static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
{
u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
if (iowait_time == -1ULL)
return 0;
return iowait_time;
}
/*
* Find right freq to be set now with powersave_bias on.
* Returns the freq_hi to be used right now and will set freq_hi_jiffies,
* freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
*/
static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
unsigned int freq_next,
unsigned int relation)
{
unsigned int freq_req, freq_avg;
unsigned int freq_hi, freq_lo;
unsigned int index = 0;
unsigned int jiffies_total, jiffies_hi, jiffies_lo;
int freq_reduc;
struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
policy->cpu);
if (!dbs_info->freq_table) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_next;
}
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
relation, &index);
freq_req = dbs_info->freq_table[index].frequency;
freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
freq_avg = freq_req - freq_reduc;
/* Find freq bounds for freq_avg in freq_table */
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_H, &index);
freq_lo = dbs_info->freq_table[index].frequency;
index = 0;
cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
CPUFREQ_RELATION_L, &index);
freq_hi = dbs_info->freq_table[index].frequency;
/* Find out how long we have to be in hi and lo freqs */
if (freq_hi == freq_lo) {
dbs_info->freq_lo = 0;
dbs_info->freq_lo_jiffies = 0;
return freq_lo;
}
jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
jiffies_hi += ((freq_hi - freq_lo) / 2);
jiffies_hi /= (freq_hi - freq_lo);
jiffies_lo = jiffies_total - jiffies_hi;
dbs_info->freq_lo = freq_lo;
dbs_info->freq_lo_jiffies = jiffies_lo;
dbs_info->freq_hi_jiffies = jiffies_hi;
return freq_hi;
}
static int ondemand_powersave_bias_setspeed(struct cpufreq_policy *policy,
struct cpufreq_policy *altpolicy,
int level)
{
if (level == POWERSAVE_BIAS_MAXLEVEL) {
/* maximum powersave; set to lowest frequency */
__cpufreq_driver_target(policy,
(altpolicy) ? altpolicy->min : policy->min,
CPUFREQ_RELATION_L);
return 1;
} else if (level == POWERSAVE_BIAS_MINLEVEL) {
/* minimum powersave; set to highest frequency */
__cpufreq_driver_target(policy,
(altpolicy) ? altpolicy->max : policy->max,
CPUFREQ_RELATION_H);
return 1;
}
return 0;
}
static void ondemand_powersave_bias_init_cpu(int cpu)
{
struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
dbs_info->freq_lo = 0;
}
static void ondemand_powersave_bias_init(void)
{
int i;
for_each_online_cpu(i) {
ondemand_powersave_bias_init_cpu(i);
}
}
/************************** sysfs interface ************************/
static ssize_t show_sampling_rate_min(struct kobject *kobj,
struct attribute *attr, char *buf)
{
return sprintf(buf, "%u\n", min_sampling_rate);
}
define_one_global_ro(sampling_rate_min);
/* cpufreq_ondemand Governor Tunables */
#define show_one(file_name, object) \
static ssize_t show_##file_name \
(struct kobject *kobj, struct attribute *attr, char *buf) \
{ \
return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
}
show_one(sampling_rate, sampling_rate);
show_one(io_is_busy, io_is_busy);
show_one(up_threshold, up_threshold);
show_one(up_threshold_multi_core, up_threshold_multi_core);
show_one(down_differential, down_differential);
show_one(sampling_down_factor, sampling_down_factor);
show_one(ignore_nice_load, ignore_nice);
show_one(optimal_freq, optimal_freq);
show_one(up_threshold_any_cpu_load, up_threshold_any_cpu_load);
show_one(sync_freq, sync_freq);
static ssize_t show_powersave_bias
(struct kobject *kobj, struct attribute *attr, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", dbs_tuners_ins.powersave_bias);
}
/**
* update_sampling_rate - update sampling rate effective immediately if needed.
* @new_rate: new sampling rate
*
* If new rate is smaller than the old, simply updaing
* dbs_tuners_int.sampling_rate might not be appropriate. For example,
* if the original sampling_rate was 1 second and the requested new sampling
* rate is 10 ms because the user needs immediate reaction from ondemand
* governor, but not sure if higher frequency will be required or not,
* then, the governor may change the sampling rate too late; up to 1 second
* later. Thus, if we are reducing the sampling rate, we need to make the
* new value effective immediately.
*/
static void update_sampling_rate(unsigned int new_rate)
{
int cpu;
dbs_tuners_ins.sampling_rate = new_rate
= max(new_rate, min_sampling_rate);
get_online_cpus();
for_each_online_cpu(cpu) {
struct cpufreq_policy *policy;
struct cpu_dbs_info_s *dbs_info;
unsigned long next_sampling, appointed_at;
policy = cpufreq_cpu_get(cpu);
if (!policy)
continue;
dbs_info = &per_cpu(od_cpu_dbs_info, policy->cpu);
cpufreq_cpu_put(policy);
mutex_lock(&dbs_info->timer_mutex);
if (!delayed_work_pending(&dbs_info->work)) {
mutex_unlock(&dbs_info->timer_mutex);
continue;
}
next_sampling = jiffies + usecs_to_jiffies(new_rate);
appointed_at = dbs_info->work.timer.expires;
if (time_before(next_sampling, appointed_at)) {
mutex_unlock(&dbs_info->timer_mutex);
cancel_delayed_work_sync(&dbs_info->work);
mutex_lock(&dbs_info->timer_mutex);
queue_delayed_work_on(dbs_info->cpu, dbs_wq,
&dbs_info->work, usecs_to_jiffies(new_rate));
}
mutex_unlock(&dbs_info->timer_mutex);
}
put_online_cpus();
}
static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
update_sampling_rate(input);
return count;
}
static ssize_t store_sync_freq(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.sync_freq = input;
return count;
}
static ssize_t store_io_is_busy(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.io_is_busy = !!input;
return count;
}
static ssize_t store_optimal_freq(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
dbs_tuners_ins.optimal_freq = input;
return count;
}
static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.up_threshold = input;
return count;
}
static ssize_t store_up_threshold_multi_core(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.up_threshold_multi_core = input;
return count;
}
static ssize_t store_up_threshold_any_cpu_load(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
input < MIN_FREQUENCY_UP_THRESHOLD) {
return -EINVAL;
}
dbs_tuners_ins.up_threshold_any_cpu_load = input;
return count;
}
static ssize_t store_down_differential(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input >= dbs_tuners_ins.up_threshold ||
input < MIN_FREQUENCY_DOWN_DIFFERENTIAL) {
return -EINVAL;
}
dbs_tuners_ins.down_differential = input;
return count;
}
static ssize_t store_sampling_down_factor(struct kobject *a,
struct attribute *b, const char *buf, size_t count)
{
unsigned int input, j;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
dbs_tuners_ins.sampling_down_factor = input;
/* Reset down sampling multiplier in case it was active */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(od_cpu_dbs_info, j);
dbs_info->rate_mult = 1;
}
return count;
}
static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
unsigned int input;
int ret;
unsigned int j;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
return count;
}
dbs_tuners_ins.ignore_nice = input;
/* we need to re-evaluate prev_cpu_idle */
for_each_online_cpu(j) {
struct cpu_dbs_info_s *dbs_info;
dbs_info = &per_cpu(od_cpu_dbs_info, j);
dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice)
dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
return count;
}
static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
const char *buf, size_t count)
{
int input = 0;
int bypass = 0;
int ret, cpu, reenable_timer, j;
struct cpu_dbs_info_s *dbs_info;
struct cpumask cpus_timer_done;
cpumask_clear(&cpus_timer_done);
ret = sscanf(buf, "%d", &input);
if (ret != 1)
return -EINVAL;
if (input >= POWERSAVE_BIAS_MAXLEVEL) {
input = POWERSAVE_BIAS_MAXLEVEL;
bypass = 1;
} else if (input <= POWERSAVE_BIAS_MINLEVEL) {
input = POWERSAVE_BIAS_MINLEVEL;
bypass = 1;
}
if (input == dbs_tuners_ins.powersave_bias) {
/* no change */
return count;
}
reenable_timer = ((dbs_tuners_ins.powersave_bias ==
POWERSAVE_BIAS_MAXLEVEL) ||
(dbs_tuners_ins.powersave_bias ==
POWERSAVE_BIAS_MINLEVEL));
dbs_tuners_ins.powersave_bias = input;
mutex_lock(&dbs_mutex);
get_online_cpus();
if (!bypass) {
if (reenable_timer) {
/* reinstate dbs timer */
for_each_online_cpu(cpu) {
if (lock_policy_rwsem_write(cpu) < 0)
continue;
dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
for_each_cpu(j, &cpus_timer_done) {
if (!dbs_info->cur_policy) {
pr_err("Dbs policy is NULL\n");
goto skip_this_cpu;
}
if (cpumask_test_cpu(j, dbs_info->
cur_policy->cpus))
goto skip_this_cpu;
}
cpumask_set_cpu(cpu, &cpus_timer_done);
if (dbs_info->cur_policy) {
/* restart dbs timer */
dbs_timer_init(dbs_info);
/* Enable frequency synchronization
* of CPUs */
atomic_set(&dbs_info->sync_enabled, 1);
}
skip_this_cpu:
unlock_policy_rwsem_write(cpu);
}
}
ondemand_powersave_bias_init();
} else {
/* running at maximum or minimum frequencies; cancel
dbs timer as periodic load sampling is not necessary */
for_each_online_cpu(cpu) {
if (lock_policy_rwsem_write(cpu) < 0)
continue;
dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
for_each_cpu(j, &cpus_timer_done) {
if (!dbs_info->cur_policy) {
pr_err("Dbs policy is NULL\n");
goto skip_this_cpu_bypass;
}
if (cpumask_test_cpu(j, dbs_info->
cur_policy->cpus))
goto skip_this_cpu_bypass;
}
cpumask_set_cpu(cpu, &cpus_timer_done);
if (dbs_info->cur_policy) {
/* cpu using ondemand, cancel dbs timer */
dbs_timer_exit(dbs_info);
/* Disable frequency synchronization of
* CPUs to avoid re-queueing of work from
* sync_thread */
atomic_set(&dbs_info->sync_enabled, 0);
mutex_lock(&dbs_info->timer_mutex);
ondemand_powersave_bias_setspeed(
dbs_info->cur_policy,
NULL,
input);
mutex_unlock(&dbs_info->timer_mutex);
}
skip_this_cpu_bypass:
unlock_policy_rwsem_write(cpu);
}
}
put_online_cpus();
mutex_unlock(&dbs_mutex);
return count;
}
define_one_global_rw(sampling_rate);
define_one_global_rw(io_is_busy);
define_one_global_rw(up_threshold);
define_one_global_rw(down_differential);
define_one_global_rw(sampling_down_factor);
define_one_global_rw(ignore_nice_load);
define_one_global_rw(powersave_bias);
define_one_global_rw(up_threshold_multi_core);
define_one_global_rw(optimal_freq);
define_one_global_rw(up_threshold_any_cpu_load);
define_one_global_rw(sync_freq);
static struct attribute *dbs_attributes[] = {
&sampling_rate_min.attr,
&sampling_rate.attr,
&up_threshold.attr,
&down_differential.attr,
&sampling_down_factor.attr,
&ignore_nice_load.attr,
&powersave_bias.attr,
&io_is_busy.attr,
&up_threshold_multi_core.attr,
&optimal_freq.attr,
&up_threshold_any_cpu_load.attr,
&sync_freq.attr,
NULL
};
static struct attribute_group dbs_attr_group = {
.attrs = dbs_attributes,
.name = "ondemand",
};
/************************** sysfs end ************************/
static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
{
if (dbs_tuners_ins.powersave_bias)
freq = powersave_bias_target(p, freq, CPUFREQ_RELATION_H);
else if (p->cur == p->max)
return;
__cpufreq_driver_target(p, freq, dbs_tuners_ins.powersave_bias ?
CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
}
static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
{
/* Extrapolated load of this CPU */
unsigned int load_at_max_freq = 0;
unsigned int max_load_freq;
/* Current load across this CPU */
unsigned int cur_load = 0;
unsigned int max_load_other_cpu = 0;
struct cpufreq_policy *policy;
unsigned int j;
this_dbs_info->freq_lo = 0;
policy = this_dbs_info->cur_policy;
/*
* Every sampling_rate, we check, if current idle time is less
* than 20% (default), then we try to increase frequency
* Every sampling_rate, we look for a the lowest
* frequency which can sustain the load while keeping idle time over
* 30%. If such a frequency exist, we try to decrease to this frequency.
*
* Any frequency increase takes it to the maximum frequency.
* Frequency reduction happens at minimum steps of
* 5% (default) of current frequency
*/
/* Get Absolute Load - in terms of freq */
max_load_freq = 0;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
unsigned int idle_time, wall_time, iowait_time;
unsigned int load_freq;
int freq_avg;
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
wall_time = (unsigned int)
(cur_wall_time - j_dbs_info->prev_cpu_wall);
j_dbs_info->prev_cpu_wall = cur_wall_time;
idle_time = (unsigned int)
(cur_idle_time - j_dbs_info->prev_cpu_idle);
j_dbs_info->prev_cpu_idle = cur_idle_time;
iowait_time = (unsigned int)
(cur_iowait_time - j_dbs_info->prev_cpu_iowait);
j_dbs_info->prev_cpu_iowait = cur_iowait_time;
if (dbs_tuners_ins.ignore_nice) {
u64 cur_nice;
unsigned long cur_nice_jiffies;
cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE] -
j_dbs_info->prev_cpu_nice;
/*
* Assumption: nice time between sampling periods will
* be less than 2^32 jiffies for 32 bit sys
*/
cur_nice_jiffies = (unsigned long)
cputime64_to_jiffies64(cur_nice);
j_dbs_info->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
idle_time += jiffies_to_usecs(cur_nice_jiffies);
}
/*
* For the purpose of ondemand, waiting for disk IO is an
* indication that you're performance critical, and not that
* the system is actually idle. So subtract the iowait time
* from the cpu idle time.
*/
if (dbs_tuners_ins.io_is_busy && idle_time >= iowait_time)
idle_time -= iowait_time;
if (unlikely(!wall_time || wall_time < idle_time))
continue;
cur_load = 100 * (wall_time - idle_time) / wall_time;
j_dbs_info->max_load = max(cur_load, j_dbs_info->prev_load);
j_dbs_info->prev_load = cur_load;
freq_avg = __cpufreq_driver_getavg(policy, j);
if (freq_avg <= 0)
freq_avg = policy->cur;
load_freq = cur_load * freq_avg;
if (load_freq > max_load_freq)
max_load_freq = load_freq;
}
for_each_online_cpu(j) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
if (j == policy->cpu)
continue;
if (max_load_other_cpu < j_dbs_info->max_load)
max_load_other_cpu = j_dbs_info->max_load;
/*
* The other cpu could be running at higher frequency
* but may not have completed it's sampling_down_factor.
* For that case consider other cpu is loaded so that
* frequency imbalance does not occur.
*/
if ((j_dbs_info->cur_policy != NULL)
&& (j_dbs_info->cur_policy->cur ==
j_dbs_info->cur_policy->max)) {
if (policy->cur >= dbs_tuners_ins.optimal_freq)
max_load_other_cpu =
dbs_tuners_ins.up_threshold_any_cpu_load;
}
}
/* calculate the scaled load across CPU */
load_at_max_freq = (cur_load * policy->cur)/policy->cpuinfo.max_freq;
cpufreq_notify_utilization(policy, load_at_max_freq);
/* Check for frequency increase */
if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
/* If switching to max speed, apply sampling_down_factor */
if (policy->cur < policy->max)
this_dbs_info->rate_mult =
dbs_tuners_ins.sampling_down_factor;
dbs_freq_increase(policy, policy->max);
return;
}
if (num_online_cpus() > 1) {
if (max_load_other_cpu >
dbs_tuners_ins.up_threshold_any_cpu_load) {
if (policy->cur < dbs_tuners_ins.sync_freq)
dbs_freq_increase(policy,
dbs_tuners_ins.sync_freq);
return;
}
if (max_load_freq > dbs_tuners_ins.up_threshold_multi_core *
policy->cur) {
if (policy->cur < dbs_tuners_ins.optimal_freq)
dbs_freq_increase(policy,
dbs_tuners_ins.optimal_freq);
return;
}
}
/* Check for frequency decrease */
/* if we cannot reduce the frequency anymore, break out early */
if (policy->cur == policy->min)
return;
/*
* The optimal frequency is the frequency that is the lowest that
* can support the current CPU usage without triggering the up
* policy. To be safe, we focus 10 points under the threshold.
*/
if (max_load_freq <
(dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
policy->cur) {
unsigned int freq_next;
freq_next = max_load_freq /
(dbs_tuners_ins.up_threshold -
dbs_tuners_ins.down_differential);
/* No longer fully busy, reset rate_mult */
this_dbs_info->rate_mult = 1;
if (freq_next < policy->min)
freq_next = policy->min;
if (num_online_cpus() > 1) {
if (max_load_other_cpu >
(dbs_tuners_ins.up_threshold_multi_core -
dbs_tuners_ins.down_differential) &&
freq_next < dbs_tuners_ins.sync_freq)
freq_next = dbs_tuners_ins.sync_freq;
if (max_load_freq >
((dbs_tuners_ins.up_threshold_multi_core -
dbs_tuners_ins.down_differential_multi_core) *
policy->cur) &&
freq_next < dbs_tuners_ins.optimal_freq)
freq_next = dbs_tuners_ins.optimal_freq;
}
if (!dbs_tuners_ins.powersave_bias) {
__cpufreq_driver_target(policy, freq_next,
CPUFREQ_RELATION_L);
} else {
int freq = powersave_bias_target(policy, freq_next,
CPUFREQ_RELATION_L);
__cpufreq_driver_target(policy, freq,
CPUFREQ_RELATION_L);
}
}
}
static void do_dbs_timer(struct work_struct *work)
{
struct cpu_dbs_info_s *dbs_info =
container_of(work, struct cpu_dbs_info_s, work.work);
unsigned int cpu = dbs_info->cpu;
int sample_type = dbs_info->sample_type;
int delay;
mutex_lock(&dbs_info->timer_mutex);
/* Common NORMAL_SAMPLE setup */
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
if (!dbs_tuners_ins.powersave_bias ||
sample_type == DBS_NORMAL_SAMPLE) {
dbs_check_cpu(dbs_info);
if (dbs_info->freq_lo) {
/* Setup timer for SUB_SAMPLE */
dbs_info->sample_type = DBS_SUB_SAMPLE;
delay = dbs_info->freq_hi_jiffies;
} else {
/* We want all CPUs to do sampling nearly on
* same jiffy
*/
delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate
* dbs_info->rate_mult);
if (num_online_cpus() > 1)
delay -= jiffies % delay;
}
} else {
__cpufreq_driver_target(dbs_info->cur_policy,
dbs_info->freq_lo, CPUFREQ_RELATION_H);
delay = dbs_info->freq_lo_jiffies;
}
queue_delayed_work_on(cpu, dbs_wq, &dbs_info->work, delay);
mutex_unlock(&dbs_info->timer_mutex);
}
static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
{
/* We want all CPUs to do sampling nearly on same jiffy */
int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
if (num_online_cpus() > 1)
delay -= jiffies % delay;
dbs_info->sample_type = DBS_NORMAL_SAMPLE;
INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
queue_delayed_work_on(dbs_info->cpu, dbs_wq, &dbs_info->work, delay);
}
static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
{
cancel_delayed_work_sync(&dbs_info->work);
}
/*
* Not all CPUs want IO time to be accounted as busy; this dependson how
* efficient idling at a higher frequency/voltage is.
* Pavel Machek says this is not so for various generations of AMD and old
* Intel systems.
* Mike Chan (androidlcom) calis this is also not true for ARM.
* Because of this, whitelist specific known (series) of CPUs by default, and
* leave all others up to the user.
*/
static int should_io_be_busy(void)
{
#if defined(CONFIG_X86)
/*
* For Intel, Core 2 (model 15) andl later have an efficient idle.
*/
if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
boot_cpu_data.x86 == 6 &&
boot_cpu_data.x86_model >= 15)
return 1;
#endif
return 0;
}
static void dbs_refresh_callback(struct work_struct *work)
{
struct cpufreq_policy *policy;
struct cpu_dbs_info_s *this_dbs_info;
struct dbs_work_struct *dbs_work;
unsigned int cpu;
dbs_work = container_of(work, struct dbs_work_struct, work);
cpu = dbs_work->cpu;
get_online_cpus();
if (lock_policy_rwsem_write(cpu) < 0)
goto bail_acq_sema_failed;
this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
policy = this_dbs_info->cur_policy;
if (!policy) {
/* CPU not using ondemand governor */
goto bail_incorrect_governor;
}
if (policy->cur < policy->max) {
/*
* Arch specific cpufreq driver may fail.
* Don't update governor frequency upon failure.
*/
if (__cpufreq_driver_target(policy, policy->max,
CPUFREQ_RELATION_L) >= 0)
policy->cur = policy->max;
this_dbs_info->prev_cpu_idle = get_cpu_idle_time(cpu,
&this_dbs_info->prev_cpu_wall);
}
bail_incorrect_governor:
unlock_policy_rwsem_write(cpu);
bail_acq_sema_failed:
put_online_cpus();
return;
}
static int dbs_migration_notify(struct notifier_block *nb,
unsigned long target_cpu, void *arg)
{
struct cpu_dbs_info_s *target_dbs_info =
&per_cpu(od_cpu_dbs_info, target_cpu);
atomic_set(&target_dbs_info->src_sync_cpu, (int)arg);
wake_up(&target_dbs_info->sync_wq);
return NOTIFY_OK;
}
static struct notifier_block dbs_migration_nb = {
.notifier_call = dbs_migration_notify,
};
static int sync_pending(struct cpu_dbs_info_s *this_dbs_info)
{
return atomic_read(&this_dbs_info->src_sync_cpu) >= 0;
}
static int dbs_sync_thread(void *data)
{
int src_cpu, cpu = (int)data;
unsigned int src_freq, src_max_load;
struct cpu_dbs_info_s *this_dbs_info, *src_dbs_info;
struct cpufreq_policy *policy;
int delay;
this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
while (1) {
wait_event(this_dbs_info->sync_wq,
sync_pending(this_dbs_info) ||
kthread_should_stop());
if (kthread_should_stop())
break;
get_online_cpus();
src_cpu = atomic_read(&this_dbs_info->src_sync_cpu);
src_dbs_info = &per_cpu(od_cpu_dbs_info, src_cpu);
if (src_dbs_info != NULL &&
src_dbs_info->cur_policy != NULL) {
src_freq = src_dbs_info->cur_policy->cur;
src_max_load = src_dbs_info->max_load;
} else {
src_freq = dbs_tuners_ins.sync_freq;
src_max_load = 0;
}
if (lock_policy_rwsem_write(cpu) < 0)
goto bail_acq_sema_failed;
if (!atomic_read(&this_dbs_info->sync_enabled)) {
atomic_set(&this_dbs_info->src_sync_cpu, -1);
put_online_cpus();
unlock_policy_rwsem_write(cpu);
continue;
}
policy = this_dbs_info->cur_policy;
if (!policy) {
/* CPU not using ondemand governor */
goto bail_incorrect_governor;
}
delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
if (policy->cur < src_freq) {
/* cancel the next ondemand sample */
cancel_delayed_work_sync(&this_dbs_info->work);
/*
* Arch specific cpufreq driver may fail.
* Don't update governor frequency upon failure.
*/
if (__cpufreq_driver_target(policy, src_freq,
CPUFREQ_RELATION_L) >= 0) {
policy->cur = src_freq;
if (src_max_load > this_dbs_info->max_load) {
this_dbs_info->max_load = src_max_load;
this_dbs_info->prev_load = src_max_load;
}
}
/* reschedule the next ondemand sample */
mutex_lock(&this_dbs_info->timer_mutex);
queue_delayed_work_on(cpu, dbs_wq,
&this_dbs_info->work, delay);
mutex_unlock(&this_dbs_info->timer_mutex);
}
bail_incorrect_governor:
unlock_policy_rwsem_write(cpu);
bail_acq_sema_failed:
put_online_cpus();
atomic_set(&this_dbs_info->src_sync_cpu, -1);
}
return 0;
}
static void dbs_input_event(struct input_handle *handle, unsigned int type,
unsigned int code, int value)
{
int i;
if ((dbs_tuners_ins.powersave_bias == POWERSAVE_BIAS_MAXLEVEL) ||
(dbs_tuners_ins.powersave_bias == POWERSAVE_BIAS_MINLEVEL)) {
/* nothing to do */
return;
}
for_each_online_cpu(i)
queue_work_on(i, dbs_wq, &per_cpu(dbs_refresh_work, i).work);
}
static int dbs_input_connect(struct input_handler *handler,
struct input_dev *dev, const struct input_device_id *id)
{
struct input_handle *handle;
int error;
handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
if (!handle)
return -ENOMEM;
handle->dev = dev;
handle->handler = handler;
handle->name = "cpufreq";
error = input_register_handle(handle);
if (error)
goto err2;
error = input_open_device(handle);
if (error)
goto err1;
return 0;
err1:
input_unregister_handle(handle);
err2:
kfree(handle);
return error;
}
static void dbs_input_disconnect(struct input_handle *handle)
{
input_close_device(handle);
input_unregister_handle(handle);
kfree(handle);
}
static const struct input_device_id dbs_ids[] = {
/* multi-touch touchscreen */
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.evbit = { BIT_MASK(EV_ABS) },
.absbit = { [BIT_WORD(ABS_MT_POSITION_X)] =
BIT_MASK(ABS_MT_POSITION_X) |
BIT_MASK(ABS_MT_POSITION_Y) },
},
/* touchpad */
{
.flags = INPUT_DEVICE_ID_MATCH_KEYBIT |
INPUT_DEVICE_ID_MATCH_ABSBIT,
.keybit = { [BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH) },
.absbit = { [BIT_WORD(ABS_X)] =
BIT_MASK(ABS_X) | BIT_MASK(ABS_Y) },
},
/* Keypad */
{
.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
.evbit = { BIT_MASK(EV_KEY) },
},
{ },
};
static struct input_handler dbs_input_handler = {
.event = dbs_input_event,
.connect = dbs_input_connect,
.disconnect = dbs_input_disconnect,
.name = "cpufreq_ond",
.id_table = dbs_ids,
};
static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
unsigned int event)
{
unsigned int cpu = policy->cpu;
struct cpu_dbs_info_s *this_dbs_info;
unsigned int j;
int rc;
this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
switch (event) {
case CPUFREQ_GOV_START:
if ((!cpu_online(cpu)) || (!policy->cur))
return -EINVAL;
mutex_lock(&dbs_mutex);
dbs_enable++;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
j_dbs_info->cur_policy = policy;
j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
&j_dbs_info->prev_cpu_wall);
if (dbs_tuners_ins.ignore_nice)
j_dbs_info->prev_cpu_nice =
kcpustat_cpu(j).cpustat[CPUTIME_NICE];
set_cpus_allowed(j_dbs_info->sync_thread,
*cpumask_of(j));
if (!dbs_tuners_ins.powersave_bias)
atomic_set(&j_dbs_info->sync_enabled, 1);
}
this_dbs_info->cpu = cpu;
this_dbs_info->rate_mult = 1;
ondemand_powersave_bias_init_cpu(cpu);
/*
* Start the timerschedule work, when this governor
* is used for first time
*/
if (dbs_enable == 1) {
unsigned int latency;
rc = sysfs_create_group(cpufreq_global_kobject,
&dbs_attr_group);
if (rc) {
mutex_unlock(&dbs_mutex);
return rc;
}
/* policy latency is in nS. Convert it to uS first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
min_sampling_rate = max(min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
dbs_tuners_ins.sampling_rate =
max(min_sampling_rate,
latency * LATENCY_MULTIPLIER);
dbs_tuners_ins.io_is_busy = should_io_be_busy();
if (dbs_tuners_ins.optimal_freq == 0)
dbs_tuners_ins.optimal_freq = policy->min;
if (dbs_tuners_ins.sync_freq == 0)
dbs_tuners_ins.sync_freq = policy->min;
atomic_notifier_chain_register(&migration_notifier_head,
&dbs_migration_nb);
}
if (!cpu)
rc = input_register_handler(&dbs_input_handler);
mutex_unlock(&dbs_mutex);
if (!ondemand_powersave_bias_setspeed(
this_dbs_info->cur_policy,
NULL,
dbs_tuners_ins.powersave_bias))
dbs_timer_init(this_dbs_info);
break;
case CPUFREQ_GOV_STOP:
dbs_timer_exit(this_dbs_info);
mutex_lock(&dbs_mutex);
dbs_enable--;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info_s *j_dbs_info;
j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
atomic_set(&j_dbs_info->sync_enabled, 0);
}
/* If device is being removed, policy is no longer
* valid. */
this_dbs_info->cur_policy = NULL;
if (!cpu)
input_unregister_handler(&dbs_input_handler);
if (!dbs_enable) {
sysfs_remove_group(cpufreq_global_kobject,
&dbs_attr_group);
atomic_notifier_chain_unregister(
&migration_notifier_head,
&dbs_migration_nb);
}
mutex_unlock(&dbs_mutex);
break;
case CPUFREQ_GOV_LIMITS:
mutex_lock(&this_dbs_info->timer_mutex);
if (policy->max < this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->max, CPUFREQ_RELATION_H);
else if (policy->min > this_dbs_info->cur_policy->cur)
__cpufreq_driver_target(this_dbs_info->cur_policy,
policy->min, CPUFREQ_RELATION_L);
else if (dbs_tuners_ins.powersave_bias != 0)
ondemand_powersave_bias_setspeed(
this_dbs_info->cur_policy,
policy,
dbs_tuners_ins.powersave_bias);
mutex_unlock(&this_dbs_info->timer_mutex);
break;
}
return 0;
}
static int __init cpufreq_gov_dbs_init(void)
{
u64 idle_time;
unsigned int i;
int cpu = get_cpu();
idle_time = get_cpu_idle_time_us(cpu, NULL);
put_cpu();
if (idle_time != -1ULL) {
/* Idle micro accounting is supported. Use finer thresholds */
dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
dbs_tuners_ins.down_differential =
MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
/*
* In nohz/micro accounting case we set the minimum frequency
* not depending on HZ, but fixed (very low). The deferred
* timer might skip some samples if idle/sleeping as needed.
*/
min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
} else {
/* For correct statistics, we need 10 ticks for each measure */
min_sampling_rate =
MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
}
dbs_wq = alloc_workqueue("ondemand_dbs_wq", WQ_HIGHPRI, 0);
if (!dbs_wq) {
printk(KERN_ERR "Failed to create ondemand_dbs_wq workqueue\n");
return -EFAULT;
}
for_each_possible_cpu(i) {
struct cpu_dbs_info_s *this_dbs_info =
&per_cpu(od_cpu_dbs_info, i);
struct dbs_work_struct *dbs_work =
&per_cpu(dbs_refresh_work, i);
mutex_init(&this_dbs_info->timer_mutex);
INIT_WORK(&dbs_work->work, dbs_refresh_callback);
dbs_work->cpu = i;
atomic_set(&this_dbs_info->src_sync_cpu, -1);
init_waitqueue_head(&this_dbs_info->sync_wq);
this_dbs_info->sync_thread = kthread_run(dbs_sync_thread,
(void *)i,
"dbs_sync/%d", i);
}
return cpufreq_register_governor(&cpufreq_gov_ondemand);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
unsigned int i;
cpufreq_unregister_governor(&cpufreq_gov_ondemand);
for_each_possible_cpu(i) {
struct cpu_dbs_info_s *this_dbs_info =
&per_cpu(od_cpu_dbs_info, i);
mutex_destroy(&this_dbs_info->timer_mutex);
kthread_stop(this_dbs_info->sync_thread);
}
destroy_workqueue(dbs_wq);
}
MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);