| /* |
| * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/module.h> |
| #include <linux/clk.h> |
| #include <linux/err.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/platform_device.h> |
| #include <linux/wakelock.h> |
| #include <linux/workqueue.h> |
| #include <linux/regulator/driver.h> |
| |
| #include <mach/rpm.h> |
| #include <mach/rpm-regulator.h> |
| #include <mach/rpm-regulator-smd.h> |
| #include <mach/socinfo.h> |
| |
| #include "rpm_resources.h" |
| #include "rpm-regulator-private.h" |
| |
| /* Debug Definitions */ |
| |
| enum { |
| MSM_RPM_VREG_DEBUG_REQUEST = BIT(0), |
| MSM_RPM_VREG_DEBUG_VOTE = BIT(1), |
| MSM_RPM_VREG_DEBUG_DUPLICATE = BIT(2), |
| MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG = BIT(3), |
| }; |
| |
| static int msm_rpm_vreg_debug_mask; |
| module_param_named( |
| debug_mask, msm_rpm_vreg_debug_mask, int, S_IRUSR | S_IWUSR |
| ); |
| |
| /* Used for access via the rpm_regulator_* API. */ |
| struct rpm_regulator { |
| int vreg_id; |
| enum rpm_vreg_voter voter; |
| int sleep_also; |
| int min_uV; |
| int max_uV; |
| }; |
| |
| struct vreg_config *(*get_config[])(void) = { |
| [RPM_VREG_VERSION_8660] = get_config_8660, |
| [RPM_VREG_VERSION_8960] = get_config_8960, |
| [RPM_VREG_VERSION_9615] = get_config_9615, |
| [RPM_VREG_VERSION_8930] = get_config_8930, |
| [RPM_VREG_VERSION_8930_PM8917] = get_config_8930_pm8917, |
| [RPM_VREG_VERSION_8960_PM8917] = get_config_8960_pm8917, |
| }; |
| |
| static struct rpm_regulator_consumer_mapping *consumer_map; |
| static int consumer_map_len; |
| |
| #define SET_PART(_vreg, _part, _val) \ |
| _vreg->req[_vreg->part->_part.word].value \ |
| = (_vreg->req[_vreg->part->_part.word].value \ |
| & ~_vreg->part->_part.mask) \ |
| | (((_val) << _vreg->part->_part.shift) \ |
| & _vreg->part->_part.mask) |
| |
| #define GET_PART(_vreg, _part) \ |
| ((_vreg->req[_vreg->part->_part.word].value & _vreg->part->_part.mask) \ |
| >> _vreg->part->_part.shift) |
| |
| #define GET_PART_PREV_ACT(_vreg, _part) \ |
| ((_vreg->prev_active_req[_vreg->part->_part.word].value \ |
| & _vreg->part->_part.mask) \ |
| >> _vreg->part->_part.shift) |
| |
| #define USES_PART(_vreg, _part) (_vreg->part->_part.mask) |
| |
| #define vreg_err(vreg, fmt, ...) \ |
| pr_err("%s: " fmt, vreg->rdesc.name, ##__VA_ARGS__) |
| |
| #define RPM_VREG_PIN_CTRL_EN0 0x01 |
| #define RPM_VREG_PIN_CTRL_EN1 0x02 |
| #define RPM_VREG_PIN_CTRL_EN2 0x04 |
| #define RPM_VREG_PIN_CTRL_EN3 0x08 |
| #define RPM_VREG_PIN_CTRL_ALL 0x0F |
| |
| static const char *label_freq[] = { |
| [RPM_VREG_FREQ_NONE] = " N/A", |
| [RPM_VREG_FREQ_19p20] = "19.2", |
| [RPM_VREG_FREQ_9p60] = "9.60", |
| [RPM_VREG_FREQ_6p40] = "6.40", |
| [RPM_VREG_FREQ_4p80] = "4.80", |
| [RPM_VREG_FREQ_3p84] = "3.84", |
| [RPM_VREG_FREQ_3p20] = "3.20", |
| [RPM_VREG_FREQ_2p74] = "2.74", |
| [RPM_VREG_FREQ_2p40] = "2.40", |
| [RPM_VREG_FREQ_2p13] = "2.13", |
| [RPM_VREG_FREQ_1p92] = "1.92", |
| [RPM_VREG_FREQ_1p75] = "1.75", |
| [RPM_VREG_FREQ_1p60] = "1.60", |
| [RPM_VREG_FREQ_1p48] = "1.48", |
| [RPM_VREG_FREQ_1p37] = "1.37", |
| [RPM_VREG_FREQ_1p28] = "1.28", |
| [RPM_VREG_FREQ_1p20] = "1.20", |
| }; |
| |
| static const char *label_corner[] = { |
| [RPM_VREG_CORNER_NONE] = "NONE", |
| [RPM_VREG_CORNER_LOW] = "LOW", |
| [RPM_VREG_CORNER_NOMINAL] = "NOM", |
| [RPM_VREG_CORNER_HIGH] = "HIGH", |
| }; |
| |
| /* |
| * This is used when voting for LPM or HPM by subtracting or adding to the |
| * hpm_min_load of a regulator. It has units of uA. |
| */ |
| #define LOAD_THRESHOLD_STEP 1000 |
| |
| /* rpm_version keeps track of the version for the currently running driver. */ |
| enum rpm_vreg_version rpm_version = -1; |
| |
| /* config holds all configuration data of the currently running driver. */ |
| static struct vreg_config *config; |
| |
| /* These regulator ID values are specified in the board file. */ |
| static int vreg_id_vdd_mem, vreg_id_vdd_dig; |
| |
| static inline int vreg_id_is_vdd_mem_or_dig(int id) |
| { |
| return id == vreg_id_vdd_mem || id == vreg_id_vdd_dig; |
| } |
| |
| #define DEBUG_PRINT_BUFFER_SIZE 512 |
| |
| static void rpm_regulator_req(struct vreg *vreg, int set) |
| { |
| int uV, mV, fm, pm, pc, pf, pd, freq, state, i; |
| const char *pf_label = "", *fm_label = "", *pc_total = ""; |
| const char *pc_en[4] = {"", "", "", ""}; |
| const char *pm_label = "", *freq_label = "", *corner_label = ""; |
| char buf[DEBUG_PRINT_BUFFER_SIZE]; |
| size_t buflen = DEBUG_PRINT_BUFFER_SIZE; |
| int pos = 0; |
| |
| /* Suppress VDD_MEM and VDD_DIG printing. */ |
| if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG) |
| && vreg_id_is_vdd_mem_or_dig(vreg->id)) |
| return; |
| |
| uV = GET_PART(vreg, uV); |
| mV = GET_PART(vreg, mV); |
| if (vreg->type == RPM_REGULATOR_TYPE_NCP) { |
| uV = -uV; |
| mV = -mV; |
| } |
| |
| fm = GET_PART(vreg, fm); |
| pm = GET_PART(vreg, pm); |
| pc = GET_PART(vreg, pc); |
| pf = GET_PART(vreg, pf); |
| pd = GET_PART(vreg, pd); |
| freq = GET_PART(vreg, freq); |
| state = GET_PART(vreg, enable_state); |
| |
| if (pf >= 0 && pf < config->label_pin_func_len) |
| pf_label = config->label_pin_func[pf]; |
| |
| if (fm >= 0 && fm < config->label_force_mode_len) |
| fm_label = config->label_force_mode[fm]; |
| |
| if (pm >= 0 && pm < config->label_power_mode_len) |
| pm_label = config->label_power_mode[pm]; |
| |
| if (freq >= 0 && freq < ARRAY_SIZE(label_freq)) |
| freq_label = label_freq[freq]; |
| |
| for (i = 0; i < config->label_pin_ctrl_len; i++) |
| if (pc & (1 << i)) |
| pc_en[i] = config->label_pin_ctrl[i]; |
| |
| if (pc == RPM_VREG_PIN_CTRL_NONE) |
| pc_total = " none"; |
| |
| pos += scnprintf(buf + pos, buflen - pos, "%s%s: ", |
| KERN_INFO, __func__); |
| |
| pos += scnprintf(buf + pos, buflen - pos, "%s %-9s: s=%c", |
| (set == MSM_RPM_CTX_SET_0 ? "sending " : "buffered"), |
| vreg->rdesc.name, |
| (set == MSM_RPM_CTX_SET_0 ? 'A' : 'S')); |
| |
| if (USES_PART(vreg, uV) && vreg->type != RPM_REGULATOR_TYPE_CORNER) |
| pos += scnprintf(buf + pos, buflen - pos, ", v=%7d uV", uV); |
| if (USES_PART(vreg, mV)) |
| pos += scnprintf(buf + pos, buflen - pos, ", v=%4d mV", mV); |
| if (USES_PART(vreg, enable_state)) |
| pos += scnprintf(buf + pos, buflen - pos, ", state=%s (%d)", |
| (state == 1 ? "on" : "off"), state); |
| if (USES_PART(vreg, ip)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", ip=%4d mA", GET_PART(vreg, ip)); |
| if (USES_PART(vreg, fm)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", fm=%s (%d)", fm_label, fm); |
| if (USES_PART(vreg, pc)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", pc=%s%s%s%s%s (%X)", pc_en[0], pc_en[1], |
| pc_en[2], pc_en[3], pc_total, pc); |
| if (USES_PART(vreg, pf)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", pf=%s (%d)", pf_label, pf); |
| if (USES_PART(vreg, pd)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", pd=%s (%d)", (pd == 1 ? "Y" : "N"), pd); |
| if (USES_PART(vreg, ia)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", ia=%4d mA", GET_PART(vreg, ia)); |
| if (USES_PART(vreg, freq)) { |
| if (vreg->type == RPM_REGULATOR_TYPE_NCP) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", freq=%2d", freq); |
| else |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", freq=%s MHz (%2d)", freq_label, freq); |
| } |
| if (USES_PART(vreg, pm)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", pm=%s (%d)", pm_label, pm); |
| if (USES_PART(vreg, freq_clk_src)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", clk_src=%d", GET_PART(vreg, freq_clk_src)); |
| if (USES_PART(vreg, comp_mode)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", comp=%d", GET_PART(vreg, comp_mode)); |
| if (USES_PART(vreg, hpm)) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", hpm=%d", GET_PART(vreg, hpm)); |
| if (USES_PART(vreg, uV) && vreg->type == RPM_REGULATOR_TYPE_CORNER) { |
| if (uV >= 0 && uV < (ARRAY_SIZE(label_corner) - 1)) |
| corner_label = label_corner[uV+1]; |
| pos += scnprintf(buf + pos, buflen - pos, ", corner=%s (%d)", |
| corner_label, uV); |
| } |
| |
| pos += scnprintf(buf + pos, buflen - pos, "; req[0]={%d, 0x%08X}", |
| vreg->req[0].id, vreg->req[0].value); |
| if (vreg->part->request_len > 1) |
| pos += scnprintf(buf + pos, buflen - pos, |
| ", req[1]={%d, 0x%08X}", vreg->req[1].id, |
| vreg->req[1].value); |
| |
| pos += scnprintf(buf + pos, buflen - pos, "\n"); |
| printk(buf); |
| } |
| |
| static void rpm_regulator_vote(struct vreg *vreg, enum rpm_vreg_voter voter, |
| int set, int voter_uV, int aggregate_uV) |
| { |
| /* Suppress VDD_MEM and VDD_DIG printing. */ |
| if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG) |
| && vreg_id_is_vdd_mem_or_dig(vreg->id)) |
| return; |
| |
| pr_info("vote received %-9s: voter=%d, set=%c, v_voter=%7d uV, " |
| "v_aggregate=%7d uV\n", vreg->rdesc.name, voter, |
| (set == 0 ? 'A' : 'S'), voter_uV, aggregate_uV); |
| } |
| |
| static void rpm_regulator_duplicate(struct vreg *vreg, int set, int cnt) |
| { |
| /* Suppress VDD_MEM and VDD_DIG printing. */ |
| if ((msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_IGNORE_VDD_MEM_DIG) |
| && vreg_id_is_vdd_mem_or_dig(vreg->id)) |
| return; |
| |
| if (cnt == 2) |
| pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}, " |
| "req[1]={%d, 0x%08X}\n", vreg->rdesc.name, |
| (set == 0 ? 'A' : 'S'), |
| vreg->req[0].id, vreg->req[0].value, |
| vreg->req[1].id, vreg->req[1].value); |
| else if (cnt == 1) |
| pr_info("ignored request %-9s: set=%c; req[0]={%d, 0x%08X}\n", |
| vreg->rdesc.name, (set == 0 ? 'A' : 'S'), |
| vreg->req[0].id, vreg->req[0].value); |
| } |
| |
| static bool requires_tcxo_workaround; |
| static struct clk *tcxo_handle; |
| static struct wake_lock tcxo_wake_lock; |
| static DEFINE_MUTEX(tcxo_mutex); |
| static bool tcxo_is_enabled; |
| /* |
| * TCXO must be kept on for at least the duration of its warmup (4 ms); |
| * otherwise, it will stay on when hardware disabling is attempted. |
| */ |
| #define TCXO_WARMUP_TIME_MS 4 |
| |
| static void tcxo_get_handle(void) |
| { |
| if (!tcxo_handle) { |
| tcxo_handle = clk_get_sys("rpm-regulator", "vref_buff"); |
| if (IS_ERR(tcxo_handle)) |
| tcxo_handle = NULL; |
| } |
| } |
| |
| /* |
| * Perform best effort enable of CXO. Since the MSM clock drivers depend upon |
| * the rpm-regulator driver, any rpm-regulator devices that are configured with |
| * always_on == 1 will not be able to enable CXO during probe. This does not |
| * cause a problem though since CXO will be enabled by the boot loaders before |
| * Apps boots up. |
| */ |
| static bool tcxo_enable(void) |
| { |
| int rc; |
| |
| if (tcxo_handle && !tcxo_is_enabled) { |
| rc = clk_prepare_enable(tcxo_handle); |
| if (!rc) { |
| tcxo_is_enabled = true; |
| wake_lock(&tcxo_wake_lock); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static void tcxo_delayed_disable_work(struct work_struct *work) |
| { |
| mutex_lock(&tcxo_mutex); |
| |
| clk_disable_unprepare(tcxo_handle); |
| tcxo_is_enabled = false; |
| wake_unlock(&tcxo_wake_lock); |
| |
| mutex_unlock(&tcxo_mutex); |
| } |
| |
| static DECLARE_DELAYED_WORK(tcxo_disable_work, tcxo_delayed_disable_work); |
| |
| static void tcxo_delayed_disable(void) |
| { |
| /* |
| * The delay in jiffies has 1 added to it to ensure that at least |
| * one jiffy takes place before the work is enqueued. Without this, |
| * the work would be scheduled to run in the very next jiffy which could |
| * result in too little delay and TCXO being stuck on. |
| */ |
| if (tcxo_handle) |
| schedule_delayed_work(&tcxo_disable_work, |
| msecs_to_jiffies(TCXO_WARMUP_TIME_MS) + 1); |
| } |
| |
| /* Mutex lock needed for sleep-selectable regulators. */ |
| static DEFINE_MUTEX(rpm_sleep_sel_lock); |
| |
| static int voltage_from_req(struct vreg *vreg) |
| { |
| int uV = 0; |
| |
| if (vreg->part->uV.mask) |
| uV = GET_PART(vreg, uV); |
| else if (vreg->part->mV.mask) |
| uV = MILLI_TO_MICRO(GET_PART(vreg, mV)); |
| else if (vreg->part->enable_state.mask) |
| uV = GET_PART(vreg, enable_state); |
| |
| return uV; |
| } |
| |
| static void voltage_to_req(int uV, struct vreg *vreg) |
| { |
| if (vreg->part->uV.mask) |
| SET_PART(vreg, uV, uV); |
| else if (vreg->part->mV.mask) |
| SET_PART(vreg, mV, MICRO_TO_MILLI(uV)); |
| else if (vreg->part->enable_state.mask) |
| SET_PART(vreg, enable_state, uV); |
| } |
| |
| static int vreg_send_request(struct vreg *vreg, enum rpm_vreg_voter voter, |
| int set, unsigned mask0, unsigned val0, |
| unsigned mask1, unsigned val1, unsigned cnt, |
| int update_voltage) |
| { |
| struct msm_rpm_iv_pair *prev_req; |
| int rc = 0, max_uV_vote = 0; |
| bool tcxo_enabled = false; |
| bool voltage_increased = false; |
| unsigned prev0, prev1; |
| int *min_uV_vote; |
| int i; |
| |
| if (set == MSM_RPM_CTX_SET_0) { |
| min_uV_vote = vreg->active_min_uV_vote; |
| prev_req = vreg->prev_active_req; |
| } else { |
| min_uV_vote = vreg->sleep_min_uV_vote; |
| prev_req = vreg->prev_sleep_req; |
| } |
| |
| prev0 = vreg->req[0].value; |
| vreg->req[0].value &= ~mask0; |
| vreg->req[0].value |= val0 & mask0; |
| |
| prev1 = vreg->req[1].value; |
| vreg->req[1].value &= ~mask1; |
| vreg->req[1].value |= val1 & mask1; |
| |
| /* Set the force mode field based on which set is being requested. */ |
| if (set == MSM_RPM_CTX_SET_0) |
| SET_PART(vreg, fm, vreg->pdata.force_mode); |
| else |
| SET_PART(vreg, fm, vreg->pdata.sleep_set_force_mode); |
| |
| if (update_voltage) |
| min_uV_vote[voter] = voltage_from_req(vreg); |
| |
| /* Find the highest voltage voted for and use it. */ |
| for (i = 0; i < RPM_VREG_VOTER_COUNT; i++) |
| max_uV_vote = max(max_uV_vote, min_uV_vote[i]); |
| voltage_to_req(max_uV_vote, vreg); |
| |
| if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_VOTE) |
| rpm_regulator_vote(vreg, voter, set, min_uV_vote[voter], |
| max_uV_vote); |
| |
| /* Ignore duplicate requests */ |
| if (vreg->req[0].value != prev_req[0].value || |
| vreg->req[1].value != prev_req[1].value) { |
| |
| /* Enable CXO clock if necessary for TCXO workaround. */ |
| if (requires_tcxo_workaround && vreg->requires_cxo |
| && (set == MSM_RPM_CTX_SET_0) |
| && (GET_PART(vreg, uV) > GET_PART_PREV_ACT(vreg, uV))) { |
| mutex_lock(&tcxo_mutex); |
| if (!tcxo_handle) |
| tcxo_get_handle(); |
| voltage_increased = true; |
| tcxo_enabled = tcxo_enable(); |
| } |
| |
| rc = msm_rpmrs_set(set, vreg->req, cnt); |
| if (rc) { |
| vreg->req[0].value = prev0; |
| vreg->req[1].value = prev1; |
| |
| vreg_err(vreg, "msm_rpmrs_set failed - " |
| "set=%s, id=%d, rc=%d\n", |
| (set == MSM_RPM_CTX_SET_0 ? "active" : "sleep"), |
| vreg->req[0].id, rc); |
| } else { |
| /* Only save if nonzero and active set. */ |
| if (max_uV_vote && (set == MSM_RPM_CTX_SET_0)) |
| vreg->save_uV = max_uV_vote; |
| if (msm_rpm_vreg_debug_mask |
| & MSM_RPM_VREG_DEBUG_REQUEST) |
| rpm_regulator_req(vreg, set); |
| prev_req[0].value = vreg->req[0].value; |
| prev_req[1].value = vreg->req[1].value; |
| } |
| |
| /* |
| * Schedule CXO clock to be disabled after TCXO warmup time if |
| * TCXO workaround is applicable for this regulator. |
| */ |
| if (voltage_increased) { |
| if (tcxo_enabled) |
| tcxo_delayed_disable(); |
| mutex_unlock(&tcxo_mutex); |
| } |
| } else if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE) { |
| rpm_regulator_duplicate(vreg, set, cnt); |
| } |
| |
| return rc; |
| } |
| |
| static int vreg_set_sleep_sel(struct vreg *vreg, enum rpm_vreg_voter voter, |
| int sleep, unsigned mask0, unsigned val0, |
| unsigned mask1, unsigned val1, unsigned cnt, |
| int update_voltage) |
| { |
| unsigned int s_mask[2] = {mask0, mask1}, s_val[2] = {val0, val1}; |
| int rc; |
| |
| if (voter < 0 || voter >= RPM_VREG_VOTER_COUNT) |
| return -EINVAL; |
| |
| mutex_lock(&rpm_sleep_sel_lock); |
| |
| /* |
| * Send sleep set request first so that subsequent set_mode, etc calls |
| * use the voltage from the active set. |
| */ |
| if (sleep) |
| rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP, |
| mask0, val0, mask1, val1, cnt, update_voltage); |
| else { |
| /* |
| * Vote for 0 V in the sleep set when active set-only is |
| * specified. This ensures that a disable vote will be issued |
| * at some point for the sleep set of the regulator. |
| */ |
| if (vreg->part->uV.mask) { |
| s_val[vreg->part->uV.word] = 0 << vreg->part->uV.shift; |
| s_mask[vreg->part->uV.word] = vreg->part->uV.mask; |
| } else if (vreg->part->mV.mask) { |
| s_val[vreg->part->mV.word] = 0 << vreg->part->mV.shift; |
| s_mask[vreg->part->mV.word] = vreg->part->mV.mask; |
| } else if (vreg->part->enable_state.mask) { |
| s_val[vreg->part->enable_state.word] |
| = 0 << vreg->part->enable_state.shift; |
| s_mask[vreg->part->enable_state.word] |
| = vreg->part->enable_state.mask; |
| } |
| |
| rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_SLEEP, |
| s_mask[0], s_val[0], s_mask[1], s_val[1], |
| cnt, update_voltage); |
| } |
| |
| rc = vreg_send_request(vreg, voter, MSM_RPM_CTX_SET_0, mask0, val0, |
| mask1, val1, cnt, update_voltage); |
| |
| mutex_unlock(&rpm_sleep_sel_lock); |
| |
| return rc; |
| } |
| |
| /** |
| * rpm_vreg_set_voltage - vote for a min_uV value of specified regualtor |
| * @vreg: ID for regulator |
| * @voter: ID for the voter |
| * @min_uV: minimum acceptable voltage (in uV) that is voted for |
| * @max_uV: maximum acceptable voltage (in uV) that is voted for |
| * @sleep_also: 0 for active set only, non-0 for active set and sleep set |
| * |
| * Returns 0 on success or errno. |
| * |
| * This function is used to vote for the voltage of a regulator without |
| * using the regulator framework. It is needed for consumers which wish to only |
| * vote for active set regulator voltage. |
| * |
| * If sleep_also == 0, then a sleep-set value of 0V will be voted for. |
| * |
| * This function may only be called for regulators which have the sleep flag |
| * specified in their private data. |
| * |
| * Consumers can vote to disable a regulator with this function by passing |
| * min_uV = 0 and max_uV = 0. |
| * |
| * Voltage switch type regulators may be controlled via rpm_vreg_set_voltage |
| * as well. For this type of regulator, max_uV > 0 is treated as an enable |
| * request and max_uV == 0 is treated as a disable request. |
| */ |
| int rpm_vreg_set_voltage(int vreg_id, enum rpm_vreg_voter voter, int min_uV, |
| int max_uV, int sleep_also) |
| { |
| unsigned int mask[2] = {0}, val[2] = {0}; |
| struct vreg_range *range; |
| struct vreg *vreg; |
| int uV = min_uV; |
| int lim_min_uV, lim_max_uV, i, rc; |
| |
| if (!config) { |
| pr_err("rpm-regulator driver has not probed yet.\n"); |
| return -ENODEV; |
| } |
| |
| if (vreg_id < config->vreg_id_min || vreg_id > config->vreg_id_max) { |
| pr_err("invalid regulator id=%d\n", vreg_id); |
| return -EINVAL; |
| } |
| |
| vreg = &config->vregs[vreg_id]; |
| |
| if (!vreg->pdata.sleep_selectable) { |
| vreg_err(vreg, "regulator is not marked sleep selectable\n"); |
| return -EINVAL; |
| } |
| |
| /* Allow min_uV == max_uV == 0 to represent a disable request. */ |
| if ((min_uV != 0 || max_uV != 0) |
| && (vreg->part->uV.mask || vreg->part->mV.mask)) { |
| /* |
| * Check if request voltage is outside of allowed range. The |
| * regulator core has already checked that constraint range |
| * is inside of the physically allowed range. |
| */ |
| lim_min_uV = vreg->pdata.init_data.constraints.min_uV; |
| lim_max_uV = vreg->pdata.init_data.constraints.max_uV; |
| |
| if (uV < lim_min_uV && max_uV >= lim_min_uV) |
| uV = lim_min_uV; |
| |
| if (uV < lim_min_uV || uV > lim_max_uV) { |
| vreg_err(vreg, "request v=[%d, %d] is outside allowed " |
| "v=[%d, %d]\n", min_uV, max_uV, lim_min_uV, |
| lim_max_uV); |
| return -EINVAL; |
| } |
| |
| range = &vreg->set_points->range[0]; |
| /* Find the range which uV is inside of. */ |
| for (i = vreg->set_points->count - 1; i > 0; i--) { |
| if (uV > vreg->set_points->range[i - 1].max_uV) { |
| range = &vreg->set_points->range[i]; |
| break; |
| } |
| } |
| |
| /* |
| * Force uV to be an allowed set point and apply a ceiling |
| * function to non-set point values. |
| */ |
| uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV; |
| uV = uV * range->step_uV + range->min_uV; |
| |
| if (uV > max_uV) { |
| vreg_err(vreg, |
| "request v=[%d, %d] cannot be met by any set point; " |
| "next set point: %d\n", |
| min_uV, max_uV, uV); |
| return -EINVAL; |
| } |
| } |
| |
| if (vreg->type == RPM_REGULATOR_TYPE_CORNER) { |
| /* |
| * Translate from enum values which work as inputs in the |
| * rpm_vreg_set_voltage function to the actual corner values |
| * sent to the RPM. |
| */ |
| if (uV > 0) |
| uV -= RPM_VREG_CORNER_NONE; |
| } |
| |
| if (vreg->part->uV.mask) { |
| val[vreg->part->uV.word] = uV << vreg->part->uV.shift; |
| mask[vreg->part->uV.word] = vreg->part->uV.mask; |
| } else if (vreg->part->mV.mask) { |
| val[vreg->part->mV.word] |
| = MICRO_TO_MILLI(uV) << vreg->part->mV.shift; |
| mask[vreg->part->mV.word] = vreg->part->mV.mask; |
| } else if (vreg->part->enable_state.mask) { |
| /* |
| * Translate max_uV > 0 into an enable request for regulator |
| * types which to not support voltage setting, e.g. voltage |
| * switches. |
| */ |
| val[vreg->part->enable_state.word] |
| = (max_uV > 0 ? 1 : 0) << vreg->part->enable_state.shift; |
| mask[vreg->part->enable_state.word] |
| = vreg->part->enable_state.mask; |
| } |
| |
| rc = vreg_set_sleep_sel(vreg, voter, sleep_also, mask[0], val[0], |
| mask[1], val[1], vreg->part->request_len, 1); |
| if (rc) |
| vreg_err(vreg, "vreg_set_sleep_sel failed, rc=%d\n", rc); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(rpm_vreg_set_voltage); |
| |
| /** |
| * rpm_vreg_set_frequency - sets the frequency of a switching regulator |
| * @vreg: ID for regulator |
| * @freq: enum corresponding to desired frequency |
| * |
| * Returns 0 on success or errno. |
| */ |
| int rpm_vreg_set_frequency(int vreg_id, enum rpm_vreg_freq freq) |
| { |
| unsigned int mask[2] = {0}, val[2] = {0}; |
| struct vreg *vreg; |
| int rc; |
| |
| if (!config) { |
| pr_err("rpm-regulator driver has not probed yet.\n"); |
| return -ENODEV; |
| } |
| |
| if (vreg_id < config->vreg_id_min || vreg_id > config->vreg_id_max) { |
| pr_err("invalid regulator id=%d\n", vreg_id); |
| return -EINVAL; |
| } |
| |
| vreg = &config->vregs[vreg_id]; |
| |
| if (freq < 0 || freq > RPM_VREG_FREQ_1p20) { |
| vreg_err(vreg, "invalid frequency=%d\n", freq); |
| return -EINVAL; |
| } |
| if (!vreg->pdata.sleep_selectable) { |
| vreg_err(vreg, "regulator is not marked sleep selectable\n"); |
| return -EINVAL; |
| } |
| if (!vreg->part->freq.mask) { |
| vreg_err(vreg, "frequency not supported\n"); |
| return -EINVAL; |
| } |
| |
| val[vreg->part->freq.word] = freq << vreg->part->freq.shift; |
| mask[vreg->part->freq.word] = vreg->part->freq.mask; |
| |
| rc = vreg_set_sleep_sel(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1, mask[0], |
| val[0], mask[1], val[1], vreg->part->request_len, 0); |
| if (rc) |
| vreg_err(vreg, "vreg_set_sleep_sel failed, rc=%d\n", rc); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(rpm_vreg_set_frequency); |
| |
| #define MAX_NAME_LEN 64 |
| /** |
| * rpm_regulator_get() - lookup and obtain a handle to an RPM regulator |
| * @dev: device for regulator consumer |
| * @supply: supply name |
| * |
| * Returns a struct rpm_regulator corresponding to the regulator producer, |
| * or ERR_PTR() containing errno. |
| * |
| * This function may only be called from nonatomic context. The mapping between |
| * <dev, supply> tuples and rpm_regulators struct pointers is specified via |
| * rpm-regulator platform data. |
| */ |
| struct rpm_regulator *rpm_regulator_get(struct device *dev, const char *supply) |
| { |
| struct rpm_regulator_consumer_mapping *mapping = NULL; |
| const char *devname = NULL; |
| struct rpm_regulator *regulator; |
| int i; |
| |
| if (!config) { |
| pr_err("rpm-regulator driver has not probed yet.\n"); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| if (consumer_map == NULL || consumer_map_len == 0) { |
| pr_err("No private consumer mapping has been specified.\n"); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| if (supply == NULL) { |
| pr_err("supply name must be specified\n"); |
| return ERR_PTR(-EINVAL); |
| } |
| |
| if (dev) |
| devname = dev_name(dev); |
| |
| for (i = 0; i < consumer_map_len; i++) { |
| /* If the mapping has a device set up it must match */ |
| if (consumer_map[i].dev_name && |
| (!devname || strncmp(consumer_map[i].dev_name, devname, |
| MAX_NAME_LEN))) |
| continue; |
| |
| if (strncmp(consumer_map[i].supply, supply, MAX_NAME_LEN) |
| == 0) { |
| mapping = &consumer_map[i]; |
| break; |
| } |
| } |
| |
| if (mapping == NULL) { |
| pr_err("could not find mapping for dev=%s, supply=%s\n", |
| (devname ? devname : "(null)"), supply); |
| return ERR_PTR(-ENODEV); |
| } |
| |
| regulator = kzalloc(sizeof(struct rpm_regulator), GFP_KERNEL); |
| if (regulator == NULL) { |
| pr_err("could not allocate memory for regulator\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| regulator->vreg_id = mapping->vreg_id; |
| regulator->voter = mapping->voter; |
| regulator->sleep_also = mapping->sleep_also; |
| |
| return regulator; |
| } |
| EXPORT_SYMBOL_GPL(rpm_regulator_get); |
| |
| static int rpm_regulator_check_input(struct rpm_regulator *regulator) |
| { |
| int rc = 0; |
| |
| if (regulator == NULL) { |
| rc = -EINVAL; |
| pr_err("invalid (null) rpm_regulator pointer\n"); |
| } else if (IS_ERR(regulator)) { |
| rc = PTR_ERR(regulator); |
| pr_err("invalid rpm_regulator pointer, rc=%d\n", rc); |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * rpm_regulator_put() - free the RPM regulator handle |
| * @regulator: RPM regulator handle |
| * |
| * Parameter reaggregation does not take place when rpm_regulator_put is called. |
| * Therefore, regulator enable state and voltage must be configured |
| * appropriately before calling rpm_regulator_put. |
| * |
| * This function may be called from either atomic or nonatomic context. |
| */ |
| void rpm_regulator_put(struct rpm_regulator *regulator) |
| { |
| kfree(regulator); |
| } |
| EXPORT_SYMBOL_GPL(rpm_regulator_put); |
| |
| /** |
| * rpm_regulator_enable() - enable regulator output |
| * @regulator: RPM regulator handle |
| * |
| * Returns 0 on success or errno on failure. |
| * |
| * This function may be called from either atomic or nonatomic context. This |
| * function may only be called for regulators which have the sleep_selectable |
| * flag set in their configuration data. |
| * |
| * rpm_regulator_set_voltage must be called before rpm_regulator_enable because |
| * enabling is defined by the RPM interface to be requesting the desired |
| * non-zero regulator output voltage. |
| */ |
| int rpm_regulator_enable(struct rpm_regulator *regulator) |
| { |
| int rc = rpm_regulator_check_input(regulator); |
| struct vreg *vreg; |
| |
| if (rc) |
| return rc; |
| |
| if (regulator->vreg_id < config->vreg_id_min |
| || regulator->vreg_id > config->vreg_id_max) { |
| pr_err("invalid regulator id=%d\n", regulator->vreg_id); |
| return -EINVAL; |
| } |
| |
| vreg = &config->vregs[regulator->vreg_id]; |
| |
| /* |
| * Handle voltage switches which can be enabled without |
| * rpm_regulator_set_voltage ever being called. |
| */ |
| if (regulator->min_uV == 0 && regulator->max_uV == 0 |
| && vreg->part->uV.mask == 0 && vreg->part->mV.mask == 0) { |
| regulator->min_uV = 1; |
| regulator->max_uV = 1; |
| } |
| |
| if (regulator->min_uV == 0 && regulator->max_uV == 0) { |
| pr_err("Voltage must be set with rpm_regulator_set_voltage " |
| "before calling rpm_regulator_enable; vreg_id=%d, " |
| "voter=%d\n", regulator->vreg_id, regulator->voter); |
| return -EINVAL; |
| } |
| |
| rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter, |
| regulator->min_uV, regulator->max_uV, regulator->sleep_also); |
| |
| if (rc) |
| pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(rpm_regulator_enable); |
| |
| /** |
| * rpm_regulator_disable() - disable regulator output |
| * @regulator: RPM regulator handle |
| * |
| * Returns 0 on success or errno on failure. |
| * |
| * The enable state of the regulator is determined by aggregating the requests |
| * of all consumers. Therefore, it is possible that the regulator will remain |
| * enabled even after rpm_regulator_disable is called. |
| * |
| * This function may be called from either atomic or nonatomic context. This |
| * function may only be called for regulators which have the sleep_selectable |
| * flag set in their configuration data. |
| */ |
| int rpm_regulator_disable(struct rpm_regulator *regulator) |
| { |
| int rc = rpm_regulator_check_input(regulator); |
| |
| if (rc) |
| return rc; |
| |
| rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter, 0, 0, |
| regulator->sleep_also); |
| |
| if (rc) |
| pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(rpm_regulator_disable); |
| |
| /** |
| * rpm_regulator_set_voltage() - set regulator output voltage |
| * @regulator: RPM regulator handle |
| * @min_uV: minimum required voltage in uV |
| * @max_uV: maximum acceptable voltage in uV |
| * |
| * Sets a voltage regulator to the desired output voltage. This can be set |
| * while the regulator is disabled or enabled. If the regulator is disabled, |
| * then rpm_regulator_set_voltage will both enable the regulator and set it to |
| * output at the requested voltage. |
| * |
| * The min_uV to max_uV voltage range requested must intersect with the |
| * voltage constraint range configured for the regulator. |
| * |
| * Returns 0 on success or errno on failure. |
| * |
| * The final voltage value that is sent to the RPM is aggregated based upon the |
| * values requested by all consumers of the regulator. This corresponds to the |
| * maximum min_uV value. |
| * |
| * This function may be called from either atomic or nonatomic context. This |
| * function may only be called for regulators which have the sleep_selectable |
| * flag set in their configuration data. |
| */ |
| int rpm_regulator_set_voltage(struct rpm_regulator *regulator, int min_uV, |
| int max_uV) |
| { |
| int rc = rpm_regulator_check_input(regulator); |
| |
| if (rc) |
| return rc; |
| |
| rc = rpm_vreg_set_voltage(regulator->vreg_id, regulator->voter, min_uV, |
| max_uV, regulator->sleep_also); |
| |
| if (rc) { |
| pr_err("rpm_vreg_set_voltage failed, rc=%d\n", rc); |
| } else { |
| regulator->min_uV = min_uV; |
| regulator->max_uV = max_uV; |
| } |
| |
| return rc; |
| } |
| EXPORT_SYMBOL_GPL(rpm_regulator_set_voltage); |
| |
| static inline int vreg_hpm_min_uA(struct vreg *vreg) |
| { |
| return vreg->hpm_min_load; |
| } |
| |
| static inline int vreg_lpm_max_uA(struct vreg *vreg) |
| { |
| return vreg->hpm_min_load - LOAD_THRESHOLD_STEP; |
| } |
| |
| static inline unsigned saturate_peak_load(struct vreg *vreg, unsigned load_uA) |
| { |
| unsigned load_max |
| = MILLI_TO_MICRO(vreg->part->ip.mask >> vreg->part->ip.shift); |
| |
| return (load_uA > load_max ? load_max : load_uA); |
| } |
| |
| static inline unsigned saturate_avg_load(struct vreg *vreg, unsigned load_uA) |
| { |
| unsigned load_max |
| = MILLI_TO_MICRO(vreg->part->ia.mask >> vreg->part->ia.shift); |
| return (load_uA > load_max ? load_max : load_uA); |
| } |
| |
| /* Change vreg->req, but do not send it to the RPM. */ |
| static int vreg_store(struct vreg *vreg, unsigned mask0, unsigned val0, |
| unsigned mask1, unsigned val1) |
| { |
| if (vreg->pdata.sleep_selectable) |
| mutex_lock(&rpm_sleep_sel_lock); |
| |
| vreg->req[0].value &= ~mask0; |
| vreg->req[0].value |= val0 & mask0; |
| |
| vreg->req[1].value &= ~mask1; |
| vreg->req[1].value |= val1 & mask1; |
| |
| if (vreg->pdata.sleep_selectable) |
| mutex_unlock(&rpm_sleep_sel_lock); |
| |
| return 0; |
| } |
| |
| static int vreg_set(struct vreg *vreg, unsigned mask0, unsigned val0, |
| unsigned mask1, unsigned val1, unsigned cnt) |
| { |
| unsigned prev0 = 0, prev1 = 0; |
| bool tcxo_enabled = false; |
| bool voltage_increased = false; |
| int rc; |
| |
| /* |
| * Bypass the normal route for regulators that can be called to change |
| * just the active set values. |
| */ |
| if (vreg->pdata.sleep_selectable) |
| return vreg_set_sleep_sel(vreg, RPM_VREG_VOTER_REG_FRAMEWORK, 1, |
| mask0, val0, mask1, val1, cnt, 1); |
| |
| prev0 = vreg->req[0].value; |
| vreg->req[0].value &= ~mask0; |
| vreg->req[0].value |= val0 & mask0; |
| |
| prev1 = vreg->req[1].value; |
| vreg->req[1].value &= ~mask1; |
| vreg->req[1].value |= val1 & mask1; |
| |
| /* Ignore duplicate requests */ |
| if (vreg->req[0].value == vreg->prev_active_req[0].value && |
| vreg->req[1].value == vreg->prev_active_req[1].value) { |
| if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_DUPLICATE) |
| rpm_regulator_duplicate(vreg, MSM_RPM_CTX_SET_0, cnt); |
| return 0; |
| } |
| |
| /* Enable CXO clock if necessary for TCXO workaround. */ |
| if (requires_tcxo_workaround && vreg->requires_cxo |
| && (GET_PART(vreg, uV) > GET_PART_PREV_ACT(vreg, uV))) { |
| mutex_lock(&tcxo_mutex); |
| if (!tcxo_handle) |
| tcxo_get_handle(); |
| voltage_increased = true; |
| tcxo_enabled = tcxo_enable(); |
| } |
| |
| rc = msm_rpm_set(MSM_RPM_CTX_SET_0, vreg->req, cnt); |
| |
| if (rc) { |
| vreg->req[0].value = prev0; |
| vreg->req[1].value = prev1; |
| |
| vreg_err(vreg, "msm_rpm_set failed, set=active, id=%d, rc=%d\n", |
| vreg->req[0].id, rc); |
| } else { |
| if (msm_rpm_vreg_debug_mask & MSM_RPM_VREG_DEBUG_REQUEST) |
| rpm_regulator_req(vreg, MSM_RPM_CTX_SET_0); |
| vreg->prev_active_req[0].value = vreg->req[0].value; |
| vreg->prev_active_req[1].value = vreg->req[1].value; |
| } |
| |
| /* |
| * Schedule CXO clock to be disabled after TCXO warmup time if TCXO |
| * workaround is applicable for this regulator. |
| */ |
| if (voltage_increased) { |
| if (tcxo_enabled) |
| tcxo_delayed_disable(); |
| mutex_unlock(&tcxo_mutex); |
| } |
| |
| return rc; |
| } |
| |
| static int vreg_is_enabled(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| int enabled; |
| |
| mutex_lock(&vreg->pc_lock); |
| enabled = vreg->is_enabled; |
| mutex_unlock(&vreg->pc_lock); |
| |
| return enabled; |
| } |
| |
| static void set_enable(struct vreg *vreg, unsigned int *mask, unsigned int *val) |
| { |
| switch (vreg->type) { |
| case RPM_REGULATOR_TYPE_LDO: |
| case RPM_REGULATOR_TYPE_SMPS: |
| case RPM_REGULATOR_TYPE_CORNER: |
| /* Enable by setting a voltage. */ |
| if (vreg->part->uV.mask) { |
| val[vreg->part->uV.word] |
| |= vreg->save_uV << vreg->part->uV.shift; |
| mask[vreg->part->uV.word] |= vreg->part->uV.mask; |
| } else { |
| val[vreg->part->mV.word] |
| |= MICRO_TO_MILLI(vreg->save_uV) |
| << vreg->part->mV.shift; |
| mask[vreg->part->mV.word] |= vreg->part->mV.mask; |
| } |
| break; |
| case RPM_REGULATOR_TYPE_VS: |
| case RPM_REGULATOR_TYPE_NCP: |
| /* Enable by setting enable_state. */ |
| val[vreg->part->enable_state.word] |
| |= RPM_VREG_STATE_ON << vreg->part->enable_state.shift; |
| mask[vreg->part->enable_state.word] |
| |= vreg->part->enable_state.mask; |
| } |
| } |
| |
| static int rpm_vreg_enable(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| unsigned int mask[2] = {0}, val[2] = {0}; |
| int rc = 0; |
| |
| set_enable(vreg, mask, val); |
| |
| mutex_lock(&vreg->pc_lock); |
| |
| rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], |
| vreg->part->request_len); |
| if (!rc) |
| vreg->is_enabled = true; |
| |
| mutex_unlock(&vreg->pc_lock); |
| |
| if (rc) |
| vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); |
| |
| return rc; |
| } |
| |
| static void set_disable(struct vreg *vreg, unsigned int *mask, |
| unsigned int *val) |
| { |
| switch (vreg->type) { |
| case RPM_REGULATOR_TYPE_LDO: |
| case RPM_REGULATOR_TYPE_SMPS: |
| case RPM_REGULATOR_TYPE_CORNER: |
| /* Disable by setting a voltage of 0 uV. */ |
| if (vreg->part->uV.mask) { |
| val[vreg->part->uV.word] |= 0 << vreg->part->uV.shift; |
| mask[vreg->part->uV.word] |= vreg->part->uV.mask; |
| } else { |
| val[vreg->part->mV.word] |= 0 << vreg->part->mV.shift; |
| mask[vreg->part->mV.word] |= vreg->part->mV.mask; |
| } |
| break; |
| case RPM_REGULATOR_TYPE_VS: |
| case RPM_REGULATOR_TYPE_NCP: |
| /* Disable by setting enable_state. */ |
| val[vreg->part->enable_state.word] |
| |= RPM_VREG_STATE_OFF << vreg->part->enable_state.shift; |
| mask[vreg->part->enable_state.word] |
| |= vreg->part->enable_state.mask; |
| } |
| } |
| |
| static int rpm_vreg_disable(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| unsigned int mask[2] = {0}, val[2] = {0}; |
| int rc = 0; |
| |
| set_disable(vreg, mask, val); |
| |
| mutex_lock(&vreg->pc_lock); |
| |
| /* Only disable if pin control is not in use. */ |
| if (!vreg->is_enabled_pc) |
| rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], |
| vreg->part->request_len); |
| |
| if (!rc) |
| vreg->is_enabled = false; |
| |
| mutex_unlock(&vreg->pc_lock); |
| |
| if (rc) |
| vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); |
| |
| return rc; |
| } |
| |
| static int vreg_set_voltage(struct regulator_dev *rdev, int min_uV, int max_uV, |
| unsigned *selector) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| struct vreg_range *range = &vreg->set_points->range[0]; |
| unsigned int mask[2] = {0}, val[2] = {0}; |
| int rc = 0, uV = min_uV; |
| int lim_min_uV, lim_max_uV, i; |
| |
| /* Check if request voltage is outside of physically settable range. */ |
| lim_min_uV = vreg->set_points->range[0].min_uV; |
| lim_max_uV = |
| vreg->set_points->range[vreg->set_points->count - 1].max_uV; |
| |
| if (uV < lim_min_uV && max_uV >= lim_min_uV) |
| uV = lim_min_uV; |
| |
| if (uV < lim_min_uV || uV > lim_max_uV) { |
| vreg_err(vreg, |
| "request v=[%d, %d] is outside possible v=[%d, %d]\n", |
| min_uV, max_uV, lim_min_uV, lim_max_uV); |
| return -EINVAL; |
| } |
| |
| /* Find the range which uV is inside of. */ |
| for (i = vreg->set_points->count - 1; i > 0; i--) { |
| if (uV > vreg->set_points->range[i - 1].max_uV) { |
| range = &vreg->set_points->range[i]; |
| break; |
| } |
| } |
| |
| /* |
| * Force uV to be an allowed set point and apply a ceiling function |
| * to non-set point values. |
| */ |
| uV = (uV - range->min_uV + range->step_uV - 1) / range->step_uV; |
| uV = uV * range->step_uV + range->min_uV; |
| |
| if (uV > max_uV) { |
| vreg_err(vreg, |
| "request v=[%d, %d] cannot be met by any set point; " |
| "next set point: %d\n", |
| min_uV, max_uV, uV); |
| return -EINVAL; |
| } |
| |
| if (vreg->type == RPM_REGULATOR_TYPE_CORNER) { |
| /* |
| * Translate from enum values which work as inputs in the |
| * regulator_set_voltage function to the actual corner values |
| * sent to the RPM. |
| */ |
| uV -= RPM_VREG_CORNER_NONE; |
| } |
| |
| if (vreg->part->uV.mask) { |
| val[vreg->part->uV.word] = uV << vreg->part->uV.shift; |
| mask[vreg->part->uV.word] = vreg->part->uV.mask; |
| } else { |
| val[vreg->part->mV.word] |
| = MICRO_TO_MILLI(uV) << vreg->part->mV.shift; |
| mask[vreg->part->mV.word] = vreg->part->mV.mask; |
| } |
| |
| mutex_lock(&vreg->pc_lock); |
| |
| /* |
| * Only send a request for a new voltage if the regulator is currently |
| * enabled. This will ensure that LDO and SMPS regulators are not |
| * inadvertently turned on because voltage > 0 is equivalent to |
| * enabling. For NCP, this just removes unnecessary RPM requests. |
| */ |
| if (vreg->is_enabled) { |
| rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], |
| vreg->part->request_len); |
| if (rc) |
| vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); |
| } else if (vreg->type == RPM_REGULATOR_TYPE_NCP) { |
| /* Regulator is disabled; store but don't send new request. */ |
| rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]); |
| } |
| |
| if (!rc && (!vreg->pdata.sleep_selectable || !vreg->is_enabled)) |
| vreg->save_uV = uV; |
| |
| mutex_unlock(&vreg->pc_lock); |
| |
| return rc; |
| } |
| |
| static int vreg_get_voltage(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| |
| return vreg->save_uV; |
| } |
| |
| static int vreg_list_voltage(struct regulator_dev *rdev, unsigned selector) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| int uV = 0; |
| int i; |
| |
| if (!vreg->set_points) { |
| vreg_err(vreg, "no voltages available\n"); |
| return -EINVAL; |
| } |
| |
| if (selector >= vreg->set_points->n_voltages) |
| return 0; |
| |
| for (i = 0; i < vreg->set_points->count; i++) { |
| if (selector < vreg->set_points->range[i].n_voltages) { |
| uV = selector * vreg->set_points->range[i].step_uV |
| + vreg->set_points->range[i].min_uV; |
| break; |
| } else { |
| selector -= vreg->set_points->range[i].n_voltages; |
| } |
| } |
| |
| return uV; |
| } |
| |
| static int vreg_set_mode(struct regulator_dev *rdev, unsigned int mode) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| unsigned int mask[2] = {0}, val[2] = {0}; |
| int rc = 0; |
| int peak_uA; |
| |
| mutex_lock(&vreg->pc_lock); |
| |
| peak_uA = MILLI_TO_MICRO((vreg->req[vreg->part->ip.word].value |
| & vreg->part->ip.mask) >> vreg->part->ip.shift); |
| |
| if (mode == config->mode_hpm) { |
| /* Make sure that request currents are in HPM range. */ |
| if (peak_uA < vreg_hpm_min_uA(vreg)) { |
| val[vreg->part->ip.word] |
| = MICRO_TO_MILLI(vreg_hpm_min_uA(vreg)) |
| << vreg->part->ip.shift; |
| mask[vreg->part->ip.word] = vreg->part->ip.mask; |
| |
| if (config->ia_follows_ip) { |
| val[vreg->part->ia.word] |
| |= MICRO_TO_MILLI(vreg_hpm_min_uA(vreg)) |
| << vreg->part->ia.shift; |
| mask[vreg->part->ia.word] |
| |= vreg->part->ia.mask; |
| } |
| } |
| } else if (mode == config->mode_lpm) { |
| /* Make sure that request currents are in LPM range. */ |
| if (peak_uA > vreg_lpm_max_uA(vreg)) { |
| val[vreg->part->ip.word] |
| = MICRO_TO_MILLI(vreg_lpm_max_uA(vreg)) |
| << vreg->part->ip.shift; |
| mask[vreg->part->ip.word] = vreg->part->ip.mask; |
| |
| if (config->ia_follows_ip) { |
| val[vreg->part->ia.word] |
| |= MICRO_TO_MILLI(vreg_lpm_max_uA(vreg)) |
| << vreg->part->ia.shift; |
| mask[vreg->part->ia.word] |
| |= vreg->part->ia.mask; |
| } |
| } |
| } else { |
| vreg_err(vreg, "invalid mode: %u\n", mode); |
| mutex_unlock(&vreg->pc_lock); |
| return -EINVAL; |
| } |
| |
| if (vreg->is_enabled) { |
| rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], |
| vreg->part->request_len); |
| } else { |
| /* Regulator is disabled; store but don't send new request. */ |
| rc = vreg_store(vreg, mask[0], val[0], mask[1], val[1]); |
| } |
| |
| if (rc) |
| vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); |
| else |
| vreg->mode = mode; |
| |
| mutex_unlock(&vreg->pc_lock); |
| |
| return rc; |
| } |
| |
| static unsigned int vreg_get_mode(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| |
| return vreg->mode; |
| } |
| |
| static unsigned int vreg_get_optimum_mode(struct regulator_dev *rdev, |
| int input_uV, int output_uV, int load_uA) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| unsigned int mode; |
| |
| load_uA += vreg->pdata.system_uA; |
| |
| mutex_lock(&vreg->pc_lock); |
| SET_PART(vreg, ip, MICRO_TO_MILLI(saturate_peak_load(vreg, load_uA))); |
| if (config->ia_follows_ip) |
| SET_PART(vreg, ia, |
| MICRO_TO_MILLI(saturate_avg_load(vreg, load_uA))); |
| mutex_unlock(&vreg->pc_lock); |
| |
| if (load_uA >= vreg->hpm_min_load) |
| mode = config->mode_hpm; |
| else |
| mode = config->mode_lpm; |
| |
| return mode; |
| } |
| |
| static unsigned int vreg_legacy_get_optimum_mode(struct regulator_dev *rdev, |
| int input_uV, int output_uV, int load_uA) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| |
| if (MICRO_TO_MILLI(load_uA) <= 0) { |
| /* |
| * vreg_legacy_get_optimum_mode is being called before consumers |
| * have specified their load currents via |
| * regulator_set_optimum_mode. Return whatever the existing mode |
| * is. |
| */ |
| return vreg->mode; |
| } |
| |
| return vreg_get_optimum_mode(rdev, input_uV, output_uV, load_uA); |
| } |
| |
| /* |
| * Returns the logical pin control enable state because the pin control options |
| * present in the hardware out of restart could be different from those desired |
| * by the consumer. |
| */ |
| static int vreg_pin_control_is_enabled(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| |
| return vreg->is_enabled_pc; |
| } |
| |
| static int vreg_pin_control_enable(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| unsigned int mask[2] = {0}, val[2] = {0}; |
| int rc; |
| |
| mutex_lock(&vreg->pc_lock); |
| |
| val[vreg->part->pc.word] |
| |= vreg->pdata.pin_ctrl << vreg->part->pc.shift; |
| mask[vreg->part->pc.word] |= vreg->part->pc.mask; |
| |
| val[vreg->part->pf.word] |= vreg->pdata.pin_fn << vreg->part->pf.shift; |
| mask[vreg->part->pf.word] |= vreg->part->pf.mask; |
| |
| if (!vreg->is_enabled) |
| set_enable(vreg, mask, val); |
| |
| rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], |
| vreg->part->request_len); |
| |
| if (!rc) |
| vreg->is_enabled_pc = true; |
| |
| mutex_unlock(&vreg->pc_lock); |
| |
| if (rc) |
| vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); |
| |
| return rc; |
| } |
| |
| static int vreg_pin_control_disable(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| unsigned int mask[2] = {0}, val[2] = {0}; |
| int pin_fn, rc; |
| |
| mutex_lock(&vreg->pc_lock); |
| |
| val[vreg->part->pc.word] |
| |= RPM_VREG_PIN_CTRL_NONE << vreg->part->pc.shift; |
| mask[vreg->part->pc.word] |= vreg->part->pc.mask; |
| |
| pin_fn = config->pin_func_none; |
| if (vreg->pdata.pin_fn == config->pin_func_sleep_b) |
| pin_fn = config->pin_func_sleep_b; |
| val[vreg->part->pf.word] |= pin_fn << vreg->part->pf.shift; |
| mask[vreg->part->pf.word] |= vreg->part->pf.mask; |
| |
| if (!vreg->is_enabled) |
| set_disable(vreg, mask, val); |
| |
| rc = vreg_set(vreg, mask[0], val[0], mask[1], val[1], |
| vreg->part->request_len); |
| |
| if (!rc) |
| vreg->is_enabled_pc = false; |
| |
| mutex_unlock(&vreg->pc_lock); |
| |
| if (rc) |
| vreg_err(vreg, "vreg_set failed, rc=%d\n", rc); |
| |
| return rc; |
| } |
| |
| static int vreg_enable_time(struct regulator_dev *rdev) |
| { |
| struct vreg *vreg = rdev_get_drvdata(rdev); |
| |
| return vreg->pdata.enable_time; |
| } |
| |
| /* Real regulator operations. */ |
| static struct regulator_ops ldo_ops = { |
| .enable = rpm_vreg_enable, |
| .disable = rpm_vreg_disable, |
| .is_enabled = vreg_is_enabled, |
| .set_voltage = vreg_set_voltage, |
| .get_voltage = vreg_get_voltage, |
| .list_voltage = vreg_list_voltage, |
| .set_mode = vreg_set_mode, |
| .get_mode = vreg_get_mode, |
| .get_optimum_mode = vreg_get_optimum_mode, |
| .enable_time = vreg_enable_time, |
| }; |
| |
| static struct regulator_ops smps_ops = { |
| .enable = rpm_vreg_enable, |
| .disable = rpm_vreg_disable, |
| .is_enabled = vreg_is_enabled, |
| .set_voltage = vreg_set_voltage, |
| .get_voltage = vreg_get_voltage, |
| .list_voltage = vreg_list_voltage, |
| .set_mode = vreg_set_mode, |
| .get_mode = vreg_get_mode, |
| .get_optimum_mode = vreg_get_optimum_mode, |
| .enable_time = vreg_enable_time, |
| }; |
| |
| static struct regulator_ops switch_ops = { |
| .enable = rpm_vreg_enable, |
| .disable = rpm_vreg_disable, |
| .is_enabled = vreg_is_enabled, |
| .enable_time = vreg_enable_time, |
| }; |
| |
| static struct regulator_ops ncp_ops = { |
| .enable = rpm_vreg_enable, |
| .disable = rpm_vreg_disable, |
| .is_enabled = vreg_is_enabled, |
| .set_voltage = vreg_set_voltage, |
| .get_voltage = vreg_get_voltage, |
| .list_voltage = vreg_list_voltage, |
| .enable_time = vreg_enable_time, |
| }; |
| |
| static struct regulator_ops corner_ops = { |
| .enable = rpm_vreg_enable, |
| .disable = rpm_vreg_disable, |
| .is_enabled = vreg_is_enabled, |
| .set_voltage = vreg_set_voltage, |
| .get_voltage = vreg_get_voltage, |
| .list_voltage = vreg_list_voltage, |
| .enable_time = vreg_enable_time, |
| }; |
| |
| /* Pin control regulator operations. */ |
| static struct regulator_ops pin_control_ops = { |
| .enable = vreg_pin_control_enable, |
| .disable = vreg_pin_control_disable, |
| .is_enabled = vreg_pin_control_is_enabled, |
| }; |
| |
| struct regulator_ops *vreg_ops[] = { |
| [RPM_REGULATOR_TYPE_LDO] = &ldo_ops, |
| [RPM_REGULATOR_TYPE_SMPS] = &smps_ops, |
| [RPM_REGULATOR_TYPE_VS] = &switch_ops, |
| [RPM_REGULATOR_TYPE_NCP] = &ncp_ops, |
| [RPM_REGULATOR_TYPE_CORNER] = &corner_ops, |
| }; |
| |
| static struct vreg *rpm_vreg_get_vreg(int id) |
| { |
| struct vreg *vreg; |
| |
| if (id < config->vreg_id_min || id > config->vreg_id_max) |
| return NULL; |
| |
| if (!config->is_real_id(id)) |
| id = config->pc_id_to_real_id(id); |
| vreg = &config->vregs[id]; |
| |
| return vreg; |
| } |
| |
| static int __devinit |
| rpm_vreg_init_regulator(const struct rpm_regulator_init_data *pdata, |
| struct device *dev) |
| { |
| struct regulator_desc *rdesc = NULL; |
| struct regulator_dev *rdev; |
| struct vreg *vreg; |
| unsigned pin_ctrl; |
| int pin_fn; |
| int rc = 0; |
| |
| if (!pdata) { |
| pr_err("platform data missing\n"); |
| return -EINVAL; |
| } |
| |
| vreg = rpm_vreg_get_vreg(pdata->id); |
| if (!vreg) { |
| pr_err("invalid regulator id: %d\n", pdata->id); |
| return -ENODEV; |
| } |
| |
| if (config->is_real_id(pdata->id)) |
| rdesc = &vreg->rdesc; |
| else |
| rdesc = &vreg->rdesc_pc; |
| |
| if (vreg->type < 0 || vreg->type > RPM_REGULATOR_TYPE_MAX) { |
| pr_err("%s: invalid regulator type: %d\n", |
| vreg->rdesc.name, vreg->type); |
| return -EINVAL; |
| } |
| |
| mutex_lock(&vreg->pc_lock); |
| |
| if (vreg->set_points) |
| rdesc->n_voltages = vreg->set_points->n_voltages; |
| else |
| rdesc->n_voltages = 0; |
| |
| rdesc->id = pdata->id; |
| rdesc->owner = THIS_MODULE; |
| rdesc->type = REGULATOR_VOLTAGE; |
| |
| if (config->is_real_id(pdata->id)) { |
| /* |
| * Real regulator; do not modify pin control and pin function |
| * values. |
| */ |
| rdesc->ops = vreg_ops[vreg->type]; |
| pin_ctrl = vreg->pdata.pin_ctrl; |
| pin_fn = vreg->pdata.pin_fn; |
| memcpy(&(vreg->pdata), pdata, |
| sizeof(struct rpm_regulator_init_data)); |
| vreg->pdata.pin_ctrl = pin_ctrl; |
| vreg->pdata.pin_fn = pin_fn; |
| |
| vreg->save_uV = vreg->pdata.default_uV; |
| if (vreg->pdata.peak_uA >= vreg->hpm_min_load) |
| vreg->mode = config->mode_hpm; |
| else |
| vreg->mode = config->mode_lpm; |
| |
| /* Initialize the RPM request. */ |
| SET_PART(vreg, ip, |
| MICRO_TO_MILLI(saturate_peak_load(vreg, vreg->pdata.peak_uA))); |
| SET_PART(vreg, fm, vreg->pdata.force_mode); |
| SET_PART(vreg, pm, vreg->pdata.power_mode); |
| SET_PART(vreg, pd, vreg->pdata.pull_down_enable); |
| SET_PART(vreg, ia, |
| MICRO_TO_MILLI(saturate_avg_load(vreg, vreg->pdata.avg_uA))); |
| SET_PART(vreg, freq, vreg->pdata.freq); |
| SET_PART(vreg, freq_clk_src, 0); |
| SET_PART(vreg, comp_mode, 0); |
| SET_PART(vreg, hpm, 0); |
| if (!vreg->is_enabled_pc) { |
| SET_PART(vreg, pf, config->pin_func_none); |
| SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE); |
| } |
| } else { |
| if ((pdata->pin_ctrl & RPM_VREG_PIN_CTRL_ALL) |
| == RPM_VREG_PIN_CTRL_NONE |
| && pdata->pin_fn != config->pin_func_sleep_b) { |
| pr_err("%s: no pin control input specified\n", |
| vreg->rdesc.name); |
| mutex_unlock(&vreg->pc_lock); |
| return -EINVAL; |
| } |
| rdesc->ops = &pin_control_ops; |
| vreg->pdata.pin_ctrl = pdata->pin_ctrl; |
| vreg->pdata.pin_fn = pdata->pin_fn; |
| |
| /* Initialize the RPM request. */ |
| pin_fn = config->pin_func_none; |
| /* Allow pf=sleep_b to be specified by platform data. */ |
| if (vreg->pdata.pin_fn == config->pin_func_sleep_b) |
| pin_fn = config->pin_func_sleep_b; |
| SET_PART(vreg, pf, pin_fn); |
| SET_PART(vreg, pc, RPM_VREG_PIN_CTRL_NONE); |
| } |
| |
| mutex_unlock(&vreg->pc_lock); |
| |
| if (rc) |
| goto bail; |
| |
| rdev = regulator_register(rdesc, dev, &(pdata->init_data), vreg, NULL); |
| if (IS_ERR(rdev)) { |
| rc = PTR_ERR(rdev); |
| pr_err("regulator_register failed: %s, rc=%d\n", |
| vreg->rdesc.name, rc); |
| return rc; |
| } else { |
| if (config->is_real_id(pdata->id)) |
| vreg->rdev = rdev; |
| else |
| vreg->rdev_pc = rdev; |
| } |
| |
| bail: |
| if (rc) |
| pr_err("error for %s, rc=%d\n", vreg->rdesc.name, rc); |
| |
| return rc; |
| } |
| |
| static void rpm_vreg_set_point_init(void) |
| { |
| struct vreg_set_points **set_points; |
| int i, j, temp; |
| |
| set_points = config->set_points; |
| |
| /* Calculate the number of set points available for each regulator. */ |
| for (i = 0; i < config->set_points_len; i++) { |
| temp = 0; |
| for (j = 0; j < set_points[i]->count; j++) { |
| set_points[i]->range[j].n_voltages |
| = (set_points[i]->range[j].max_uV |
| - set_points[i]->range[j].min_uV) |
| / set_points[i]->range[j].step_uV + 1; |
| temp += set_points[i]->range[j].n_voltages; |
| } |
| set_points[i]->n_voltages = temp; |
| } |
| } |
| |
| static int __devinit rpm_vreg_probe(struct platform_device *pdev) |
| { |
| struct rpm_regulator_platform_data *platform_data; |
| static struct rpm_regulator_consumer_mapping *prev_consumer_map; |
| static int prev_consumer_map_len; |
| int rc = 0; |
| int i, id; |
| |
| platform_data = pdev->dev.platform_data; |
| if (!platform_data) { |
| pr_err("rpm-regulator requires platform data\n"); |
| return -EINVAL; |
| } |
| |
| if (rpm_version >= 0 && rpm_version <= RPM_VREG_VERSION_MAX |
| && platform_data->version != rpm_version) { |
| pr_err("rpm version %d does not match previous version %d\n", |
| platform_data->version, rpm_version); |
| return -EINVAL; |
| } |
| |
| if (platform_data->version < 0 |
| || platform_data->version > RPM_VREG_VERSION_MAX) { |
| pr_err("rpm version %d is invalid\n", platform_data->version); |
| return -EINVAL; |
| } |
| |
| if (rpm_version < 0 || rpm_version > RPM_VREG_VERSION_MAX) { |
| rpm_version = platform_data->version; |
| config = get_config[platform_data->version](); |
| vreg_id_vdd_mem = platform_data->vreg_id_vdd_mem; |
| vreg_id_vdd_dig = platform_data->vreg_id_vdd_dig; |
| if (!config) { |
| pr_err("rpm version %d is not available\n", |
| platform_data->version); |
| return -ENODEV; |
| } |
| if (config->use_legacy_optimum_mode) |
| for (i = 0; i < ARRAY_SIZE(vreg_ops); i++) |
| vreg_ops[i]->get_optimum_mode |
| = vreg_legacy_get_optimum_mode; |
| rpm_vreg_set_point_init(); |
| /* First time probed; initialize pin control mutexes. */ |
| for (i = 0; i < config->vregs_len; i++) |
| mutex_init(&config->vregs[i].pc_lock); |
| } |
| |
| /* Copy the list of private API consumers. */ |
| if (platform_data->consumer_map_len > 0) { |
| if (consumer_map_len == 0) { |
| consumer_map_len = platform_data->consumer_map_len; |
| consumer_map = kmemdup(platform_data->consumer_map, |
| sizeof(struct rpm_regulator_consumer_mapping) |
| * consumer_map_len, GFP_KERNEL); |
| if (consumer_map == NULL) { |
| pr_err("memory allocation failed\n"); |
| consumer_map_len = 0; |
| return -ENOMEM; |
| } |
| } else { |
| /* Concatenate new map with the existing one. */ |
| prev_consumer_map = consumer_map; |
| prev_consumer_map_len = consumer_map_len; |
| consumer_map_len += platform_data->consumer_map_len; |
| consumer_map = kmalloc( |
| sizeof(struct rpm_regulator_consumer_mapping) |
| * consumer_map_len, GFP_KERNEL); |
| if (consumer_map == NULL) { |
| pr_err("memory allocation failed\n"); |
| consumer_map_len = 0; |
| return -ENOMEM; |
| } |
| memcpy(consumer_map, prev_consumer_map, |
| sizeof(struct rpm_regulator_consumer_mapping) |
| * prev_consumer_map_len); |
| memcpy(&consumer_map[prev_consumer_map_len], |
| platform_data->consumer_map, |
| sizeof(struct rpm_regulator_consumer_mapping) |
| * platform_data->consumer_map_len); |
| } |
| |
| } |
| |
| if (platform_data->requires_tcxo_workaround |
| && !requires_tcxo_workaround) { |
| requires_tcxo_workaround = true; |
| wake_lock_init(&tcxo_wake_lock, WAKE_LOCK_SUSPEND, |
| "rpm_regulator_tcxo"); |
| } |
| |
| /* Initialize all of the regulators listed in the platform data. */ |
| for (i = 0; i < platform_data->num_regulators; i++) { |
| rc = rpm_vreg_init_regulator(&platform_data->init_data[i], |
| &pdev->dev); |
| if (rc) { |
| pr_err("rpm_vreg_init_regulator failed, rc=%d\n", rc); |
| goto remove_regulators; |
| } |
| } |
| |
| platform_set_drvdata(pdev, platform_data); |
| |
| return rc; |
| |
| remove_regulators: |
| /* Unregister all regulators added before the erroring one. */ |
| for (; i >= 0; i--) { |
| id = platform_data->init_data[i].id; |
| if (config->is_real_id(id)) { |
| regulator_unregister(config->vregs[id].rdev); |
| config->vregs[id].rdev = NULL; |
| } else { |
| regulator_unregister(config->vregs[ |
| config->pc_id_to_real_id(id)].rdev_pc); |
| config->vregs[id].rdev_pc = NULL; |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int __devexit rpm_vreg_remove(struct platform_device *pdev) |
| { |
| struct rpm_regulator_platform_data *platform_data; |
| int i, id; |
| |
| platform_data = platform_get_drvdata(pdev); |
| platform_set_drvdata(pdev, NULL); |
| |
| if (platform_data) { |
| for (i = 0; i < platform_data->num_regulators; i++) { |
| id = platform_data->init_data[i].id; |
| if (config->is_real_id(id)) { |
| regulator_unregister(config->vregs[id].rdev); |
| config->vregs[id].rdev = NULL; |
| } else { |
| regulator_unregister(config->vregs[ |
| config->pc_id_to_real_id(id)].rdev_pc); |
| config->vregs[id].rdev_pc = NULL; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct platform_driver rpm_vreg_driver = { |
| .probe = rpm_vreg_probe, |
| .remove = __devexit_p(rpm_vreg_remove), |
| .driver = { |
| .name = RPM_REGULATOR_DEV_NAME, |
| .owner = THIS_MODULE, |
| }, |
| }; |
| |
| static int __init rpm_vreg_init(void) |
| { |
| return platform_driver_register(&rpm_vreg_driver); |
| } |
| |
| static void __exit rpm_vreg_exit(void) |
| { |
| int i; |
| |
| platform_driver_unregister(&rpm_vreg_driver); |
| |
| kfree(consumer_map); |
| |
| for (i = 0; i < config->vregs_len; i++) |
| mutex_destroy(&config->vregs[i].pc_lock); |
| |
| if (tcxo_handle) |
| clk_put(tcxo_handle); |
| } |
| |
| postcore_initcall(rpm_vreg_init); |
| module_exit(rpm_vreg_exit); |
| |
| MODULE_LICENSE("GPL v2"); |
| MODULE_DESCRIPTION("MSM RPM regulator driver"); |
| MODULE_VERSION("1.0"); |
| MODULE_ALIAS("platform:" RPM_REGULATOR_DEV_NAME); |