blob: 7706e3e6b61ade55f9672b1cc1f3b7989bca31e4 [file] [log] [blame]
/* Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/firmware.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/printk.h>
#include <linux/ratelimit.h>
#include <linux/debugfs.h>
#include <linux/io.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/kernel.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/of_gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/mfd/wcd9xxx/pdata.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/tlv.h>
#include <mach/qdsp6v2/apr.h>
#include <mach/subsystem_notif.h>
#include "msm8x10-wcd.h"
#include "wcd9xxx-resmgr.h"
#include "msm8x10_wcd_registers.h"
#include "../msm/qdsp6v2/q6core.h"
#include "wcd9xxx-common.h"
#define MSM8X10_WCD_RATES (SNDRV_PCM_RATE_8000 | SNDRV_PCM_RATE_16000 |\
SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_48000)
#define MSM8X10_WCD_FORMATS (SNDRV_PCM_FMTBIT_S16_LE)
#define NUM_DECIMATORS 2
#define NUM_INTERPOLATORS 3
#define BITS_PER_REG 8
#define MSM8X10_WCD_TX_PORT_NUMBER 4
#define DAPM_MICBIAS_EXTERNAL_STANDALONE "MIC BIAS External Standalone"
#define MSM8X10_WCD_I2S_MASTER_MODE_MASK 0x08
#define MSM8X10_DINO_CODEC_BASE_ADDR 0xFE043000
#define MSM8X10_DINO_CODEC_REG_SIZE 0x200
#define MSM8x10_TLMM_CDC_PULL_CTL 0xFD512050
#define HELICON_CORE_0_I2C_ADDR 0x0d
#define HELICON_CORE_1_I2C_ADDR 0x77
#define HELICON_CORE_2_I2C_ADDR 0x66
#define HELICON_CORE_3_I2C_ADDR 0x55
#define MAX_MSM8X10_WCD_DEVICE 4
#define CODEC_DT_MAX_PROP_SIZE 40
#define MAX_ON_DEMAND_SUPPLY_NAME_LENGTH 64
#define HELICON_MCLK_CLK_9P6MHZ 9600000
/*
* Multiplication factor to compute impedance on codec
* This is computed from (Vx / (m*Ical)) = (10mV/(180*30uA))
*/
#define MSM8X10_WCD_ZDET_MUL_FACTOR 1852
/* RX_HPH_CNP_WG_TIME increases by 0.24ms */
#define MSM8X10_WCD_WG_TIME_FACTOR_US 240
enum {
MSM8X10_WCD_I2C_TOP_LEVEL = 0,
MSM8X10_WCD_I2C_ANALOG,
MSM8X10_WCD_I2C_DIGITAL_1,
MSM8X10_WCD_I2C_DIGITAL_2,
};
enum {
AIF1_PB = 0,
AIF1_CAP,
NUM_CODEC_DAIS,
};
enum {
RX_MIX1_INP_SEL_ZERO = 0,
RX_MIX1_INP_SEL_IIR1,
RX_MIX1_INP_SEL_IIR2,
RX_MIX1_INP_SEL_RX1,
RX_MIX1_INP_SEL_RX2,
RX_MIX1_INP_SEL_RX3,
};
static const DECLARE_TLV_DB_SCALE(digital_gain, 0, 1, 0);
static const DECLARE_TLV_DB_SCALE(line_gain, 0, 7, 1);
static const DECLARE_TLV_DB_SCALE(analog_gain, 0, 25, 1);
static struct snd_soc_dai_driver msm8x10_wcd_i2s_dai[];
static const DECLARE_TLV_DB_SCALE(aux_pga_gain, 0, 2, 0);
#define MSM8X10_WCD_ACQUIRE_LOCK(x) do { \
mutex_lock_nested(&x, SINGLE_DEPTH_NESTING); \
} while (0)
#define MSM8X10_WCD_RELEASE_LOCK(x) do { mutex_unlock(&x); } while (0)
/* Codec supports 2 IIR filters */
enum {
IIR1 = 0,
IIR2,
IIR_MAX,
};
/* Codec supports 5 bands */
enum {
BAND1 = 0,
BAND2,
BAND3,
BAND4,
BAND5,
BAND_MAX,
};
enum msm8x10_wcd_bandgap_type {
MSM8X10_WCD_BANDGAP_OFF = 0,
MSM8X10_WCD_BANDGAP_AUDIO_MODE,
MSM8X10_WCD_BANDGAP_MBHC_MODE,
};
enum {
ON_DEMAND_MICBIAS = 0,
ON_DEMAND_CP,
ON_DEMAND_SUPPLIES_MAX,
};
/*
* The delay list is per codec HW specification.
* Please add delay in the list in the future instead
* of magic number
*/
enum {
CODEC_DELAY_1_MS = 1000,
CODEC_DELAY_1_1_MS = 1100,
};
struct hpf_work {
struct msm8x10_wcd_priv *msm8x10_wcd;
u32 decimator;
u8 tx_hpf_cut_of_freq;
struct delayed_work dwork;
};
static struct hpf_work tx_hpf_work[NUM_DECIMATORS];
struct on_demand_supply {
struct regulator *supply;
atomic_t ref;
};
static char on_demand_supply_name[][MAX_ON_DEMAND_SUPPLY_NAME_LENGTH] = {
"cdc-vdd-mic-bias",
"cdc-vdda-cp",
};
struct msm8x10_wcd_priv {
struct snd_soc_codec *codec;
u32 adc_count;
u32 rx_bias_count;
s32 dmic_1_2_clk_cnt;
struct on_demand_supply on_demand_list[ON_DEMAND_SUPPLIES_MAX];
/* resmgr module */
struct wcd9xxx_resmgr resmgr;
/* mbhc module */
struct wcd9xxx_mbhc mbhc;
struct delayed_work hs_detect_work;
struct wcd9xxx_mbhc_config *mbhc_cfg;
/*
* list used to save/restore registers at start and
* end of impedance measurement
*/
struct list_head reg_save_restore;
};
static unsigned short rx_digital_gain_reg[] = {
MSM8X10_WCD_A_CDC_RX1_VOL_CTL_B2_CTL,
MSM8X10_WCD_A_CDC_RX2_VOL_CTL_B2_CTL,
MSM8X10_WCD_A_CDC_RX3_VOL_CTL_B2_CTL,
};
static unsigned short tx_digital_gain_reg[] = {
MSM8X10_WCD_A_CDC_TX1_VOL_CTL_GAIN,
MSM8X10_WCD_A_CDC_TX2_VOL_CTL_GAIN,
};
struct msm8x10_wcd_i2c {
struct i2c_client *client;
struct i2c_msg xfer_msg[2];
struct mutex xfer_lock;
int mod_id;
};
static int msm8x10_wcd_dt_parse_vreg_info(struct device *dev,
struct msm8x10_wcd_regulator *vreg,
const char *vreg_name, bool ondemand);
static int msm8x10_wcd_dt_parse_micbias_info(struct device *dev,
struct wcd9xxx_micbias_setting *micbias);
static struct msm8x10_wcd_pdata *msm8x10_wcd_populate_dt_pdata(
struct device *dev);
struct msm8x10_wcd_i2c msm8x10_wcd_modules[MAX_MSM8X10_WCD_DEVICE];
static void *adsp_state_notifier;
static struct snd_soc_codec *registered_codec;
#define ADSP_STATE_READY_TIMEOUT_MS 2000
static int get_i2c_msm8x10_wcd_device_info(u16 reg,
struct msm8x10_wcd_i2c **msm8x10_wcd)
{
int rtn = 0;
int value = ((reg & 0x0f00) >> 8) & 0x000f;
switch (value) {
case 0:
case 1:
*msm8x10_wcd = &msm8x10_wcd_modules[value];
break;
default:
rtn = -EINVAL;
break;
}
return rtn;
}
static int msm8x10_wcd_abh_write_device(struct msm8x10_wcd *msm8x10_wcd,
u16 reg, u8 *value, u32 bytes)
{
u32 temp = ((u32)(*value)) & 0x000000FF;
u32 offset = (((u32)(reg)) ^ 0x00000400) & 0x00000FFF;
iowrite32(temp, (msm8x10_wcd->pdino_base+offset));
return 0;
}
static int msm8x10_wcd_abh_read_device(struct msm8x10_wcd *msm8x10_wcd,
u16 reg, u32 bytes, u8 *value)
{
u32 temp;
u32 offset = (((u32)(reg)) ^ 0x00000400) & 0x00000FFF;
temp = ioread32((msm8x10_wcd->pdino_base+offset));
*value = (u8)temp;
return 0;
}
static int msm8x10_wcd_i2c_write_device(u16 reg, u8 *value, u32 bytes)
{
struct i2c_msg *msg;
int ret;
u8 reg_addr = 0;
u8 data[bytes + 1];
struct msm8x10_wcd_i2c *msm8x10_wcd = NULL;
ret = get_i2c_msm8x10_wcd_device_info(reg, &msm8x10_wcd);
if (ret) {
pr_err("%s: Invalid register address\n", __func__);
return ret;
}
if (msm8x10_wcd == NULL || msm8x10_wcd->client == NULL) {
pr_err("%s: Failed to get device info\n", __func__);
return -ENODEV;
}
reg_addr = (u8)reg;
msg = &msm8x10_wcd->xfer_msg[0];
msg->addr = msm8x10_wcd->client->addr;
msg->len = bytes + 1;
msg->flags = 0;
data[0] = reg;
data[1] = *value;
msg->buf = data;
ret = i2c_transfer(msm8x10_wcd->client->adapter,
msm8x10_wcd->xfer_msg, 1);
/* Try again if the write fails */
if (ret != 1) {
ret = i2c_transfer(msm8x10_wcd->client->adapter,
msm8x10_wcd->xfer_msg, 1);
if (ret != 1) {
pr_err("failed to write the device\n");
return ret;
}
}
pr_debug("write sucess register = %x val = %x\n", reg, data[1]);
return 0;
}
int msm8x10_wcd_i2c_read_device(u32 reg, u32 bytes, u8 *dest)
{
struct i2c_msg *msg;
int ret = 0;
u8 reg_addr = 0;
struct msm8x10_wcd_i2c *msm8x10_wcd = NULL;
u8 i = 0;
ret = get_i2c_msm8x10_wcd_device_info(reg, &msm8x10_wcd);
if (ret) {
pr_err("%s: Invalid register address\n", __func__);
return ret;
}
if (msm8x10_wcd == NULL || msm8x10_wcd->client == NULL) {
pr_err("%s: Failed to get device info\n", __func__);
return -ENODEV;
}
for (i = 0; i < bytes; i++) {
reg_addr = (u8)reg++;
msg = &msm8x10_wcd->xfer_msg[0];
msg->addr = msm8x10_wcd->client->addr;
msg->len = 1;
msg->flags = 0;
msg->buf = &reg_addr;
msg = &msm8x10_wcd->xfer_msg[1];
msg->addr = msm8x10_wcd->client->addr;
msg->len = 1;
msg->flags = I2C_M_RD;
msg->buf = dest++;
ret = i2c_transfer(msm8x10_wcd->client->adapter,
msm8x10_wcd->xfer_msg, 2);
/* Try again if read fails first time */
if (ret != 2) {
ret = i2c_transfer(msm8x10_wcd->client->adapter,
msm8x10_wcd->xfer_msg, 2);
if (ret != 2) {
pr_err("failed to read msm8x10_wcd register\n");
return ret;
}
}
}
pr_debug("%s: reg 0x%x = 0x%x\n", __func__, reg, *dest);
return 0;
}
int msm8x10_wcd_i2c_read(unsigned short reg, int bytes, void *dest)
{
return msm8x10_wcd_i2c_read_device(reg, bytes, dest);
}
int msm8x10_wcd_i2c_write(unsigned short reg, int bytes, void *src)
{
return msm8x10_wcd_i2c_write_device(reg, src, bytes);
}
static unsigned short msm8x10_wcd_mask_reg(unsigned short reg)
{
if (reg >= 0x3C0 && reg <= 0x3DF)
reg = reg & 0x00FF;
return reg;
}
static int __msm8x10_wcd_reg_read(struct msm8x10_wcd *msm8x10_wcd,
unsigned short reg)
{
int ret = -EINVAL;
u8 temp;
reg = msm8x10_wcd_mask_reg(reg);
/* check if use I2C interface for Helicon or AHB for Dino */
mutex_lock(&msm8x10_wcd->io_lock);
if (MSM8X10_WCD_IS_HELICON_REG(reg))
ret = msm8x10_wcd_i2c_read(reg, 1, &temp);
else if (MSM8X10_WCD_IS_DINO_REG(reg))
ret = msm8x10_wcd_abh_read_device(msm8x10_wcd, reg, 1, &temp);
mutex_unlock(&msm8x10_wcd->io_lock);
if (ret < 0) {
dev_err(msm8x10_wcd->dev,
"%s: codec read failed for reg 0x%x\n",
__func__, reg);
return ret;
} else {
dev_dbg(msm8x10_wcd->dev, "Read 0x%02x from 0x%x\n",
temp, reg);
}
return temp;
}
static int __msm8x10_wcd_bulk_write(struct msm8x10_wcd *msm8x10_wcd,
unsigned short reg, int count, u8 *buf)
{
int ret = -EINVAL;
mutex_lock(&msm8x10_wcd->io_lock);
if (MSM8X10_WCD_IS_HELICON_REG(reg))
ret = msm8x10_wcd_i2c_write(reg, count, buf);
else if (MSM8X10_WCD_IS_DINO_REG(reg))
ret = msm8x10_wcd_abh_write_device(msm8x10_wcd, reg,
buf, count);
if (ret < 0)
dev_err(msm8x10_wcd->dev,
"%s: codec bulk write failed\n", __func__);
mutex_unlock(&msm8x10_wcd->io_lock);
return ret;
}
int msm8x10_wcd_bulk_write(struct wcd9xxx_core_resource *core_res,
unsigned short reg, int count, u8 *buf)
{
struct msm8x10_wcd *msm8x10_wcd =
(struct msm8x10_wcd *) core_res->parent;
return __msm8x10_wcd_bulk_write(msm8x10_wcd, reg, count, buf);
}
EXPORT_SYMBOL(msm8x10_wcd_bulk_write);
int msm8x10_wcd_reg_read(struct wcd9xxx_core_resource *core_res,
unsigned short reg)
{
struct msm8x10_wcd *msm8x10_wcd = core_res->parent;
return __msm8x10_wcd_reg_read(msm8x10_wcd, reg);
}
EXPORT_SYMBOL(msm8x10_wcd_reg_read);
static int __msm8x10_wcd_bulk_read(struct msm8x10_wcd *msm8x10_wcd,
unsigned short reg, int count, u8 *buf)
{
int ret = -EINVAL;
mutex_lock(&msm8x10_wcd->io_lock);
if (MSM8X10_WCD_IS_HELICON_REG(reg))
ret = msm8x10_wcd_i2c_read(reg, count, buf);
else if (MSM8X10_WCD_IS_DINO_REG(reg))
ret = msm8x10_wcd_abh_read_device(msm8x10_wcd, reg,
count, buf);
mutex_unlock(&msm8x10_wcd->io_lock);
if (ret < 0)
dev_err(msm8x10_wcd->dev,
"%s: codec bulk read failed\n", __func__);
return ret;
}
int msm8x10_wcd_bulk_read(struct wcd9xxx_core_resource *core_res,
unsigned short reg, int count, u8 *buf)
{
struct msm8x10_wcd *msm8x10_wcd =
(struct msm8x10_wcd *) core_res->parent;
return __msm8x10_wcd_bulk_read(msm8x10_wcd, reg, count, buf);
}
EXPORT_SYMBOL(msm8x10_wcd_bulk_read);
static int __msm8x10_wcd_reg_write(struct msm8x10_wcd *msm8x10_wcd,
unsigned short reg, u8 val)
{
int ret = -EINVAL;
reg = msm8x10_wcd_mask_reg(reg);
/* check if use I2C interface for Helicon or AHB for Dino */
mutex_lock(&msm8x10_wcd->io_lock);
if (MSM8X10_WCD_IS_HELICON_REG(reg))
ret = msm8x10_wcd_i2c_write(reg, 1, &val);
else if (MSM8X10_WCD_IS_DINO_REG(reg))
ret = msm8x10_wcd_abh_write_device(msm8x10_wcd, reg, &val, 1);
mutex_unlock(&msm8x10_wcd->io_lock);
if (ret < 0)
dev_err(msm8x10_wcd->dev,
"%s: codec write to reg 0x%x failed\n",
__func__, reg);
else
dev_dbg(msm8x10_wcd->dev,
"%s: Write %x to R%d(0x%x)\n",
__func__, val, reg, reg);
return ret;
}
int msm8x10_wcd_reg_write(struct wcd9xxx_core_resource *core_res,
unsigned short reg, u8 val)
{
struct msm8x10_wcd *msm8x10_wcd = core_res->parent;
return __msm8x10_wcd_reg_write(msm8x10_wcd, reg, val);
}
EXPORT_SYMBOL(msm8x10_wcd_reg_write);
static bool msm8x10_wcd_is_digital_gain_register(unsigned int reg)
{
bool rtn = false;
switch (reg) {
case MSM8X10_WCD_A_CDC_RX1_VOL_CTL_B2_CTL:
case MSM8X10_WCD_A_CDC_RX2_VOL_CTL_B2_CTL:
case MSM8X10_WCD_A_CDC_RX3_VOL_CTL_B2_CTL:
case MSM8X10_WCD_A_CDC_TX1_VOL_CTL_GAIN:
case MSM8X10_WCD_A_CDC_TX2_VOL_CTL_GAIN:
rtn = true;
break;
default:
break;
}
return rtn;
}
static int msm8x10_wcd_volatile(struct snd_soc_codec *codec, unsigned int reg)
{
/*
* Registers lower than 0x100 are top level registers which can be
* written by the Taiko core driver.
*/
dev_dbg(codec->dev, "%s: reg 0x%x\n", __func__, reg);
if ((reg >= MSM8X10_WCD_A_CDC_MBHC_EN_CTL) || (reg < 0x100))
return 1;
/* IIR Coeff registers are not cacheable */
if ((reg >= MSM8X10_WCD_A_CDC_IIR1_COEF_B1_CTL) &&
(reg <= MSM8X10_WCD_A_CDC_IIR2_COEF_B2_CTL))
return 1;
/*
* Digital gain register is not cacheable so we have to write
* the setting even it is the same
*/
if (msm8x10_wcd_is_digital_gain_register(reg))
return 1;
/* HPH status registers */
if (reg == MSM8X10_WCD_A_RX_HPH_L_STATUS ||
reg == MSM8X10_WCD_A_RX_HPH_R_STATUS)
return 1;
if (reg == MSM8X10_WCD_A_MBHC_INSERT_DET_STATUS)
return 1;
return 0;
}
static int msm8x10_wcd_readable(struct snd_soc_codec *ssc, unsigned int reg)
{
return msm8x10_wcd_reg_readable[reg];
}
static int msm8x10_wcd_write(struct snd_soc_codec *codec, unsigned int reg,
unsigned int value)
{
int ret;
dev_dbg(codec->dev, "%s: Write from reg 0x%x\n", __func__, reg);
if (reg == SND_SOC_NOPM)
return 0;
BUG_ON(reg > MSM8X10_WCD_MAX_REGISTER);
if (!msm8x10_wcd_volatile(codec, reg)) {
ret = snd_soc_cache_write(codec, reg, value);
if (ret != 0)
dev_err(codec->dev, "Cache write to %x failed: %d\n",
reg, ret);
}
return __msm8x10_wcd_reg_write(codec->control_data, reg, (u8)value);
}
static unsigned int msm8x10_wcd_read(struct snd_soc_codec *codec,
unsigned int reg)
{
unsigned int val;
int ret;
dev_dbg(codec->dev, "%s: Read from reg 0x%x\n", __func__, reg);
if (reg == SND_SOC_NOPM)
return 0;
BUG_ON(reg > MSM8X10_WCD_MAX_REGISTER);
if (!msm8x10_wcd_volatile(codec, reg) &&
msm8x10_wcd_readable(codec, reg) &&
reg < codec->driver->reg_cache_size) {
ret = snd_soc_cache_read(codec, reg, &val);
if (ret >= 0) {
return val;
} else
dev_err(codec->dev, "Cache read from %x failed: %d\n",
reg, ret);
}
val = __msm8x10_wcd_reg_read(codec->control_data, reg);
return val;
}
static int msm8x10_wcd_dt_parse_vreg_info(struct device *dev,
struct msm8x10_wcd_regulator *vreg, const char *vreg_name,
bool ondemand)
{
int len, ret = 0;
const __be32 *prop;
char prop_name[CODEC_DT_MAX_PROP_SIZE];
struct device_node *regnode = NULL;
u32 prop_val;
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE, "%s-supply",
vreg_name);
regnode = of_parse_phandle(dev->of_node, prop_name, 0);
if (!regnode) {
dev_err(dev, "Looking up %s property in node %s failed\n",
prop_name, dev->of_node->full_name);
return -ENODEV;
}
dev_dbg(dev, "Looking up %s property in node %s\n",
prop_name, dev->of_node->full_name);
vreg->name = vreg_name;
vreg->ondemand = ondemand;
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,%s-voltage", vreg_name);
prop = of_get_property(dev->of_node, prop_name, &len);
if (!prop || (len != (2 * sizeof(__be32)))) {
dev_err(dev, "%s %s property\n",
prop ? "invalid format" : "no", prop_name);
return -EINVAL;
} else {
vreg->min_uV = be32_to_cpup(&prop[0]);
vreg->max_uV = be32_to_cpup(&prop[1]);
}
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,%s-current", vreg_name);
ret = of_property_read_u32(dev->of_node, prop_name, &prop_val);
if (ret) {
dev_err(dev, "Looking up %s property in node %s failed",
prop_name, dev->of_node->full_name);
return -EFAULT;
}
vreg->optimum_uA = prop_val;
dev_info(dev, "%s: vol=[%d %d]uV, curr=[%d]uA, ond %d\n\n", vreg->name,
vreg->min_uV, vreg->max_uV, vreg->optimum_uA, vreg->ondemand);
return 0;
}
static int msm8x10_wcd_dt_parse_micbias_info(struct device *dev,
struct wcd9xxx_micbias_setting *micbias)
{
int ret = 0;
char prop_name[CODEC_DT_MAX_PROP_SIZE];
u32 prop_val;
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,cdc-micbias-ldoh-v");
ret = of_property_read_u32(dev->of_node, prop_name,
&prop_val);
if (ret) {
dev_err(dev, "Looking up %s property in node %s failed",
prop_name, dev->of_node->full_name);
return -ENODEV;
}
micbias->ldoh_v = (u8) prop_val;
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,cdc-micbias-cfilt-mv");
ret = of_property_read_u32(dev->of_node, prop_name,
&micbias->cfilt1_mv);
if (ret) {
dev_err(dev, "Looking up %s property in node %s failed",
prop_name, dev->of_node->full_name);
return -ENODEV;
}
snprintf(prop_name, CODEC_DT_MAX_PROP_SIZE,
"qcom,cdc-micbias-cfilt-sel");
ret = of_property_read_u32(dev->of_node, prop_name, &prop_val);
if (ret) {
dev_err(dev, "Looking up %s property in node %s failed",
prop_name, dev->of_node->full_name);
return -ENODEV;
}
micbias->bias1_cfilt_sel = (u8)prop_val;
/* micbias external cap */
micbias->bias1_cap_mode =
(of_property_read_bool(dev->of_node, "qcom,cdc-micbias1-ext-cap") ?
MICBIAS_EXT_BYP_CAP : MICBIAS_NO_EXT_BYP_CAP);
dev_dbg(dev, "ldoh_v %u cfilt1_mv %u\n",
(u32)micbias->ldoh_v, (u32)micbias->cfilt1_mv);
dev_dbg(dev, "bias1_cfilt_sel %u\n", (u32)micbias->bias1_cfilt_sel);
dev_dbg(dev, "bias1_ext_cap %d\n", micbias->bias1_cap_mode);
return 0;
}
static struct msm8x10_wcd_pdata *msm8x10_wcd_populate_dt_pdata(
struct device *dev)
{
struct msm8x10_wcd_pdata *pdata;
int ret, static_cnt, ond_cnt, idx, i;
const char *name = NULL;
const char *static_prop_name = "qcom,cdc-static-supplies";
const char *ond_prop_name = "qcom,cdc-on-demand-supplies";
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(dev, "could not allocate memory for platform data\n");
return NULL;
}
static_cnt = of_property_count_strings(dev->of_node, static_prop_name);
if (IS_ERR_VALUE(static_cnt)) {
dev_err(dev, "%s: Failed to get static supplies %d\n", __func__,
static_cnt);
ret = -EINVAL;
goto err;
}
/* On-demand supply list is an optional property */
ond_cnt = of_property_count_strings(dev->of_node, ond_prop_name);
if (IS_ERR_VALUE(ond_cnt))
ond_cnt = 0;
BUG_ON(static_cnt <= 0 || ond_cnt < 0);
if ((static_cnt + ond_cnt) > ARRAY_SIZE(pdata->regulator)) {
dev_err(dev, "%s: Num of supplies %u > max supported %u\n",
__func__, static_cnt, ARRAY_SIZE(pdata->regulator));
ret = -EINVAL;
goto err;
}
for (idx = 0; idx < static_cnt; idx++) {
ret = of_property_read_string_index(dev->of_node,
static_prop_name, idx,
&name);
if (ret) {
dev_err(dev, "%s: of read string %s idx %d error %d\n",
__func__, static_prop_name, idx, ret);
goto err;
}
dev_dbg(dev, "%s: Found static cdc supply %s\n", __func__,
name);
ret = msm8x10_wcd_dt_parse_vreg_info(dev,
&pdata->regulator[idx],
name, false);
if (ret)
goto err;
}
for (i = 0; i < ond_cnt; i++, idx++) {
ret = of_property_read_string_index(dev->of_node, ond_prop_name,
i, &name);
if (ret)
goto err;
dev_dbg(dev, "%s: Found on-demand cdc supply %s\n", __func__,
name);
ret = msm8x10_wcd_dt_parse_vreg_info(dev,
&pdata->regulator[idx],
name, true);
if (ret)
goto err;
}
ret = msm8x10_wcd_dt_parse_micbias_info(dev, &pdata->micbias);
if (ret)
goto err;
return pdata;
err:
devm_kfree(dev, pdata);
dev_err(dev, "%s: Failed to populate DT data ret = %d\n",
__func__, ret);
return NULL;
}
static int msm8x10_wcd_codec_enable_on_demand_supply(
struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
int ret = 0;
struct snd_soc_codec *codec = w->codec;
struct msm8x10_wcd_priv *msm8x10_wcd = snd_soc_codec_get_drvdata(codec);
struct on_demand_supply *supply;
if (w->shift >= ON_DEMAND_SUPPLIES_MAX) {
ret = -EINVAL;
goto out;
}
dev_dbg(codec->dev, "%s: supply: %s event: %d ref: %d\n",
__func__, on_demand_supply_name[w->shift], event,
atomic_read(&msm8x10_wcd->on_demand_list[w->shift].ref));
supply = &msm8x10_wcd->on_demand_list[w->shift];
WARN_ONCE(!supply->supply, "%s isn't defined\n",
on_demand_supply_name[w->shift]);
if (!supply->supply)
goto out;
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (atomic_inc_return(&supply->ref) == 1)
ret = regulator_enable(supply->supply);
if (ret)
dev_err(codec->dev, "%s: Failed to enable %s\n",
__func__,
on_demand_supply_name[w->shift]);
break;
case SND_SOC_DAPM_POST_PMD:
if (atomic_read(&supply->ref) == 0) {
dev_dbg(codec->dev, "%s: %s supply has been disabled.\n",
__func__, on_demand_supply_name[w->shift]);
goto out;
}
if (atomic_dec_return(&supply->ref) == 0)
ret = regulator_disable(supply->supply);
if (ret)
dev_err(codec->dev, "%s: Failed to disable %s\n",
__func__,
on_demand_supply_name[w->shift]);
break;
default:
break;
}
out:
return ret;
}
static int msm8x10_wcd_codec_enable_charge_pump(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
dev_dbg(codec->dev, "%s: event = %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
/* Enable charge pump clock*/
snd_soc_update_bits(codec, MSM8X10_WCD_A_CDC_CLK_OTHR_CTL,
0x01, 0x01);
snd_soc_update_bits(codec, MSM8X10_WCD_A_CDC_CLSG_CTL,
0x08, 0x08);
usleep_range(200, 300);
snd_soc_update_bits(codec, MSM8X10_WCD_A_CP_STATIC,
0x10, 0x00);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec,
MSM8X10_WCD_A_CDC_CLK_OTHR_RESET_B1_CTL,
0x01, 0x01);
usleep_range(20, 100);
snd_soc_update_bits(codec,
MSM8X10_WCD_A_CP_STATIC, 0x08, 0x08);
snd_soc_update_bits(codec,
MSM8X10_WCD_A_CP_STATIC, 0x10, 0x10);
snd_soc_update_bits(codec,
MSM8X10_WCD_A_CDC_CLSG_CTL, 0x08, 0x00);
snd_soc_update_bits(codec,
MSM8X10_WCD_A_CDC_CLK_OTHR_CTL, 0x01,
0x00);
snd_soc_update_bits(codec,
MSM8X10_WCD_A_CDC_CLK_OTHR_RESET_B1_CTL,
0x01, 0x00);
snd_soc_update_bits(codec,
MSM8X10_WCD_A_CP_STATIC, 0x08, 0x00);
break;
default:
break;
}
return 0;
}
static int msm8x10_wcd_pa_gain_get(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 ear_pa_gain;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
ear_pa_gain = snd_soc_read(codec, MSM8X10_WCD_A_RX_EAR_GAIN);
ear_pa_gain = ear_pa_gain >> 5;
if (ear_pa_gain == 0x00) {
ucontrol->value.integer.value[0] = 0;
} else if (ear_pa_gain == 0x04) {
ucontrol->value.integer.value[0] = 1;
} else {
dev_err(codec->dev, "%s: ERROR: Unsupported Ear Gain = 0x%x\n",
__func__, ear_pa_gain);
return -EINVAL;
}
dev_dbg(codec->dev, "%s: ear_pa_gain = 0x%x\n", __func__, ear_pa_gain);
return 0;
}
static int msm8x10_wcd_pa_gain_put(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
u8 ear_pa_gain;
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
dev_dbg(codec->dev, "%s: ucontrol->value.integer.value[0] = %ld\n",
__func__, ucontrol->value.integer.value[0]);
switch (ucontrol->value.integer.value[0]) {
case 0:
ear_pa_gain = 0x00;
break;
case 1:
ear_pa_gain = 0x80;
break;
default:
return -EINVAL;
}
snd_soc_update_bits(codec, MSM8X10_WCD_A_RX_EAR_GAIN,
0xE0, ear_pa_gain);
return 0;
}
static int msm8x10_wcd_get_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
(snd_soc_read(codec,
(MSM8X10_WCD_A_CDC_IIR1_CTL + 64 * iir_idx)) &
(1 << band_idx)) != 0;
dev_dbg(codec->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0]);
return 0;
}
static int msm8x10_wcd_put_iir_enable_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
int value = ucontrol->value.integer.value[0];
/* Mask first 5 bits, 6-8 are reserved */
snd_soc_update_bits(codec, (MSM8X10_WCD_A_CDC_IIR1_CTL + 64 * iir_idx),
(1 << band_idx), (value << band_idx));
dev_dbg(codec->dev, "%s: IIR #%d band #%d enable %d\n", __func__,
iir_idx, band_idx,
((snd_soc_read(codec, (MSM8X10_WCD_A_CDC_IIR1_CTL + 64 * iir_idx)) &
(1 << band_idx)) != 0));
return 0;
}
static uint32_t get_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
int coeff_idx)
{
uint32_t value = 0;
/* Address does not automatically update if reading */
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t)) & 0x7F);
value |= snd_soc_read(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx));
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 1) & 0x7F);
value |= (snd_soc_read(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 8);
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 2) & 0x7F);
value |= (snd_soc_read(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)) << 16);
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
((band_idx * BAND_MAX + coeff_idx)
* sizeof(uint32_t) + 3) & 0x7F);
/* Mask bits top 2 bits since they are reserved */
value |= ((snd_soc_read(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx)) & 0x3f) << 24);
return value;
}
static int msm8x10_wcd_get_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
ucontrol->value.integer.value[0] =
get_iir_band_coeff(codec, iir_idx, band_idx, 0);
ucontrol->value.integer.value[1] =
get_iir_band_coeff(codec, iir_idx, band_idx, 1);
ucontrol->value.integer.value[2] =
get_iir_band_coeff(codec, iir_idx, band_idx, 2);
ucontrol->value.integer.value[3] =
get_iir_band_coeff(codec, iir_idx, band_idx, 3);
ucontrol->value.integer.value[4] =
get_iir_band_coeff(codec, iir_idx, band_idx, 4);
dev_dbg(codec->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[0],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[1],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[2],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[3],
__func__, iir_idx, band_idx,
(uint32_t)ucontrol->value.integer.value[4]);
return 0;
}
static void set_iir_band_coeff(struct snd_soc_codec *codec,
int iir_idx, int band_idx,
uint32_t value)
{
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value & 0xFF));
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 8) & 0xFF);
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 16) & 0xFF);
/* Mask top 2 bits, 7-8 are reserved */
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B2_CTL + 64 * iir_idx),
(value >> 24) & 0x3F);
}
static int msm8x10_wcd_put_iir_band_audio_mixer(
struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
int iir_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->reg;
int band_idx = ((struct soc_multi_mixer_control *)
kcontrol->private_value)->shift;
/* Mask top bit it is reserved */
/* Updates addr automatically for each B2 write */
snd_soc_write(codec,
(MSM8X10_WCD_A_CDC_IIR1_COEF_B1_CTL + 64 * iir_idx),
(band_idx * BAND_MAX * sizeof(uint32_t)) & 0x7F);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[0]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[1]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[2]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[3]);
set_iir_band_coeff(codec, iir_idx, band_idx,
ucontrol->value.integer.value[4]);
dev_dbg(codec->dev, "%s: IIR #%d band #%d b0 = 0x%x\n"
"%s: IIR #%d band #%d b1 = 0x%x\n"
"%s: IIR #%d band #%d b2 = 0x%x\n"
"%s: IIR #%d band #%d a1 = 0x%x\n"
"%s: IIR #%d band #%d a2 = 0x%x\n",
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 0),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 1),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 2),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 3),
__func__, iir_idx, band_idx,
get_iir_band_coeff(codec, iir_idx, band_idx, 4));
return 0;
}
static const char * const msm8x10_wcd_ear_pa_gain_text[] = {
"POS_6_DB", "POS_2_DB"};
static const struct soc_enum msm8x10_wcd_ear_pa_gain_enum[] = {
SOC_ENUM_SINGLE_EXT(2, msm8x10_wcd_ear_pa_gain_text),
};
/*cut of frequency for high pass filter*/
static const char * const cf_text[] = {
"MIN_3DB_4Hz", "MIN_3DB_75Hz", "MIN_3DB_150Hz"
};
static const struct soc_enum cf_dec1_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_TX1_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_dec2_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_TX2_MUX_CTL, 4, 3, cf_text);
static const struct soc_enum cf_rxmix1_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_RX1_B4_CTL, 0, 3, cf_text);
static const struct soc_enum cf_rxmix2_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_RX2_B4_CTL, 0, 3, cf_text);
static const struct soc_enum cf_rxmix3_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_RX3_B4_CTL, 0, 3, cf_text);
static const struct snd_kcontrol_new msm8x10_wcd_snd_controls[] = {
SOC_ENUM_EXT("EAR PA Gain", msm8x10_wcd_ear_pa_gain_enum[0],
msm8x10_wcd_pa_gain_get, msm8x10_wcd_pa_gain_put),
SOC_SINGLE_TLV("LINEOUT Volume", MSM8X10_WCD_A_RX_LINE_1_GAIN,
0, 12, 1, line_gain),
SOC_SINGLE_TLV("HPHL Volume", MSM8X10_WCD_A_RX_HPH_L_GAIN,
0, 12, 1, line_gain),
SOC_SINGLE_TLV("HPHR Volume", MSM8X10_WCD_A_RX_HPH_R_GAIN,
0, 12, 1, line_gain),
SOC_SINGLE_S8_TLV("RX1 Digital Volume",
MSM8X10_WCD_A_CDC_RX1_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX2 Digital Volume",
MSM8X10_WCD_A_CDC_RX2_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("RX3 Digital Volume",
MSM8X10_WCD_A_CDC_RX3_VOL_CTL_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("DEC1 Volume",
MSM8X10_WCD_A_CDC_TX1_VOL_CTL_GAIN,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("DEC2 Volume",
MSM8X10_WCD_A_CDC_TX2_VOL_CTL_GAIN,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP1 Volume",
MSM8X10_WCD_A_CDC_IIR1_GAIN_B1_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP2 Volume",
MSM8X10_WCD_A_CDC_IIR1_GAIN_B2_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP3 Volume",
MSM8X10_WCD_A_CDC_IIR1_GAIN_B3_CTL,
-84, 40, digital_gain),
SOC_SINGLE_S8_TLV("IIR1 INP4 Volume",
MSM8X10_WCD_A_CDC_IIR1_GAIN_B4_CTL,
-84, 40, digital_gain),
SOC_ENUM("TX1 HPF cut off", cf_dec1_enum),
SOC_ENUM("TX2 HPF cut off", cf_dec2_enum),
SOC_SINGLE("TX1 HPF Switch", MSM8X10_WCD_A_CDC_TX1_MUX_CTL, 3, 1, 0),
SOC_SINGLE("TX2 HPF Switch", MSM8X10_WCD_A_CDC_TX2_MUX_CTL, 3, 1, 0),
SOC_SINGLE("RX1 HPF Switch", MSM8X10_WCD_A_CDC_RX1_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX2 HPF Switch", MSM8X10_WCD_A_CDC_RX2_B5_CTL, 2, 1, 0),
SOC_SINGLE("RX3 HPF Switch", MSM8X10_WCD_A_CDC_RX3_B5_CTL, 2, 1, 0),
SOC_ENUM("RX1 HPF cut off", cf_rxmix1_enum),
SOC_ENUM("RX2 HPF cut off", cf_rxmix2_enum),
SOC_ENUM("RX3 HPF cut off", cf_rxmix3_enum),
SOC_SINGLE_EXT("IIR1 Enable Band1", IIR1, BAND1, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band2", IIR1, BAND2, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band3", IIR1, BAND3, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band4", IIR1, BAND4, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR1 Enable Band5", IIR1, BAND5, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band1", IIR2, BAND1, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band2", IIR2, BAND2, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band3", IIR2, BAND3, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band4", IIR2, BAND4, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_EXT("IIR2 Enable Band5", IIR2, BAND5, 1, 0,
msm8x10_wcd_get_iir_enable_audio_mixer,
msm8x10_wcd_put_iir_enable_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band1", IIR1, BAND1, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band2", IIR1, BAND2, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band3", IIR1, BAND3, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band4", IIR1, BAND4, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR1 Band5", IIR1, BAND5, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band1", IIR2, BAND1, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band2", IIR2, BAND2, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band3", IIR2, BAND3, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band4", IIR2, BAND4, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
SOC_SINGLE_MULTI_EXT("IIR2 Band5", IIR2, BAND5, 255, 0, 5,
msm8x10_wcd_get_iir_band_audio_mixer,
msm8x10_wcd_put_iir_band_audio_mixer),
};
static const char * const rx_mix1_text[] = {
"ZERO", "IIR1", "IIR2", "RX1", "RX2", "RX3"
};
static const char * const rx_mix2_text[] = {
"ZERO", "IIR1", "IIR2"
};
static const char * const dec_mux_text[] = {
"ZERO", "ADC1", "ADC2", "DMIC1", "DMIC2"
};
static const char * const adc2_mux_text[] = {
"ZERO", "INP2", "INP3"
};
static const char * const iir1_inp1_text[] = {
"ZERO", "DEC1", "DEC2", "RX1", "RX2", "RX3"
};
/*
* There is only one bit to select RX2 (0) or RX3 (1) so add 'ZERO' won't
* cause any issue to select the right input, but it eliminates that lineout
* is powered-up when HPH is enabled if the 'ZERO" is used in the disable
* sequence for lineout.
*/
static const char * const rx_rdac4_text[] = {
"ZERO", "RX3", "RX2"
};
static const char * const rx_rdac3_text[] = {
"RX1", "RX2"
};
static const struct soc_enum rx_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX1_B1_CTL, 0, 6, rx_mix1_text);
static const struct soc_enum rx_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX1_B1_CTL, 3, 6, rx_mix1_text);
static const struct soc_enum rx_mix1_inp3_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX1_B2_CTL, 0, 6, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX2_B1_CTL, 0, 6, rx_mix1_text);
static const struct soc_enum rx2_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX2_B1_CTL, 3, 6, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX3_B1_CTL, 0, 6, rx_mix1_text);
static const struct soc_enum rx3_mix1_inp2_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX3_B1_CTL, 3, 6, rx_mix1_text);
static const struct soc_enum rx1_mix2_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX1_B3_CTL, 0, 3, rx_mix2_text);
static const struct soc_enum rx2_mix2_inp1_chain_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_RX2_B3_CTL, 0, 3, rx_mix2_text);
static const struct soc_enum dec1_mux_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_TX_B1_CTL, 0, 5, dec_mux_text);
static const struct soc_enum dec2_mux_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_TX_B1_CTL, 3, 5, dec_mux_text);
static const struct soc_enum iir1_inp1_mux_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_EQ1_B1_CTL, 0, 6,
iir1_inp1_text);
static const struct soc_enum rx_rdac4_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_LO_DAC_CTL, 0, 3,
rx_rdac4_text);
static const struct soc_enum rx_rdac3_enum =
SOC_ENUM_SINGLE(MSM8X10_WCD_A_CDC_CONN_HPHR_DAC_CTL, 0, 2,
rx_rdac3_text);
static const struct soc_enum adc2_enum =
SOC_ENUM_SINGLE_EXT(ARRAY_SIZE(adc2_mux_text), adc2_mux_text);
static const struct snd_kcontrol_new rx_mix1_inp1_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP1 Mux", rx_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx_mix1_inp2_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP2 Mux", rx_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx_mix1_inp3_mux =
SOC_DAPM_ENUM("RX1 MIX1 INP3 Mux", rx_mix1_inp3_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp1_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP1 Mux", rx2_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx2_mix1_inp2_mux =
SOC_DAPM_ENUM("RX2 MIX1 INP2 Mux", rx2_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp1_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP1 Mux", rx3_mix1_inp1_chain_enum);
static const struct snd_kcontrol_new rx3_mix1_inp2_mux =
SOC_DAPM_ENUM("RX3 MIX1 INP2 Mux", rx3_mix1_inp2_chain_enum);
static const struct snd_kcontrol_new rx1_mix2_inp1_mux =
SOC_DAPM_ENUM("RX1 MIX2 INP1 Mux", rx1_mix2_inp1_chain_enum);
static const struct snd_kcontrol_new rx2_mix2_inp1_mux =
SOC_DAPM_ENUM("RX2 MIX2 INP1 Mux", rx2_mix2_inp1_chain_enum);
static const struct snd_kcontrol_new rx_dac4_mux =
SOC_DAPM_ENUM("RDAC4 MUX Mux", rx_rdac4_enum);
static const struct snd_kcontrol_new rx_dac3_mux =
SOC_DAPM_ENUM("RDAC3 MUX Mux", rx_rdac3_enum);
static const struct snd_kcontrol_new tx_adc2_mux =
SOC_DAPM_ENUM("ADC2 MUX Mux", adc2_enum);
static int msm8x10_wcd_put_dec_enum(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
struct snd_soc_dapm_widget *w = wlist->widgets[0];
struct snd_soc_codec *codec = w->codec;
struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
unsigned int dec_mux, decimator;
char *dec_name = NULL;
char *widget_name = NULL;
char *temp;
u16 tx_mux_ctl_reg;
u8 adc_dmic_sel = 0x0;
int ret = 0;
if (ucontrol->value.enumerated.item[0] > e->max - 1)
return -EINVAL;
dec_mux = ucontrol->value.enumerated.item[0];
widget_name = kstrndup(w->name, 15, GFP_KERNEL);
if (!widget_name)
return -ENOMEM;
temp = widget_name;
dec_name = strsep(&widget_name, " ");
widget_name = temp;
if (!dec_name) {
dev_err(codec->dev, "%s: Invalid decimator = %s\n",
__func__, w->name);
ret = -EINVAL;
goto out;
}
ret = kstrtouint(strpbrk(dec_name, "12"), 10, &decimator);
if (ret < 0) {
dev_err(codec->dev, "%s: Invalid decimator = %s\n",
__func__, dec_name);
ret = -EINVAL;
goto out;
}
dev_dbg(w->dapm->dev, "%s(): widget = %s decimator = %u dec_mux = %u\n"
, __func__, w->name, decimator, dec_mux);
switch (decimator) {
case 1:
case 2:
if ((dec_mux == 3) || (dec_mux == 4))
adc_dmic_sel = 0x1;
else
adc_dmic_sel = 0x0;
break;
default:
dev_err(codec->dev, "%s: Invalid Decimator = %u\n",
__func__, decimator);
ret = -EINVAL;
goto out;
}
tx_mux_ctl_reg = MSM8X10_WCD_A_CDC_TX1_MUX_CTL + 32 * (decimator - 1);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x1, adc_dmic_sel);
ret = snd_soc_dapm_put_enum_double(kcontrol, ucontrol);
out:
kfree(widget_name);
return ret;
}
#define MSM8X10_WCD_DEC_ENUM(xname, xenum) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
.info = snd_soc_info_enum_double, \
.get = snd_soc_dapm_get_enum_double, \
.put = msm8x10_wcd_put_dec_enum, \
.private_value = (unsigned long)&xenum }
static const struct snd_kcontrol_new dec1_mux =
MSM8X10_WCD_DEC_ENUM("DEC1 MUX Mux", dec1_mux_enum);
static const struct snd_kcontrol_new dec2_mux =
MSM8X10_WCD_DEC_ENUM("DEC2 MUX Mux", dec2_mux_enum);
static const struct snd_kcontrol_new iir1_inp1_mux =
SOC_DAPM_ENUM("IIR1 INP1 Mux", iir1_inp1_mux_enum);
static const struct snd_kcontrol_new dac1_switch[] = {
SOC_DAPM_SINGLE("Switch", MSM8X10_WCD_A_RX_EAR_EN, 5, 1, 0)
};
static const struct snd_kcontrol_new hphl_switch[] = {
SOC_DAPM_SINGLE("Switch", MSM8X10_WCD_A_RX_HPH_L_DAC_CTL, 6, 1, 0)
};
static const struct snd_kcontrol_new spkr_switch[] = {
SOC_DAPM_SINGLE("Switch", MSM8X10_WCD_A_SPKR_DRV_DAC_CTL, 2, 1, 0)
};
static void msm8x10_wcd_codec_enable_adc_block(struct snd_soc_codec *codec,
int enable)
{
struct msm8x10_wcd_priv *wcd8x10 = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s %d\n", __func__, enable);
if (enable) {
wcd8x10->adc_count++;
snd_soc_update_bits(codec,
MSM8X10_WCD_A_CDC_ANA_CLK_CTL,
0x20, 0x20);
} else
wcd8x10->adc_count--;
}
static int msm8x10_wcd_codec_enable_adc(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 adc_reg;
u8 init_bit_shift;
dev_dbg(codec->dev, "%s %d\n", __func__, event);
adc_reg = MSM8X10_WCD_A_TX_1_2_TEST_CTL;
if (w->reg == MSM8X10_WCD_A_TX_1_EN)
init_bit_shift = 7;
else if ((w->reg == MSM8X10_WCD_A_TX_2_EN) ||
(w->reg == MSM8X10_WCD_A_TX_3_EN))
init_bit_shift = 6;
else {
dev_err(codec->dev, "%s: Error, invalid adc register\n",
__func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
msm8x10_wcd_codec_enable_adc_block(codec, 1);
snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift,
1 << init_bit_shift);
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
break;
case SND_SOC_DAPM_POST_PMU:
snd_soc_update_bits(codec, adc_reg, 1 << init_bit_shift, 0x00);
usleep_range(CODEC_DELAY_1_MS, CODEC_DELAY_1_1_MS);
break;
case SND_SOC_DAPM_POST_PMD:
msm8x10_wcd_codec_enable_adc_block(codec, 0);
break;
}
return 0;
}
static int msm8x10_wcd_codec_enable_lineout(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
u16 lineout_gain_reg;
dev_dbg(codec->dev, "%s %d %s\n", __func__, event, w->name);
switch (w->shift) {
case 0:
lineout_gain_reg = MSM8X10_WCD_A_RX_LINE_1_GAIN;
break;
default:
dev_err(codec->dev,
"%s: Error, incorrect lineout register value\n",
__func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, lineout_gain_reg, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMU:
dev_dbg(codec->dev, "%s: sleeping 16 ms after %s PA turn on\n",
__func__, w->name);
usleep_range(16000, 16100);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, lineout_gain_reg, 0x40, 0x00);
break;
}
return 0;
}
static int msm8x10_wcd_codec_enable_spk_pa(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
dev_dbg(w->codec->dev, "%s %d %s\n", __func__, event, w->name);
return 0;
}
static int msm8x10_wcd_codec_enable_dmic(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x10_wcd_priv *msm8x10_wcd = snd_soc_codec_get_drvdata(codec);
u8 dmic_clk_en;
u16 dmic_clk_reg;
s32 *dmic_clk_cnt;
unsigned int dmic;
int ret;
ret = kstrtouint(strpbrk(w->name, "12"), 10, &dmic);
if (ret < 0) {
dev_err(codec->dev,
"%s: Invalid DMIC line on the codec\n", __func__);
return -EINVAL;
}
switch (dmic) {
case 1:
case 2:
dmic_clk_en = 0x01;
dmic_clk_cnt = &(msm8x10_wcd->dmic_1_2_clk_cnt);
dmic_clk_reg = MSM8X10_WCD_A_CDC_CLK_DMIC_B1_CTL;
dev_dbg(codec->dev,
"%s() event %d DMIC%d dmic_1_2_clk_cnt %d\n",
__func__, event, dmic, *dmic_clk_cnt);
break;
default:
dev_err(codec->dev, "%s: Invalid DMIC Selection\n", __func__);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
(*dmic_clk_cnt)++;
if (*dmic_clk_cnt == 1)
snd_soc_update_bits(codec, dmic_clk_reg,
dmic_clk_en, dmic_clk_en);
break;
case SND_SOC_DAPM_POST_PMD:
(*dmic_clk_cnt)--;
if (*dmic_clk_cnt == 0)
snd_soc_update_bits(codec, dmic_clk_reg,
dmic_clk_en, 0);
break;
}
return 0;
}
static int msm8x10_wcd_codec_enable_micbias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x10_wcd_priv *msm8x10_wcd = snd_soc_codec_get_drvdata(codec);
u16 micb_int_reg;
char *internal1_text = "Internal1";
char *internal2_text = "Internal2";
char *internal3_text = "Internal3";
enum wcd9xxx_notify_event e_post_off, e_pre_on, e_post_on;
dev_dbg(codec->dev, "%s %d\n", __func__, event);
switch (w->reg) {
case MSM8X10_WCD_A_MICB_1_CTL:
micb_int_reg = MSM8X10_WCD_A_MICB_1_INT_RBIAS;
e_pre_on = WCD9XXX_EVENT_PRE_MICBIAS_1_ON;
e_post_on = WCD9XXX_EVENT_POST_MICBIAS_1_ON;
e_post_off = WCD9XXX_EVENT_POST_MICBIAS_1_OFF;
break;
default:
dev_err(codec->dev,
"%s: Error, invalid micbias register 0x%x\n",
__func__, w->reg);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Let MBHC module know micbias is about to turn ON */
wcd9xxx_resmgr_notifier_call(&msm8x10_wcd->resmgr, e_pre_on);
if (strnstr(w->name, internal1_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x80, 0x80);
else if (strnstr(w->name, internal2_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x10, 0x10);
else if (strnstr(w->name, internal3_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x2, 0x2);
/* Always pull up TxFe for TX2 to Micbias */
snd_soc_update_bits(codec, micb_int_reg, 0x04, 0x04);
snd_soc_update_bits(codec, MSM8X10_WCD_A_MICB_1_CTL,
0x80, 0x80);
break;
case SND_SOC_DAPM_POST_PMU:
usleep_range(20000, 20100);
/* Let MBHC module know so micbias is on */
wcd9xxx_resmgr_notifier_call(&msm8x10_wcd->resmgr, e_post_on);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, MSM8X10_WCD_A_MICB_1_CTL,
0x80, 0x00);
/* Let MBHC module know so micbias switch to be off */
wcd9xxx_resmgr_notifier_call(&msm8x10_wcd->resmgr, e_post_off);
if (strnstr(w->name, internal1_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x80, 0x00);
else if (strnstr(w->name, internal2_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x10, 0x00);
else if (strnstr(w->name, internal3_text, 30))
snd_soc_update_bits(codec, micb_int_reg, 0x2, 0x0);
/* Disable pull up TxFe for TX2 to Micbias */
snd_soc_update_bits(codec, micb_int_reg, 0x04, 0x00);
break;
}
return 0;
}
static void tx_hpf_corner_freq_callback(struct work_struct *work)
{
struct delayed_work *hpf_delayed_work;
struct hpf_work *hpf_work;
struct msm8x10_wcd_priv *msm8x10_wcd;
struct snd_soc_codec *codec;
u16 tx_mux_ctl_reg;
u8 hpf_cut_of_freq;
hpf_delayed_work = to_delayed_work(work);
hpf_work = container_of(hpf_delayed_work, struct hpf_work, dwork);
msm8x10_wcd = hpf_work->msm8x10_wcd;
codec = hpf_work->msm8x10_wcd->codec;
hpf_cut_of_freq = hpf_work->tx_hpf_cut_of_freq;
tx_mux_ctl_reg = MSM8X10_WCD_A_CDC_TX1_MUX_CTL +
(hpf_work->decimator - 1) * 32;
dev_info(codec->dev, "%s(): decimator %u hpf_cut_of_freq 0x%x\n",
__func__, hpf_work->decimator, (unsigned int)hpf_cut_of_freq);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30, hpf_cut_of_freq << 4);
}
#define TX_MUX_CTL_CUT_OFF_FREQ_MASK 0x30
#define CF_MIN_3DB_4HZ 0x0
#define CF_MIN_3DB_75HZ 0x1
#define CF_MIN_3DB_150HZ 0x2
static int msm8x10_wcd_codec_enable_dec(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
unsigned int decimator;
char *dec_name = NULL;
char *widget_name = NULL;
char *temp;
int ret = 0;
u16 dec_reset_reg, tx_vol_ctl_reg, tx_mux_ctl_reg;
u8 dec_hpf_cut_of_freq;
int offset;
dev_dbg(codec->dev, "%s %d\n", __func__, event);
widget_name = kstrndup(w->name, 15, GFP_KERNEL);
if (!widget_name)
return -ENOMEM;
temp = widget_name;
dec_name = strsep(&widget_name, " ");
widget_name = temp;
if (!dec_name) {
dev_err(codec->dev,
"%s: Invalid decimator = %s\n", __func__, w->name);
ret = -EINVAL;
goto out;
}
ret = kstrtouint(strpbrk(dec_name, "12"), 10, &decimator);
if (ret < 0) {
dev_err(codec->dev,
"%s: Invalid decimator = %s\n", __func__, dec_name);
ret = -EINVAL;
goto out;
}
dev_dbg(codec->dev,
"%s(): widget = %s dec_name = %s decimator = %u\n", __func__,
w->name, dec_name, decimator);
if (w->reg == MSM8X10_WCD_A_CDC_CLK_TX_CLK_EN_B1_CTL) {
dec_reset_reg = MSM8X10_WCD_A_CDC_CLK_TX_RESET_B1_CTL;
offset = 0;
} else {
dev_err(codec->dev, "%s: Error, incorrect dec\n", __func__);
ret = -EINVAL;
goto out;
}
tx_vol_ctl_reg = MSM8X10_WCD_A_CDC_TX1_VOL_CTL_CFG +
32 * (decimator - 1);
tx_mux_ctl_reg = MSM8X10_WCD_A_CDC_TX1_MUX_CTL +
32 * (decimator - 1);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Enableable TX digital mute */
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01);
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift,
1 << w->shift);
snd_soc_update_bits(codec, dec_reset_reg, 1 << w->shift, 0x0);
dec_hpf_cut_of_freq = snd_soc_read(codec, tx_mux_ctl_reg);
dec_hpf_cut_of_freq = (dec_hpf_cut_of_freq & 0x30) >> 4;
tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq =
dec_hpf_cut_of_freq;
if ((dec_hpf_cut_of_freq != CF_MIN_3DB_150HZ)) {
/* set cut of freq to CF_MIN_3DB_150HZ (0x1); */
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30,
CF_MIN_3DB_150HZ << 4);
}
/* enable HPF */
snd_soc_update_bits(codec, tx_mux_ctl_reg , 0x08, 0x00);
break;
case SND_SOC_DAPM_POST_PMU:
/* Disable TX digital mute */
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x00);
if (tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq !=
CF_MIN_3DB_150HZ) {
schedule_delayed_work(&tx_hpf_work[decimator - 1].dwork,
msecs_to_jiffies(300));
}
/* apply the digital gain after the decimator is enabled*/
if ((w->shift) < ARRAY_SIZE(tx_digital_gain_reg))
snd_soc_write(codec,
tx_digital_gain_reg[w->shift + offset],
snd_soc_read(codec,
tx_digital_gain_reg[w->shift + offset])
);
break;
case SND_SOC_DAPM_PRE_PMD:
snd_soc_update_bits(codec, tx_vol_ctl_reg, 0x01, 0x01);
cancel_delayed_work_sync(&tx_hpf_work[decimator - 1].dwork);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x08, 0x08);
snd_soc_update_bits(codec, tx_mux_ctl_reg, 0x30,
(tx_hpf_work[decimator - 1].tx_hpf_cut_of_freq) << 4);
break;
}
out:
kfree(widget_name);
return ret;
}
static int msm8x10_wcd_codec_enable_interpolator(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol,
int event)
{
struct snd_soc_codec *codec = w->codec;
dev_dbg(codec->dev, "%s %d %s\n", __func__, event, w->name);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, MSM8X10_WCD_A_CDC_CLK_RX_RESET_CTL,
1 << w->shift, 1 << w->shift);
snd_soc_update_bits(codec, MSM8X10_WCD_A_CDC_CLK_RX_RESET_CTL,
1 << w->shift, 0x0);
break;
case SND_SOC_DAPM_POST_PMU:
/* apply the digital gain after the interpolator is enabled*/
if ((w->shift) < ARRAY_SIZE(rx_digital_gain_reg))
snd_soc_write(codec,
rx_digital_gain_reg[w->shift],
snd_soc_read(codec,
rx_digital_gain_reg[w->shift])
);
break;
}
return 0;
}
/* The register address is the same as other codec so it can use resmgr */
static int msm8x10_wcd_codec_enable_rx_bias(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x10_wcd_priv *msm8x10_wcd = snd_soc_codec_get_drvdata(codec);
msm8x10_wcd->resmgr.codec = codec;
dev_dbg(codec->dev, "%s %d\n", __func__, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
wcd9xxx_resmgr_enable_rx_bias(&msm8x10_wcd->resmgr, 1);
break;
case SND_SOC_DAPM_POST_PMD:
wcd9xxx_resmgr_enable_rx_bias(&msm8x10_wcd->resmgr, 0);
break;
}
return 0;
}
static int msm8x10_wcd_hphr_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
dev_dbg(codec->dev, "%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, w->reg, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, w->reg, 0x40, 0x00);
break;
}
return 0;
}
static int msm8x10_wcd_hph_pa_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
struct msm8x10_wcd_priv *msm8x10_wcd = snd_soc_codec_get_drvdata(codec);
enum wcd9xxx_notify_event e_pre_on, e_post_off;
dev_dbg(codec->dev, "%s: %s event = %d\n", __func__, w->name, event);
if (w->shift == 5) {
e_pre_on = WCD9XXX_EVENT_PRE_HPHR_PA_ON;
e_post_off = WCD9XXX_EVENT_POST_HPHR_PA_OFF;
} else if (w->shift == 4) {
e_pre_on = WCD9XXX_EVENT_PRE_HPHL_PA_ON;
e_post_off = WCD9XXX_EVENT_POST_HPHL_PA_OFF;
} else {
dev_err(codec->dev,
"%s: Invalid w->shift %d\n", __func__, w->shift);
return -EINVAL;
}
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Let MBHC module know PA is turning on */
wcd9xxx_resmgr_notifier_call(&msm8x10_wcd->resmgr, e_pre_on);
break;
case SND_SOC_DAPM_POST_PMU:
usleep_range(10000, 10100);
break;
case SND_SOC_DAPM_POST_PMD:
/* Let MBHC module know PA turned off */
wcd9xxx_resmgr_notifier_call(&msm8x10_wcd->resmgr, e_post_off);
dev_dbg(codec->dev,
"%s: sleep 10 ms after %s PA disable.\n", __func__,
w->name);
usleep_range(10000, 10100);
break;
}
return 0;
}
static int msm8x10_wcd_lineout_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_codec *codec = w->codec;
dev_dbg(codec->dev, "%s %s %d\n", __func__, w->name, event);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
snd_soc_update_bits(codec, w->reg, 0x40, 0x40);
break;
case SND_SOC_DAPM_POST_PMD:
snd_soc_update_bits(codec, w->reg, 0x40, 0x00);
break;
}
return 0;
}
static const struct snd_soc_dapm_route audio_map[] = {
{"RX_I2S_CLK", NULL, "CDC_CONN"},
{"I2S RX1", NULL, "RX_I2S_CLK"},
{"I2S RX2", NULL, "RX_I2S_CLK"},
{"I2S RX3", NULL, "RX_I2S_CLK"},
{"I2S TX1", NULL, "TX_I2S_CLK"},
{"I2S TX2", NULL, "TX_I2S_CLK"},
{"I2S TX1", NULL, "DEC1 MUX"},
{"I2S TX2", NULL, "DEC2 MUX"},
/* Earpiece (RX MIX1) */
{"EAR", NULL, "EAR PA"},
{"EAR PA", NULL, "DAC1"},
{"DAC1", NULL, "CP"},
/* Clocks for playback path */
{"DAC1", NULL, "EAR CLK"},
{"HPHL DAC", NULL, "HPHL CLK"},
{"HPHR DAC", NULL, "HPHR CLK"},
{"SPK DAC", NULL, "SPK CLK"},
{"LINEOUT DAC", NULL, "LINEOUT CLK"},
/* Headset (RX MIX1 and RX MIX2) */
{"HEADPHONE", NULL, "HPHL"},
{"HEADPHONE", NULL, "HPHR"},
{"HPHL", NULL, "HPHL DAC"},
{"HPHR", NULL, "HPHR DAC"},
{"HPHL DAC", NULL, "CP"},
{"HPHR DAC", NULL, "CP"},
{"SPK DAC", NULL, "CP"},
{"DAC1", "Switch", "RX1 CHAIN"},
{"HPHL DAC", "Switch", "RX1 CHAIN"},
{"HPHR DAC", NULL, "RDAC3 MUX"},
{"RDAC3 MUX", "RX1", "RX1 CHAIN"},
{"RDAC3 MUX", "RX2", "RX2 CHAIN"},
{"LINEOUT", NULL, "LINEOUT PA"},
{"SPK_OUT", NULL, "SPK PA"},
{"LINEOUT PA", NULL, "CP"},
{"LINEOUT PA", NULL, "LINEOUT DAC"},
{"LINEOUT DAC", NULL, "RDAC4 MUX"},
{"RDAC4 MUX", "RX2", "RX2 CHAIN"},
{"RDAC4 MUX", "RX3", "RX3 CHAIN"},
{"CP", NULL, "CP_REGULATOR"},
{"CP", NULL, "RX_BIAS"},
{"SPK PA", NULL, "SPK DAC"},
{"SPK DAC", "Switch", "RX3 CHAIN"},
{"RX1 CHAIN", NULL, "RX1 CLK"},
{"RX2 CHAIN", NULL, "RX2 CLK"},
{"RX3 CHAIN", NULL, "RX3 CLK"},
{"RX1 CHAIN", NULL, "RX1 MIX2"},
{"RX2 CHAIN", NULL, "RX2 MIX2"},
{"RX3 CHAIN", NULL, "RX3 MIX1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP1"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP2"},
{"RX1 MIX1", NULL, "RX1 MIX1 INP3"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP1"},
{"RX2 MIX1", NULL, "RX2 MIX1 INP2"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP1"},
{"RX3 MIX1", NULL, "RX3 MIX1 INP2"},
{"RX1 MIX2", NULL, "RX1 MIX1"},
{"RX1 MIX2", NULL, "RX1 MIX2 INP1"},
{"RX2 MIX2", NULL, "RX2 MIX1"},
{"RX2 MIX2", NULL, "RX2 MIX2 INP1"},
{"RX1 MIX1 INP1", "RX1", "I2S RX1"},
{"RX1 MIX1 INP1", "RX2", "I2S RX2"},
{"RX1 MIX1 INP1", "RX3", "I2S RX3"},
{"RX1 MIX1 INP1", "IIR1", "IIR1"},
{"RX1 MIX1 INP2", "RX1", "I2S RX1"},
{"RX1 MIX1 INP2", "RX2", "I2S RX2"},
{"RX1 MIX1 INP2", "RX3", "I2S RX3"},
{"RX1 MIX1 INP2", "IIR1", "IIR1"},
{"RX1 MIX1 INP3", "RX1", "I2S RX1"},
{"RX1 MIX1 INP3", "RX2", "I2S RX2"},
{"RX1 MIX1 INP3", "RX3", "I2S RX3"},
{"RX2 MIX1 INP1", "RX1", "I2S RX1"},
{"RX2 MIX1 INP1", "RX2", "I2S RX2"},
{"RX2 MIX1 INP1", "RX3", "I2S RX3"},
{"RX2 MIX1 INP1", "IIR1", "IIR1"},
{"RX2 MIX1 INP2", "RX1", "I2S RX1"},
{"RX2 MIX1 INP2", "RX2", "I2S RX2"},
{"RX2 MIX1 INP2", "RX3", "I2S RX3"},
{"RX2 MIX1 INP2", "IIR1", "IIR1"},
{"RX3 MIX1 INP1", "RX1", "I2S RX1"},
{"RX3 MIX1 INP1", "RX2", "I2S RX2"},
{"RX3 MIX1 INP1", "RX3", "I2S RX3"},
{"RX3 MIX1 INP1", "IIR1", "IIR1"},
{"RX3 MIX1 INP2", "RX1", "I2S RX1"},
{"RX3 MIX1 INP2", "RX2", "I2S RX2"},
{"RX3 MIX1 INP2", "RX3", "I2S RX3"},
{"RX3 MIX1 INP2", "IIR1", "IIR1"},
{"RX1 MIX2 INP1", "IIR1", "IIR1"},
{"RX2 MIX2 INP1", "IIR1", "IIR1"},
/* Decimator Inputs */
{"DEC1 MUX", "DMIC1", "DMIC1"},
{"DEC1 MUX", "DMIC2", "DMIC2"},
{"DEC1 MUX", "ADC1", "ADC1"},
{"DEC1 MUX", "ADC2", "ADC2"},
{"DEC1 MUX", NULL, "CDC_CONN"},
{"DEC2 MUX", "DMIC1", "DMIC1"},
{"DEC2 MUX", "DMIC2", "DMIC2"},
{"DEC2 MUX", "ADC1", "ADC1"},
{"DEC2 MUX", "ADC2", "ADC2"},
{"DEC2 MUX", NULL, "CDC_CONN"},
{"ADC2", NULL, "ADC2 MUX"},
{"ADC2 MUX", "INP2", "ADC2_INP2"},
{"ADC2 MUX", "INP3", "ADC2_INP3"},
/* ADC Connections */
{"ADC1", NULL, "AMIC1"},
{"ADC2_INP2", NULL, "AMIC2"},
{"ADC2_INP3", NULL, "AMIC3"},
{"IIR1", NULL, "IIR1 INP1 MUX"},
{"IIR1 INP1 MUX", "DEC1", "DEC1 MUX"},
{"IIR1 INP1 MUX", "DEC2", "DEC2 MUX"},
{"MIC BIAS Internal1", NULL, "INT_LDO_H"},
{"MIC BIAS Internal2", NULL, "INT_LDO_H"},
{"MIC BIAS External", NULL, "INT_LDO_H"},
{"MIC BIAS Internal1", NULL, "MICBIAS_REGULATOR"},
{"MIC BIAS Internal2", NULL, "MICBIAS_REGULATOR"},
{"MIC BIAS External", NULL, "MICBIAS_REGULATOR"},
};
static int msm8x10_wcd_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
dev_dbg(dai->codec->dev, "%s(): substream = %s stream = %d\n",
__func__,
substream->name, substream->stream);
return 0;
}
static void msm8x10_wcd_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
dev_dbg(dai->codec->dev,
"%s(): substream = %s stream = %d\n" , __func__,
substream->name, substream->stream);
}
int msm8x10_wcd_mclk_enable(struct snd_soc_codec *codec,
int mclk_enable, bool dapm)
{
struct msm8x10_wcd_priv *msm8x10_wcd = snd_soc_codec_get_drvdata(codec);
dev_dbg(codec->dev, "%s: mclk_enable = %u, dapm = %d\n",
__func__, mclk_enable, dapm);
WCD9XXX_BG_CLK_LOCK(&msm8x10_wcd->resmgr);
if (mclk_enable) {
wcd9xxx_resmgr_get_bandgap(&msm8x10_wcd->resmgr,
WCD9XXX_BANDGAP_AUDIO_MODE);
wcd9xxx_resmgr_get_clk_block(&msm8x10_wcd->resmgr,
WCD9XXX_CLK_MCLK);
} else {
wcd9xxx_resmgr_put_clk_block(&msm8x10_wcd->resmgr,
WCD9XXX_CLK_MCLK);
wcd9xxx_resmgr_put_bandgap(&msm8x10_wcd->resmgr,
WCD9XXX_BANDGAP_AUDIO_MODE);
}
WCD9XXX_BG_CLK_UNLOCK(&msm8x10_wcd->resmgr);
return 0;
}
static int msm8x10_wcd_set_dai_sysclk(struct snd_soc_dai *dai,
int clk_id, unsigned int freq, int dir)
{
dev_dbg(dai->codec->dev, "%s\n", __func__);
return 0;
}
static int msm8x10_wcd_set_dai_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
dev_dbg(dai->codec->dev, "%s\n", __func__);
return 0;
}
static int msm8x10_wcd_set_channel_map(struct snd_soc_dai *dai,
unsigned int tx_num, unsigned int *tx_slot,
unsigned int rx_num, unsigned int *rx_slot)
{
dev_dbg(dai->codec->dev, "%s\n", __func__);
return 0;
}
static int msm8x10_wcd_get_channel_map(struct snd_soc_dai *dai,
unsigned int *tx_num, unsigned int *tx_slot,
unsigned int *rx_num, unsigned int *rx_slot)
{
dev_dbg(dai->codec->dev, "%s\n", __func__);
return 0;
}
static int msm8x10_wcd_set_interpolator_rate(struct snd_soc_dai *dai,
u8 rx_fs_rate_reg_val, u32 sample_rate)
{
return 0;
}
static int msm8x10_wcd_set_decimator_rate(struct snd_soc_dai *dai,
u8 tx_fs_rate_reg_val, u32 sample_rate)
{
return 0;
}
static int msm8x10_wcd_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
u8 tx_fs_rate, rx_fs_rate;
int ret;
dev_dbg(dai->codec->dev,
"%s: dai_name = %s DAI-ID %x rate %d num_ch %d\n", __func__,
dai->name, dai->id, params_rate(params),
params_channels(params));
switch (params_rate(params)) {
case 8000:
tx_fs_rate = 0x00;
rx_fs_rate = 0x00;
break;
case 16000:
tx_fs_rate = 0x01;
rx_fs_rate = 0x20;
break;
case 32000:
tx_fs_rate = 0x02;
rx_fs_rate = 0x40;
break;
case 48000:
tx_fs_rate = 0x03;
rx_fs_rate = 0x60;
break;
case 96000:
tx_fs_rate = 0x04;
rx_fs_rate = 0x80;
break;
case 192000:
tx_fs_rate = 0x05;
rx_fs_rate = 0xA0;
break;
default:
dev_err(dai->codec->dev,
"%s: Invalid sampling rate %d\n", __func__,
params_rate(params));
return -EINVAL;
}
switch (substream->stream) {
case SNDRV_PCM_STREAM_CAPTURE:
ret = msm8x10_wcd_set_decimator_rate(dai, tx_fs_rate,
params_rate(params));
if (ret < 0) {
dev_err(dai->codec->dev,
"%s: set decimator rate failed %d\n", __func__,
ret);
return ret;
}
break;
case SNDRV_PCM_STREAM_PLAYBACK:
ret = msm8x10_wcd_set_interpolator_rate(dai, rx_fs_rate,
params_rate(params));
if (ret < 0) {
dev_err(dai->codec->dev,
"%s: set decimator rate failed %d\n", __func__,
ret);
return ret;
}
break;
default:
dev_err(dai->codec->dev,
"%s: Invalid stream type %d\n", __func__,
substream->stream);
return -EINVAL;
}
return 0;
}
static struct snd_soc_dai_ops msm8x10_wcd_dai_ops = {
.startup = msm8x10_wcd_startup,
.shutdown = msm8x10_wcd_shutdown,
.hw_params = msm8x10_wcd_hw_params,
.set_sysclk = msm8x10_wcd_set_dai_sysclk,
.set_fmt = msm8x10_wcd_set_dai_fmt,
.set_channel_map = msm8x10_wcd_set_channel_map,
.get_channel_map = msm8x10_wcd_get_channel_map,
};
static struct snd_soc_dai_driver msm8x10_wcd_i2s_dai[] = {
{
.name = "msm8x10_wcd_i2s_rx1",
.id = AIF1_PB,
.playback = {
.stream_name = "AIF1 Playback",
.rates = MSM8X10_WCD_RATES,
.formats = MSM8X10_WCD_FORMATS,
.rate_max = 192000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 3,
},
.ops = &msm8x10_wcd_dai_ops,
},
{
.name = "msm8x10_wcd_i2s_tx1",
.id = AIF1_CAP,
.capture = {
.stream_name = "AIF1 Capture",
.rates = MSM8X10_WCD_RATES,
.formats = MSM8X10_WCD_FORMATS,
.rate_max = 192000,
.rate_min = 8000,
.channels_min = 1,
.channels_max = 4,
},
.ops = &msm8x10_wcd_dai_ops,
},
};
static int msm8x10_wcd_codec_enable_ear_pa(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
switch (event) {
case SND_SOC_DAPM_POST_PMU:
dev_dbg(w->codec->dev,
"%s: Sleeping 20ms after enabling EAR PA\n",
__func__);
msleep(20);
break;
case SND_SOC_DAPM_POST_PMD:
dev_dbg(w->codec->dev,
"%s: Sleeping 20ms after disabling EAR PA\n",
__func__);
msleep(20);
break;
}
return 0;
}
static const struct snd_soc_dapm_widget msm8x10_wcd_dapm_widgets[] = {
/*RX stuff */
SND_SOC_DAPM_OUTPUT("EAR"),
SND_SOC_DAPM_PGA_E("EAR PA", MSM8X10_WCD_A_RX_EAR_EN, 4, 0, NULL, 0,
msm8x10_wcd_codec_enable_ear_pa,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("DAC1", MSM8X10_WCD_A_RX_EAR_EN, 6, 0, dac1_switch,
ARRAY_SIZE(dac1_switch)),
SND_SOC_DAPM_AIF_IN("I2S RX1", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("I2S RX2", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("I2S RX3", "AIF1 Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_SUPPLY("INT_LDO_H", SND_SOC_NOPM, 1, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("HEADPHONE"),
SND_SOC_DAPM_PGA_E("HPHL", MSM8X10_WCD_A_RX_HPH_CNP_EN,
5, 0, NULL, 0,
msm8x10_wcd_hph_pa_event, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("HPHL DAC", MSM8X10_WCD_A_RX_HPH_L_DAC_CTL,
7, 0,
hphl_switch, ARRAY_SIZE(hphl_switch)),
SND_SOC_DAPM_PGA_E("HPHR", MSM8X10_WCD_A_RX_HPH_CNP_EN,
4, 0, NULL, 0,
msm8x10_wcd_hph_pa_event, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("HPHR DAC", NULL, MSM8X10_WCD_A_RX_HPH_R_DAC_CTL,
7, 0,
msm8x10_wcd_hphr_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("SPK DAC", SND_SOC_NOPM, 0, 0,
spkr_switch, ARRAY_SIZE(spkr_switch)),
/* Speaker */
SND_SOC_DAPM_OUTPUT("LINEOUT"),
SND_SOC_DAPM_OUTPUT("SPK_OUT"),
SND_SOC_DAPM_PGA_E("LINEOUT PA", MSM8X10_WCD_A_RX_LINE_CNP_EN,
0, 0, NULL, 0, msm8x10_wcd_codec_enable_lineout,
SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("SPK PA", MSM8X10_WCD_A_SPKR_DRV_EN,
7, 0 , NULL, 0, msm8x10_wcd_codec_enable_spk_pa,
SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_DAC_E("LINEOUT DAC", NULL,
MSM8X10_WCD_A_RX_LINE_1_DAC_CTL, 7, 0,
msm8x10_wcd_lineout_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("RX1 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX2 MIX1", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MIXER_E("RX1 MIX2",
MSM8X10_WCD_A_CDC_CLK_RX_B1_CTL, 0, 0, NULL,
0, msm8x10_wcd_codec_enable_interpolator, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MIXER_E("RX2 MIX2",
MSM8X10_WCD_A_CDC_CLK_RX_B1_CTL, 1, 0, NULL,
0, msm8x10_wcd_codec_enable_interpolator, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_MIXER_E("RX3 MIX1",
MSM8X10_WCD_A_CDC_CLK_RX_B1_CTL, 2, 0, NULL,
0, msm8x10_wcd_codec_enable_interpolator, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_SUPPLY("RX1 CLK", MSM8X10_WCD_A_CDC_DIG_CLK_CTL,
0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RX2 CLK", MSM8X10_WCD_A_CDC_DIG_CLK_CTL,
1, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RX3 CLK", MSM8X10_WCD_A_CDC_DIG_CLK_CTL,
2, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX1 CHAIN", MSM8X10_WCD_A_CDC_RX1_B6_CTL,
5, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX2 CHAIN", MSM8X10_WCD_A_CDC_RX2_B6_CTL,
5, 0, NULL, 0),
SND_SOC_DAPM_MIXER("RX3 CHAIN", MSM8X10_WCD_A_CDC_RX3_B6_CTL,
5, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("HPHR CLK", MSM8X10_WCD_A_CDC_ANA_CLK_CTL,
0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("HPHL CLK", MSM8X10_WCD_A_CDC_ANA_CLK_CTL,
1, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("EAR CLK", MSM8X10_WCD_A_CDC_ANA_CLK_CTL,
2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("LINEOUT CLK", MSM8X10_WCD_A_CDC_ANA_CLK_CTL,
3, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("SPK CLK", MSM8X10_WCD_A_CDC_ANA_CLK_CTL,
4, 0, NULL, 0),
SND_SOC_DAPM_MUX("RX1 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX1 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX1 MIX1 INP3", SND_SOC_NOPM, 0, 0,
&rx_mix1_inp3_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX2 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx2_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP1", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp1_mux),
SND_SOC_DAPM_MUX("RX3 MIX1 INP2", SND_SOC_NOPM, 0, 0,
&rx3_mix1_inp2_mux),
SND_SOC_DAPM_MUX("RX1 MIX2 INP1", SND_SOC_NOPM, 0, 0,
&rx1_mix2_inp1_mux),
SND_SOC_DAPM_MUX("RX2 MIX2 INP1", SND_SOC_NOPM, 0, 0,
&rx2_mix2_inp1_mux),
SND_SOC_DAPM_MUX("RDAC4 MUX", SND_SOC_NOPM, 0, 0,
&rx_dac4_mux),
SND_SOC_DAPM_MUX("RDAC3 MUX", SND_SOC_NOPM, 0, 0,
&rx_dac3_mux),
SND_SOC_DAPM_SUPPLY("MICBIAS_REGULATOR", SND_SOC_NOPM,
ON_DEMAND_MICBIAS, 0,
msm8x10_wcd_codec_enable_on_demand_supply,
SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("CP_REGULATOR", SND_SOC_NOPM,
ON_DEMAND_CP, 0,
msm8x10_wcd_codec_enable_on_demand_supply,
SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_SUPPLY("CP", MSM8X10_WCD_A_CP_EN, 0, 0,
msm8x10_wcd_codec_enable_charge_pump, SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_SUPPLY("RX_BIAS", SND_SOC_NOPM, 0, 0,
msm8x10_wcd_codec_enable_rx_bias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
/* TX */
SND_SOC_DAPM_SUPPLY("CDC_CONN", MSM8X10_WCD_A_CDC_CLK_OTHR_CTL,
2, 0, NULL, 0),
SND_SOC_DAPM_INPUT("AMIC1"),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS Internal1",
MSM8X10_WCD_A_MICB_1_CTL, 7, 0,
msm8x10_wcd_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS Internal2",
MSM8X10_WCD_A_MICB_1_CTL, 7, 0,
msm8x10_wcd_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS Internal3",
MSM8X10_WCD_A_MICB_1_CTL, 7, 0,
msm8x10_wcd_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E("MIC BIAS External",
MSM8X10_WCD_A_MICB_1_CTL, 7, 0,
msm8x10_wcd_codec_enable_micbias, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MICBIAS_E(DAPM_MICBIAS_EXTERNAL_STANDALONE,
MSM8X10_WCD_A_MICB_1_CTL,
7, 0, msm8x10_wcd_codec_enable_micbias,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC1", NULL, MSM8X10_WCD_A_TX_1_EN, 7, 0,
msm8x10_wcd_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC2_INP2", NULL, MSM8X10_WCD_A_TX_2_EN, 7, 0,
msm8x10_wcd_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("ADC2_INP3", NULL, MSM8X10_WCD_A_TX_3_EN, 7, 0,
msm8x10_wcd_codec_enable_adc, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("ADC2", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_MUX("ADC2 MUX", SND_SOC_NOPM, 0, 0,
&tx_adc2_mux),
SND_SOC_DAPM_INPUT("AMIC3"),
SND_SOC_DAPM_MUX_E("DEC1 MUX",
MSM8X10_WCD_A_CDC_CLK_TX_CLK_EN_B1_CTL, 0, 0,
&dec1_mux, msm8x10_wcd_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MUX_E("DEC2 MUX",
MSM8X10_WCD_A_CDC_CLK_TX_CLK_EN_B1_CTL, 1, 0,
&dec2_mux, msm8x10_wcd_codec_enable_dec,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_INPUT("AMIC2"),
SND_SOC_DAPM_AIF_OUT("I2S TX1", "AIF1 Capture", 0, SND_SOC_NOPM,
0, 0),
SND_SOC_DAPM_AIF_OUT("I2S TX2", "AIF1 Capture", 0, SND_SOC_NOPM,
0, 0),
SND_SOC_DAPM_AIF_OUT("I2S TX3", "AIF1 Capture", 0, SND_SOC_NOPM,
0, 0),
/* Digital Mic Inputs */
SND_SOC_DAPM_ADC_E("DMIC1", NULL, SND_SOC_NOPM, 0, 0,
msm8x10_wcd_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_ADC_E("DMIC2", NULL, SND_SOC_NOPM, 0, 0,
msm8x10_wcd_codec_enable_dmic, SND_SOC_DAPM_PRE_PMU |
SND_SOC_DAPM_POST_PMD),
/* Sidetone */
SND_SOC_DAPM_MUX("IIR1 INP1 MUX", SND_SOC_NOPM, 0, 0, &iir1_inp1_mux),
SND_SOC_DAPM_PGA("IIR1", MSM8X10_WCD_A_CDC_CLK_SD_CTL, 0, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("RX_I2S_CLK", MSM8X10_WCD_A_CDC_CLK_RX_I2S_CTL,
4, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("TX_I2S_CLK", MSM8X10_WCD_A_CDC_CLK_TX_I2S_CTL, 4,
0, NULL, 0),
};
static const struct msm8x10_wcd_reg_mask_val msm8x10_wcd_reg_defaults[] = {
/* set MCLk to 9.6 */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CHIP_CTL, 0x00),
/* EAR PA deafults */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_RX_EAR_CMBUFF, 0x05),
/* RX deafults */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_RX1_B5_CTL, 0x78),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_RX2_B5_CTL, 0x78),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_RX3_B5_CTL, 0x78),
/* RX1 and RX2 defaults */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_RX1_B6_CTL, 0xA0),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_RX2_B6_CTL, 0xA0),
/* RX3 to RX7 defaults */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_RX3_B6_CTL, 0x80),
/* Reduce HPH DAC bias to 70% */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_RX_HPH_BIAS_PA, 0x7A),
/*Reduce EAR DAC bias to 70% */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_RX_EAR_BIAS_PA, 0x76),
/* Reduce LINE DAC bias to 70% */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_RX_LINE_BIAS_PA, 0x78),
/* Disable internal biasing path which can cause leakage */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_BIAS_CURR_CTL_2, 0x04),
/* Enable pulldown to reduce leakage */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_MICB_1_CTL, 0x82),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_TX_COM_BIAS, 0xE0),
/* Keep the same default gain settings for TX paths */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_TX_1_EN, 0x32),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_TX_2_EN, 0x32),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_TX_3_EN, 0x30),
/* ClassG fine tuning setting for 16 ohm HPH */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_CLSG_FREQ_THRESH_B1_CTL, 0x05),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_CLSG_FREQ_THRESH_B2_CTL, 0x0C),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_CLSG_FREQ_THRESH_B3_CTL, 0x1A),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_CLSG_FREQ_THRESH_B4_CTL, 0x47),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_CLSG_GAIN_THRESH_CTL, 0x23),
/* Always set TXD_CLK_EN bit to reduce the leakage */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_DIG_CLK_CTL, 0x10),
/* Always disable clock gating for MCLK to mbhc clock gate */
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_ANA_CLK_CTL, 0x20),
MSM8X10_WCD_REG_VAL(MSM8X10_WCD_A_CDC_DIG_CLK_CTL, 0x10),
};
static void msm8x10_wcd_update_reg_defaults(struct snd_soc_codec *codec)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(msm8x10_wcd_reg_defaults); i++)
snd_soc_write(codec, msm8x10_wcd_reg_defaults[i].reg,
msm8x10_wcd_reg_defaults[i].val);
}
static const struct msm8x10_wcd_reg_mask_val
msm8x10_wcd_codec_reg_init_val[] = {
/* Initialize current threshold to 350MA
* number of wait and run cycles to 4096
*/
{MSM8X10_WCD_A_RX_HPH_OCP_CTL, 0xE1, 0x61},
{MSM8X10_WCD_A_RX_COM_OCP_COUNT, 0xFF, 0xFF},
{MSM8X10_WCD_A_RX_HPH_L_TEST, 0x01, 0x01},
{MSM8X10_WCD_A_RX_HPH_R_TEST, 0x01, 0x01},
/* Initialize gain registers to use register gain */
{MSM8X10_WCD_A_RX_HPH_L_GAIN, 0x20, 0x20},
{MSM8X10_WCD_A_RX_HPH_R_GAIN, 0x20, 0x20},
{MSM8X10_WCD_A_RX_LINE_1_GAIN, 0x20, 0x20},
/*enable HPF filter for TX paths */
{MSM8X10_WCD_A_CDC_TX1_MUX_CTL, 0x8, 0x0},
{MSM8X10_WCD_A_CDC_TX2_MUX_CTL, 0x8, 0x0},
/* config Decimator for DMIC CLK_MODE_1(3.2Mhz@9.6Mhz mclk) */
{MSM8X10_WCD_A_CDC_TX1_DMIC_CTL, 0x7, 0x1},
{MSM8X10_WCD_A_CDC_TX2_DMIC_CTL, 0x7, 0x1},
/* config DMIC clk to CLK_MODE_1 (3.2Mhz@9.6Mhz mclk) */
{MSM8X10_WCD_A_CDC_CLK_DMIC_B1_CTL, 0xEE, 0x22},
/* Disable REF_EN for MSM8X10_WCD_A_SPKR_DRV_DAC_CTL */
{MSM8X10_WCD_A_SPKR_DRV_DAC_CTL, 0x04, 0x00},
};
static void msm8x10_wcd_codec_init_reg(struct snd_soc_codec *codec)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(msm8x10_wcd_codec_reg_init_val); i++)
snd_soc_update_bits(codec,
msm8x10_wcd_codec_reg_init_val[i].reg,
msm8x10_wcd_codec_reg_init_val[i].mask,
msm8x10_wcd_codec_reg_init_val[i].val);
}
static void msm8x10_wcd_enable_mux_bias_block(
struct snd_soc_codec *codec)
{
snd_soc_update_bits(codec, WCD9XXX_A_MBHC_SCALING_MUX_1,
0x80, 0x00);
}
static void msm8x10_wcd_put_cfilt_fast_mode(
struct snd_soc_codec *codec,
struct wcd9xxx_mbhc *mbhc)
{
snd_soc_update_bits(codec, mbhc->mbhc_bias_regs.cfilt_ctl,
0x30, 0x30);
}
static void msm8x10_wcd_codec_specific_cal_setup(
struct snd_soc_codec *codec,
struct wcd9xxx_mbhc *mbhc)
{
snd_soc_update_bits(codec, WCD9XXX_A_CDC_MBHC_B1_CTL,
0x04, 0x04);
snd_soc_update_bits(codec, WCD9XXX_A_TX_7_MBHC_EN,
0xE0, 0xE0);
}
static struct wcd9xxx_cfilt_mode msm8x10_wcd_switch_cfilt_mode(
struct wcd9xxx_mbhc *mbhc, bool fast)
{
struct snd_soc_codec *codec = mbhc->codec;
struct wcd9xxx_cfilt_mode cfilt_mode;
if (fast)
cfilt_mode.reg_mode_val = WCD9XXX_CFILT_EXT_PRCHG_EN;
else
cfilt_mode.reg_mode_val = WCD9XXX_CFILT_EXT_PRCHG_DSBL;
cfilt_mode.cur_mode_val =
snd_soc_read(codec, mbhc->mbhc_bias_regs.cfilt_ctl) & 0x30;
cfilt_mode.reg_mask = 0x30;
return cfilt_mode;
}
static void msm8x10_wcd_select_cfilt(struct snd_soc_codec *codec,
struct wcd9xxx_mbhc *mbhc)
{
snd_soc_update_bits(codec,
mbhc->mbhc_bias_regs.ctl_reg, 0x60, 0x00);
}
enum wcd9xxx_cdc_type msm8x10_wcd_get_cdc_type(void)
{
return WCD9XXX_CDC_TYPE_HELICON;
}
static void msm8x10_wcd_mbhc_clk_gate(struct snd_soc_codec *codec,
bool on)
{
snd_soc_update_bits(codec, MSM8X10_WCD_A_CDC_TOP_CLK_CTL, 0x10, 0x10);
}
static void msm8x10_wcd_mbhc_txfe(struct snd_soc_codec *codec, bool on)
{
snd_soc_update_bits(codec, MSM8X10_WCD_A_TX_7_MBHC_EN_ATEST_CTRL,
0x80, on ? 0x80 : 0x00);
}
static int msm8x10_wcd_enable_ext_mb_source(struct snd_soc_codec *codec,
bool turn_on)
{
int ret = 0;
if (turn_on)
ret = snd_soc_dapm_force_enable_pin(&codec->dapm,
"MICBIAS_REGULATOR");
else
ret = snd_soc_dapm_disable_pin(&codec->dapm,
"MICBIAS_REGULATOR");
snd_soc_dapm_sync(&codec->dapm);
if (ret)
dev_err(codec->dev, "%s: Failed to %s external micbias source\n",
__func__, turn_on ? "enable" : "disabled");
else
dev_dbg(codec->dev, "%s: %s external micbias source\n",
__func__, turn_on ? "Enabled" : "Disabled");
return ret;
}
static int msm8x10_wcd_enable_mbhc_micbias(struct snd_soc_codec *codec,
bool enable)
{
int rc;
if (enable)
rc = snd_soc_dapm_force_enable_pin(&codec->dapm,
DAPM_MICBIAS_EXTERNAL_STANDALONE);
else
rc = snd_soc_dapm_disable_pin(&codec->dapm,
DAPM_MICBIAS_EXTERNAL_STANDALONE);
snd_soc_dapm_sync(&codec->dapm);
snd_soc_update_bits(codec, WCD9XXX_A_MICB_1_CTL,
0x80, enable ? 0x80 : 0x00);
if (rc)
pr_debug("%s: Failed to force %s micbias", __func__,
enable ? "enable" : "disable");
else
pr_debug("%s: Trying force %s micbias", __func__,
enable ? "enable" : "disable");
return rc;
}
static void msm8x10_wcd_micb_internal(struct snd_soc_codec *codec, bool on)
{
snd_soc_update_bits(codec, MSM8X10_WCD_A_MICB_1_INT_RBIAS,
0x1C, on ? 0x14 : 0x00);
}
static void msm8x10_wcd_enable_mb_vddio(struct snd_soc_codec *codec, bool on)
{
snd_soc_update_bits(codec, MSM8X10_WCD_A_MICB_CFILT_1_CTL,
0x40, on ? 0x40 : 0x00);
}
static void msm8x10_wcd_prepare_hph_pa(struct snd_soc_codec *codec,
struct list_head *lh)
{
int i;
u32 delay;
const struct wcd9xxx_reg_mask_val reg_set_paon[] = {
{MSM8X10_WCD_A_CDC_RX1_B6_CTL, 0xFF, 0x01},
{MSM8X10_WCD_A_CDC_RX2_B6_CTL, 0xFF, 0x01},
{MSM8X10_WCD_A_RX_HPH_L_GAIN, 0xFF, 0x2C},
{MSM8X10_WCD_A_RX_HPH_R_GAIN, 0xFF, 0x2C},
{MSM8X10_WCD_A_CDC_CLK_RX_B1_CTL, 0xFF, 0x01},
{MSM8X10_WCD_A_RX_COM_BIAS, 0xFF, 0x80},
{MSM8X10_WCD_A_CP_EN, 0xFF, 0xE7},
{MSM8X10_WCD_A_CP_STATIC, 0xFF, 0x13},
{MSM8X10_WCD_A_CP_STATIC, 0xFF, 0x1B},
{MSM8X10_WCD_A_CDC_RX2_B6_CTL, 0xFF, 0x01},
{MSM8X10_WCD_A_CDC_CLK_RX_B1_CTL, 0xFF, 0x03},
{MSM8X10_WCD_A_CDC_ANA_CLK_CTL, 0xFF, 0x22},
{MSM8X10_WCD_A_CDC_ANA_CLK_CTL, 0xFF, 0x23},
{MSM8X10_WCD_A_RX_HPH_CNP_WG_CTL, 0xFF, 0xDA},
{MSM8X10_WCD_A_CDC_DIG_CLK_CTL, 0xFF, 0x01},
{MSM8X10_WCD_A_CDC_DIG_CLK_CTL, 0xFF, 0x03},
{MSM8X10_WCD_A_RX_HPH_CHOP_CTL, 0xFF, 0xA4},
{MSM8X10_WCD_A_RX_HPH_OCP_CTL, 0xFF, 0x67},
{MSM8X10_WCD_A_RX_HPH_L_TEST, 0x01, 0x00},
{MSM8X10_WCD_A_RX_HPH_R_TEST, 0x01, 0x00},
{MSM8X10_WCD_A_RX_HPH_BIAS_WG_OCP, 0xFF, 0x1A},
{MSM8X10_WCD_A_RX_HPH_CNP_WG_CTL, 0xFF, 0xDB},
{MSM8X10_WCD_A_RX_HPH_CNP_WG_TIME, 0xFF, 0xDB},
{MSM8X10_WCD_A_RX_HPH_L_DAC_CTL, 0xFF, 0x40},
{MSM8X10_WCD_A_RX_HPH_L_DAC_CTL, 0xFF, 0xC0},
{MSM8X10_WCD_A_RX_HPH_R_DAC_CTL, 0xFF, 0x40},
{MSM8X10_WCD_A_RX_HPH_R_DAC_CTL, 0xFF, 0xC0},
{MSM8X10_WCD_A_RX_HPH_L_DAC_CTL, 0x03, 0x01},
{MSM8X10_WCD_A_RX_HPH_R_DAC_CTL, 0x03, 0x01},
};
for (i = 0; i < ARRAY_SIZE(reg_set_paon); i++) {
delay = 0;
wcd9xxx_soc_update_bits_push(codec, lh,
reg_set_paon[i].reg,
reg_set_paon[i].mask,
reg_set_paon[i].val, delay);
}
dev_dbg(codec->dev, "%s: PAs are prepared\n", __func__);
return;
}
static int msm8x10_wcd_enable_static_pa(struct snd_soc_codec *codec,
bool enable)
{
int wg_time = snd_soc_read(codec, WCD9XXX_A_RX_HPH_CNP_WG_TIME) *
MSM8X10_WCD_WG_TIME_FACTOR_US;
wg_time += (int) (wg_time * 35) / 100;
snd_soc_update_bits(codec, MSM8X10_WCD_A_RX_HPH_CNP_EN, 0x30,
enable ? 0x30 : 0x0);
/* Wait for wave gen time to avoid pop noise */
usleep_range(wg_time, wg_time + WCD9XXX_USLEEP_RANGE_MARGIN_US);
snd_soc_update_bits(codec, MSM8X10_WCD_A_CDC_RX1_B6_CTL, 0xFF, 0x00);
snd_soc_update_bits(codec, MSM8X10_WCD_A_CDC_RX2_B6_CTL, 0xFF, 0x00);
dev_dbg(codec->dev, "%s: PAs are %s as static mode (wg_time %d)\n",
__func__, enable ? "enabled" : "disabled", wg_time);
return 0;
}
static int msm8x10_wcd_setup_zdet(struct wcd9xxx_mbhc *mbhc,
enum mbhc_impedance_detect_stages stage)
{
int ret = 0;
struct snd_soc_codec *codec = mbhc->codec;
struct msm8x10_wcd_priv *wcd_priv = snd_soc_codec_get_drvdata(codec);
const int mux_wait_us = 25;
#define __wr(reg, mask, value) \
do { \
ret = wcd9xxx_soc_update_bits_push(codec, \
&wcd_priv->reg_save_restore, \
reg, mask, value, 0); \
if (ret < 0) \
return ret; \
} while (0)
switch (stage) {
case PRE_MEAS:
dev_dbg(codec->dev, "%s: PRE_MEAS\n", __func__);
INIT_LIST_HEAD(&wcd_priv->reg_save_restore);
/* Configure PA */
msm8x10_wcd_prepare_hph_pa(mbhc->codec,
&wcd_priv->reg_save_restore);
/* Setup MBHC */
__wr(WCD9XXX_A_MBHC_SCALING_MUX_1, 0x7F, 0x40);
__wr(WCD9XXX_A_MBHC_SCALING_MUX_2, 0xFF, 0xF0);
__wr(0x171, 0xFF, 0x90);
__wr(WCD9XXX_A_TX_7_MBHC_EN, 0xFF, 0xF0);
__wr(WCD9XXX_A_CDC_MBHC_TIMER_B4_CTL, 0xFF, 0x45);
__wr(WCD9XXX_A_CDC_MBHC_TIMER_B5_CTL, 0xFF, 0x80);
__wr(WCD9XXX_A_CDC_MBHC_CLK_CTL, 0xFF, 0x0A);
snd_soc_write(codec, WCD9XXX_A_CDC_MBHC_EN_CTL, 0x2);
__wr(WCD9XXX_A_CDC_MBHC_CLK_CTL, 0xFF, 0x02);
/* Enable Impedance Detection */
__wr(WCD9XXX_A_MBHC_HPH, 0xFF, 0xC8);
/*
* CnP setup for 0mV
* Route static data as input to noise shaper
*/
__wr(MSM8X10_WCD_A_CDC_RX1_B3_CTL, 0xFF, 0x02);
__wr(MSM8X10_WCD_A_CDC_RX2_B3_CTL, 0xFF, 0x02);
snd_soc_update_bits(codec, WCD9XXX_A_RX_HPH_L_TEST,
0x02, 0x00);
snd_soc_update_bits(codec, WCD9XXX_A_RX_HPH_R_TEST,
0x02, 0x00);
/* Reset the HPHL static data pointer */
__wr(MSM8X10_WCD_A_CDC_RX1_B2_CTL, 0xFF, 0x00);
/* Four consecutive writes to set 0V as static data input */
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B1_CTL, 0x00);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B1_CTL, 0x00);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B1_CTL, 0x00);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B1_CTL, 0x00);
/* Reset the HPHR static data pointer */
__wr(MSM8X10_WCD_A_CDC_RX2_B2_CTL, 0xFF, 0x00);
/* Four consecutive writes to set 0V as static data input */
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B1_CTL, 0x00);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B1_CTL, 0x00);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B1_CTL, 0x00);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B1_CTL, 0x00);
/* Enable the HPHL and HPHR PA */
msm8x10_wcd_enable_static_pa(mbhc->codec, true);
break;
case POST_MEAS:
dev_dbg(codec->dev, "%s: POST_MEAS\n", __func__);
/* Turn off ICAL */
snd_soc_write(codec, WCD9XXX_A_MBHC_SCALING_MUX_2, 0xF0);
msm8x10_wcd_enable_static_pa(mbhc->codec, false);
/*
* Setup CnP wavegen to ramp to the desired
* output using a 40ms ramp
*/
/* CnP wavegen current to 0.5uA */
snd_soc_write(codec, WCD9XXX_A_RX_HPH_BIAS_WG_OCP, 0x1A);
/* Set the current division ratio to 2000 */
snd_soc_write(codec, WCD9XXX_A_RX_HPH_CNP_WG_CTL, 0xDF);
/* Set the wavegen timer to max (60msec) */
snd_soc_write(codec, WCD9XXX_A_RX_HPH_CNP_WG_TIME, 0xA0);
/* Set the CnP reference current to sc_bias */
snd_soc_write(codec, WCD9XXX_A_RX_HPH_OCP_CTL, 0x6D);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B2_CTL, 0x00);
/* Four consecutive writes to set -10mV as static data input */
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B1_CTL, 0x00);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B1_CTL, 0x1F);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B1_CTL, 0xE3);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX1_B1_CTL, 0x08);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B2_CTL, 0x00);
/* Four consecutive writes to set -10mV as static data input */
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B1_CTL, 0x00);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B1_CTL, 0x1F);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B1_CTL, 0xE3);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RX2_B1_CTL, 0x08);
snd_soc_update_bits(codec, WCD9XXX_A_RX_HPH_L_TEST,
0x02, 0x02);
snd_soc_update_bits(codec, WCD9XXX_A_RX_HPH_R_TEST,
0x02, 0x02);
/* Enable the HPHL and HPHR PA and wait for 60mS */
msm8x10_wcd_enable_static_pa(mbhc->codec, true);
snd_soc_update_bits(codec, WCD9XXX_A_MBHC_SCALING_MUX_1,
0x7F, 0x40);
usleep_range(mux_wait_us,
mux_wait_us + WCD9XXX_USLEEP_RANGE_MARGIN_US);
break;
case PA_DISABLE:
dev_dbg(codec->dev, "%s: PA_DISABLE\n", __func__);
msm8x10_wcd_enable_static_pa(mbhc->codec, false);
wcd9xxx_restore_registers(codec, &wcd_priv->reg_save_restore);
break;
}
#undef __wr
return ret;
}
static void msm8x10_wcd_compute_impedance(s16 *l, s16 *r, uint32_t *zl,
uint32_t *zr)
{
int zln, zld;
int zrn, zrd;
int rl = 0, rr = 0;
zln = (l[1] - l[0]) * MSM8X10_WCD_ZDET_MUL_FACTOR;
zld = (l[2] - l[0]);
if (zld)
rl = zln / zld;
zrn = (r[1] - r[0]) * MSM8X10_WCD_ZDET_MUL_FACTOR;
zrd = (r[2] - r[0]);
if (zrd)
rr = zrn / zrd;
*zl = rl;
*zr = rr;
}
static const struct wcd9xxx_mbhc_cb mbhc_cb = {
.enable_mux_bias_block = msm8x10_wcd_enable_mux_bias_block,
.cfilt_fast_mode = msm8x10_wcd_put_cfilt_fast_mode,
.codec_specific_cal = msm8x10_wcd_codec_specific_cal_setup,
.switch_cfilt_mode = msm8x10_wcd_switch_cfilt_mode,
.select_cfilt = msm8x10_wcd_select_cfilt,
.get_cdc_type = msm8x10_wcd_get_cdc_type,
.enable_clock_gate = msm8x10_wcd_mbhc_clk_gate,
.enable_mbhc_txfe = msm8x10_wcd_mbhc_txfe,
.enable_mb_source = msm8x10_wcd_enable_ext_mb_source,
.setup_int_rbias = msm8x10_wcd_micb_internal,
.pull_mb_to_vddio = msm8x10_wcd_enable_mb_vddio,
.setup_zdet = msm8x10_wcd_setup_zdet,
.compute_impedance = msm8x10_wcd_compute_impedance,
};
static void delayed_hs_detect_fn(struct work_struct *work)
{
struct delayed_work *delayed_work;
struct msm8x10_wcd_priv *wcd_priv;
delayed_work = to_delayed_work(work);
wcd_priv = container_of(delayed_work, struct msm8x10_wcd_priv,
hs_detect_work);
if (!wcd_priv) {
pr_err("%s: Invalid private data for codec\n", __func__);
return;
}
wcd9xxx_mbhc_start(&wcd_priv->mbhc, wcd_priv->mbhc_cfg);
}
int msm8x10_wcd_hs_detect(struct snd_soc_codec *codec,
struct wcd9xxx_mbhc_config *mbhc_cfg)
{
struct msm8x10_wcd_priv *wcd = snd_soc_codec_get_drvdata(codec);
wcd->mbhc_cfg = mbhc_cfg;
schedule_delayed_work(&wcd->hs_detect_work,
msecs_to_jiffies(5000));
return 0;
}
EXPORT_SYMBOL_GPL(msm8x10_wcd_hs_detect);
static int msm8x10_wcd_bringup(struct snd_soc_codec *codec)
{
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RST_CTL, 0x02);
snd_soc_write(codec, MSM8X10_WCD_A_CHIP_CTL, 0x00);
usleep_range(5000, 5000);
snd_soc_write(codec, MSM8X10_WCD_A_CDC_RST_CTL, 0x03);
return 0;
}
static struct regulator *wcd8x10_wcd_codec_find_regulator(
const struct msm8x10_wcd *msm8x10,
const char *name)
{
int i;
for (i = 0; i < msm8x10->num_of_supplies; i++) {
if (msm8x10->supplies[i].supply &&
!strncmp(msm8x10->supplies[i].supply, name, strlen(name)))
return msm8x10->supplies[i].consumer;
}
return NULL;
}
static int msm8x10_wcd_device_down(struct snd_soc_codec *codec)
{
dev_dbg(codec->dev, "%s: device down!\n", __func__);
snd_soc_card_change_online_state(codec->card, 0);
return 0;
}
static int msm8x10_wcd_device_up(struct snd_soc_codec *codec)
{
dev_dbg(codec->dev, "%s: device up!\n", __func__);
snd_soc_card_change_online_state(codec->card, 1);
/* delay is required to make sure sound card state updated */
usleep_range(5000, 5100);
mutex_lock(&codec->mutex);
msm8x10_wcd_bringup(codec);
msm8x10_wcd_codec_init_reg(codec);
msm8x10_wcd_update_reg_defaults(codec);
mutex_unlock(&codec->mutex);
return 0;
}
static int adsp_state_callback(struct notifier_block *nb, unsigned long value,
void *priv)
{
bool timedout;
unsigned long timeout;
if (value == SUBSYS_BEFORE_SHUTDOWN)
msm8x10_wcd_device_down(registered_codec);
else if (value == SUBSYS_AFTER_POWERUP) {
pr_debug("%s: ADSP is about to power up. bring up codec\n",
__func__);
timeout = jiffies +
msecs_to_jiffies(ADSP_STATE_READY_TIMEOUT_MS);
while (!(timedout = time_after(jiffies, timeout))) {
if (!q6core_is_adsp_ready()) {
pr_debug("%s: ADSP isn't ready\n", __func__);
} else {
pr_debug("%s: ADSP is ready\n", __func__);
msm8x10_wcd_device_up(registered_codec);
break;
}
}
}
return NOTIFY_OK;
}
static struct notifier_block adsp_state_notifier_block = {
.notifier_call = adsp_state_callback,
.priority = -INT_MAX,
};
static const struct wcd9xxx_mbhc_intr cdc_intr_ids = {
.poll_plug_rem = MSM8X10_WCD_IRQ_MBHC_REMOVAL,
.shortavg_complete = MSM8X10_WCD_IRQ_MBHC_SHORT_TERM,
.potential_button_press = MSM8X10_WCD_IRQ_MBHC_PRESS,
.button_release = MSM8X10_WCD_IRQ_MBHC_RELEASE,
.dce_est_complete = MSM8X10_WCD_IRQ_MBHC_POTENTIAL,
.insertion = MSM8X10_WCD_IRQ_MBHC_INSERTION,
.hph_left_ocp = MSM8X10_WCD_IRQ_HPH_PA_OCPL_FAULT,
.hph_right_ocp = MSM8X10_WCD_IRQ_HPH_PA_OCPR_FAULT,
.hs_jack_switch = MSM8X10_WCD_IRQ_MBHC_HS_DET,
};
static int msm8x10_wcd_handle_pdata(struct snd_soc_codec *codec,
struct msm8x10_wcd_pdata *pdata)
{
int k1, rc = 0;
struct msm8x10_wcd_priv *msm8x10_wcd_priv;
msm8x10_wcd_priv = snd_soc_codec_get_drvdata(codec);
/* Make sure settings are correct */
if (pdata->micbias.ldoh_v > WCD9XXX_LDOH_3P0_V ||
pdata->micbias.bias1_cfilt_sel > WCD9XXX_CFILT1_SEL) {
rc = -EINVAL;
goto done;
}
/* figure out k value */
k1 = wcd9xxx_resmgr_get_k_val(&msm8x10_wcd_priv->resmgr,
pdata->micbias.cfilt1_mv);
if (IS_ERR_VALUE(k1)) {
rc = -EINVAL;
goto done;
}
/* Set voltage level */
snd_soc_update_bits(codec, MSM8X10_WCD_A_MICB_CFILT_1_VAL,
0xFC, (k1 << 2));
/* update micbias capless mode */
snd_soc_update_bits(codec, MSM8X10_WCD_A_MICB_1_CTL, 0x10,
pdata->micbias.bias1_cap_mode << 4);
done:
return rc;
}
static int msm8x10_wcd_codec_probe(struct snd_soc_codec *codec)
{
struct msm8x10_wcd_priv *msm8x10_wcd_priv;
struct msm8x10_wcd *msm8x10_wcd;
struct wcd9xxx_core_resource *core_res;
int i, ret = 0;
struct msm8x10_wcd_pdata *pdata;
dev_dbg(codec->dev, "%s()\n", __func__);
msm8x10_wcd_priv = devm_kzalloc(codec->dev,
sizeof(struct msm8x10_wcd_priv), GFP_KERNEL);
if (!msm8x10_wcd_priv) {
dev_err(codec->dev, "Failed to allocate private data\n");
return -ENOMEM;
}
for (i = 0 ; i < NUM_DECIMATORS; i++) {
tx_hpf_work[i].msm8x10_wcd = msm8x10_wcd_priv;
tx_hpf_work[i].decimator = i + 1;
INIT_DELAYED_WORK(&tx_hpf_work[i].dwork,
tx_hpf_corner_freq_callback);
}
codec->control_data = dev_get_drvdata(codec->dev);
snd_soc_codec_set_drvdata(codec, msm8x10_wcd_priv);
msm8x10_wcd_priv->codec = codec;
/* map digital codec registers once */
msm8x10_wcd = codec->control_data;
msm8x10_wcd->pdino_base = ioremap(MSM8X10_DINO_CODEC_BASE_ADDR,
MSM8X10_DINO_CODEC_REG_SIZE);
INIT_DELAYED_WORK(&msm8x10_wcd_priv->hs_detect_work,
delayed_hs_detect_fn);
pdata = dev_get_platdata(msm8x10_wcd->dev);
if (!pdata) {
dev_err(msm8x10_wcd->dev, "%s: platform data not found\n",
__func__);
}
/* codec resmgr module init */
msm8x10_wcd = codec->control_data;
core_res = &msm8x10_wcd->wcd9xxx_res;
ret = wcd9xxx_resmgr_init(&msm8x10_wcd_priv->resmgr,
codec, core_res, NULL, &pdata->micbias,
NULL, WCD9XXX_CDC_TYPE_HELICON);
if (ret) {
dev_err(codec->dev,
"%s: wcd9xxx init failed %d\n",
__func__, ret);
goto exit_probe;
}
msm8x10_wcd_bringup(codec);
msm8x10_wcd_codec_init_reg(codec);
msm8x10_wcd_update_reg_defaults(codec);
msm8x10_wcd_priv->on_demand_list[ON_DEMAND_CP].supply =
wcd8x10_wcd_codec_find_regulator(
codec->control_data,
on_demand_supply_name[ON_DEMAND_CP]);
atomic_set(&msm8x10_wcd_priv->on_demand_list[ON_DEMAND_CP].ref, 0);
msm8x10_wcd_priv->on_demand_list[ON_DEMAND_MICBIAS].supply =
wcd8x10_wcd_codec_find_regulator(
codec->control_data,
on_demand_supply_name[ON_DEMAND_MICBIAS]);
atomic_set(&msm8x10_wcd_priv->on_demand_list[ON_DEMAND_MICBIAS].ref, 0);
ret = wcd9xxx_mbhc_init(&msm8x10_wcd_priv->mbhc,
&msm8x10_wcd_priv->resmgr,
codec, msm8x10_wcd_enable_mbhc_micbias,
&mbhc_cb, &cdc_intr_ids,
HELICON_MCLK_CLK_9P6MHZ, true);
if (ret) {
dev_err(msm8x10_wcd->dev, "%s: Failed to initialize mbhc\n",
__func__);
goto exit_probe;
}
/* Handle the Pdata */
ret = msm8x10_wcd_handle_pdata(codec, pdata);
if (IS_ERR_VALUE(ret))
dev_err(msm8x10_wcd->dev, "%s: Bad Pdata\n", __func__);
registered_codec = codec;
adsp_state_notifier =
subsys_notif_register_notifier("adsp",
&adsp_state_notifier_block);
if (!adsp_state_notifier) {
pr_err("%s: Failed to register adsp state notifier\n",
__func__);
registered_codec = NULL;
return -ENOMEM;
}
return 0;
exit_probe:
return ret;
}
static int msm8x10_wcd_codec_remove(struct snd_soc_codec *codec)
{
struct msm8x10_wcd_priv *pwcd_priv = snd_soc_codec_get_drvdata(codec);
struct msm8x10_wcd *msm8x10_wcd = pwcd_priv->codec->control_data;
pwcd_priv->on_demand_list[ON_DEMAND_CP].supply = NULL;
atomic_set(&pwcd_priv->on_demand_list[ON_DEMAND_CP].ref, 0);
pwcd_priv->on_demand_list[ON_DEMAND_MICBIAS].supply = NULL;
atomic_set(&pwcd_priv->on_demand_list[ON_DEMAND_MICBIAS].ref, 0);
/* cleanup resmgr */
wcd9xxx_resmgr_deinit(&pwcd_priv->resmgr);
iounmap(msm8x10_wcd->pdino_base);
return 0;
}
static struct snd_soc_codec_driver soc_codec_dev_msm8x10_wcd = {
.probe = msm8x10_wcd_codec_probe,
.remove = msm8x10_wcd_codec_remove,
.read = msm8x10_wcd_read,
.write = msm8x10_wcd_write,
.readable_register = msm8x10_wcd_readable,
.volatile_register = msm8x10_wcd_volatile,
.reg_cache_size = MSM8X10_WCD_CACHE_SIZE,
.reg_cache_default = msm8x10_wcd_reset_reg_defaults,
.reg_word_size = 1,
.controls = msm8x10_wcd_snd_controls,
.num_controls = ARRAY_SIZE(msm8x10_wcd_snd_controls),
.dapm_widgets = msm8x10_wcd_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(msm8x10_wcd_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
};
static int msm8x10_wcd_init_supplies(struct msm8x10_wcd *msm8x10,
struct msm8x10_wcd_pdata *pdata)
{
int ret;
int i;
msm8x10->supplies = kzalloc(sizeof(struct regulator_bulk_data) *
ARRAY_SIZE(pdata->regulator),
GFP_KERNEL);
if (!msm8x10->supplies) {
ret = -ENOMEM;
goto err;
}
msm8x10->num_of_supplies = 0;
if (ARRAY_SIZE(pdata->regulator) > MAX_REGULATOR) {
dev_err(msm8x10->dev, "%s: Array Size out of bound\n",
__func__);
ret = -EINVAL;
goto err;
}
for (i = 0; i < ARRAY_SIZE(pdata->regulator); i++) {
if (pdata->regulator[i].name) {
msm8x10->supplies[i].supply = pdata->regulator[i].name;
msm8x10->num_of_supplies++;
}
}
ret = regulator_bulk_get(msm8x10->dev, msm8x10->num_of_supplies,
msm8x10->supplies);
if (ret != 0) {
dev_err(msm8x10->dev, "Failed to get supplies: err = %d\n",
ret);
goto err_supplies;
}
for (i = 0; i < msm8x10->num_of_supplies; i++) {
if (regulator_count_voltages(msm8x10->supplies[i].consumer) <=
0)
continue;
ret = regulator_set_voltage(msm8x10->supplies[i].consumer,
pdata->regulator[i].min_uV,
pdata->regulator[i].max_uV);
if (ret) {
dev_err(msm8x10->dev, "%s: Setting regulator voltage failed for regulator %s err = %d\n",
__func__, msm8x10->supplies[i].supply, ret);
goto err_get;
}
ret = regulator_set_optimum_mode(msm8x10->supplies[i].consumer,
pdata->regulator[i].optimum_uA);
if (ret < 0) {
dev_err(msm8x10->dev, "%s: Setting regulator optimum mode failed for regulator %s err = %d\n",
__func__, msm8x10->supplies[i].supply, ret);
goto err_get;
} else {
ret = 0;
}
}
return ret;
err_get:
regulator_bulk_free(msm8x10->num_of_supplies, msm8x10->supplies);
err_supplies:
kfree(msm8x10->supplies);
err:
return ret;
}
static int msm8x10_wcd_enable_static_supplies(struct msm8x10_wcd *msm8x10,
struct msm8x10_wcd_pdata *pdata)
{
int i;
int ret = 0;
for (i = 0; i < msm8x10->num_of_supplies; i++) {
if (pdata->regulator[i].ondemand)
continue;
ret = regulator_enable(msm8x10->supplies[i].consumer);
if (ret) {
pr_err("%s: Failed to enable %s\n", __func__,
msm8x10->supplies[i].supply);
break;
} else {
pr_debug("%s: Enabled regulator %s\n", __func__,
msm8x10->supplies[i].supply);
}
}
while (ret && --i)
if (!pdata->regulator[i].ondemand)
regulator_disable(msm8x10->supplies[i].consumer);
return ret;
}
static void msm8x10_wcd_disable_supplies(struct msm8x10_wcd *msm8x10,
struct msm8x10_wcd_pdata *pdata)
{
int i;
regulator_bulk_disable(msm8x10->num_of_supplies,
msm8x10->supplies);
for (i = 0; i < msm8x10->num_of_supplies; i++) {
if (regulator_count_voltages(msm8x10->supplies[i].consumer) <=
0)
continue;
regulator_set_voltage(msm8x10->supplies[i].consumer, 0,
pdata->regulator[i].max_uV);
regulator_set_optimum_mode(msm8x10->supplies[i].consumer, 0);
}
regulator_bulk_free(msm8x10->num_of_supplies, msm8x10->supplies);
kfree(msm8x10->supplies);
}
static int msm8x10_wcd_pads_config(void)
{
void __iomem *ppull = ioremap(MSM8x10_TLMM_CDC_PULL_CTL, 4);
/* Set I2C pads as pull up and rest of pads as no pull */
iowrite32(0x03C00000, ppull);
usleep_range(100, 200);
iounmap(ppull);
return 0;
}
static int msm8x10_wcd_clk_init(void)
{
void __iomem *pdig1 = ioremap(MSM8X10_DINO_LPASS_DIGCODEC_CFG_RCGR, 4);
void __iomem *pdig2 = ioremap(MSM8X10_DINO_LPASS_DIGCODEC_M, 4);
void __iomem *pdig3 = ioremap(MSM8X10_DINO_LPASS_DIGCODEC_N, 4);
void __iomem *pdig4 = ioremap(MSM8X10_DINO_LPASS_DIGCODEC_D, 4);
void __iomem *pdig5 = ioremap(MSM8X10_DINO_LPASS_DIGCODEC_CBCR, 4);
void __iomem *pdig6 = ioremap(MSM8X10_DINO_LPASS_DIGCODEC_CMD_RCGR, 4);
/* Div-2 */
iowrite32(0x3, pdig1);
iowrite32(0x0, pdig2);
iowrite32(0x0, pdig3);
iowrite32(0x0, pdig4);
/* Digital codec clock enable */
iowrite32(0x1, pdig5);
/* Set the update bit to make the settings go through */
iowrite32(0x1, pdig6);
usleep_range(100, 200);
iounmap(pdig1);
iounmap(pdig2);
iounmap(pdig3);
iounmap(pdig4);
iounmap(pdig5);
iounmap(pdig6);
return 0;
}
static int msm8x10_wcd_device_init(struct msm8x10_wcd *msm8x10)
{
mutex_init(&msm8x10->io_lock);
mutex_init(&msm8x10->xfer_lock);
msm8x10_wcd_pads_config();
msm8x10_wcd_clk_init();
return 0;
}
static struct intr_data interrupt_table[] = {
{MSM8X10_WCD_IRQ_MBHC_INSERTION, true},
{MSM8X10_WCD_IRQ_MBHC_POTENTIAL, true},
{MSM8X10_WCD_IRQ_MBHC_RELEASE, true},
{MSM8X10_WCD_IRQ_MBHC_PRESS, true},
{MSM8X10_WCD_IRQ_MBHC_SHORT_TERM, true},
{MSM8X10_WCD_IRQ_MBHC_REMOVAL, true},
{MSM8X10_WCD_IRQ_MBHC_HS_DET, true},
{MSM8X10_WCD_IRQ_RESERVED_0, false},
{MSM8X10_WCD_IRQ_PA_STARTUP, false},
{MSM8X10_WCD_IRQ_BG_PRECHARGE, false},
{MSM8X10_WCD_IRQ_RESERVED_1, false},
{MSM8X10_WCD_IRQ_EAR_PA_OCPL_FAULT, false},
{MSM8X10_WCD_IRQ_EAR_PA_STARTUP, false},
{MSM8X10_WCD_IRQ_SPKR_PA_OCPL_FAULT, false},
{MSM8X10_WCD_IRQ_SPKR_CLIP_FAULT, false},
{MSM8X10_WCD_IRQ_RESERVED_2, false},
{MSM8X10_WCD_IRQ_HPH_L_PA_STARTUP, false},
{MSM8X10_WCD_IRQ_HPH_R_PA_STARTUP, false},
{MSM8X10_WCD_IRQ_HPH_PA_OCPL_FAULT, false},
{MSM8X10_WCD_IRQ_HPH_PA_OCPR_FAULT, false},
{MSM8X10_WCD_IRQ_RESERVED_3, false},
{MSM8X10_WCD_IRQ_RESERVED_4, false},
{MSM8X10_WCD_IRQ_RESERVED_5, false},
{MSM8X10_WCD_IRQ_RESERVED_6, false},
};
static int __devinit msm8x10_wcd_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret = 0;
struct msm8x10_wcd *msm8x10 = NULL;
struct msm8x10_wcd_pdata *pdata;
static int device_id;
struct device *dev;
enum apr_subsys_state q6_state;
struct wcd9xxx_core_resource *core_res;
dev_dbg(&client->dev, "%s(%d):slave addr = 0x%x device_id = %d\n",
__func__, __LINE__, client->addr, device_id);
switch (client->addr) {
case HELICON_CORE_0_I2C_ADDR:
msm8x10_wcd_modules[0].client = client;
break;
case HELICON_CORE_1_I2C_ADDR:
msm8x10_wcd_modules[1].client = client;
goto rtn;
case HELICON_CORE_2_I2C_ADDR:
msm8x10_wcd_modules[2].client = client;
goto rtn;
case HELICON_CORE_3_I2C_ADDR:
msm8x10_wcd_modules[3].client = client;
goto rtn;
default:
ret = -EINVAL;
goto rtn;
}
q6_state = apr_get_q6_state();
if ((q6_state == APR_SUBSYS_DOWN) &&
(client->addr == HELICON_CORE_0_I2C_ADDR)) {
dev_info(&client->dev, "defering %s, adsp_state %d\n", __func__,
q6_state);
return -EPROBE_DEFER;
} else
dev_info(&client->dev, "adsp is ready\n");
dev_dbg(&client->dev, "%s(%d):slave addr = 0x%x device_id = %d\n",
__func__, __LINE__, client->addr, device_id);
if (client->addr != HELICON_CORE_0_I2C_ADDR)
goto rtn;
dev_set_name(&client->dev, "%s", MSM8X10_CODEC_NAME);
dev = &client->dev;
if (client->dev.of_node) {
dev_dbg(&client->dev, "%s:Platform data from device tree\n",
__func__);
pdata = msm8x10_wcd_populate_dt_pdata(&client->dev);
if (!pdata) {
dev_err(&client->dev, "%s: Failed to parse pdata from device tree\n",
__func__);
goto rtn;
}
client->dev.platform_data = pdata;
} else {
dev_dbg(&client->dev, "%s:Platform data from board file\n",
__func__);
pdata = client->dev.platform_data;
}
msm8x10 = kzalloc(sizeof(struct msm8x10_wcd), GFP_KERNEL);
if (msm8x10 == NULL) {
dev_err(&client->dev,
"%s: error, allocation failed\n", __func__);
ret = -ENOMEM;
goto rtn;
}
msm8x10->dev = &client->dev;
msm8x10->read_dev = __msm8x10_wcd_reg_read;
msm8x10->write_dev = __msm8x10_wcd_reg_write;
ret = msm8x10_wcd_init_supplies(msm8x10, pdata);
if (ret) {
dev_err(&client->dev, "%s: Fail to enable Codec supplies\n",
__func__);
goto err_codec;
}
ret = msm8x10_wcd_enable_static_supplies(msm8x10, pdata);
if (ret) {
pr_err("%s: Fail to enable Codec pre-reset supplies\n",
__func__);
goto err_codec;
}
usleep_range(5, 5);
ret = msm8x10_wcd_device_init(msm8x10);
if (ret) {
dev_err(&client->dev,
"%s:msm8x10_wcd_device_init failed with error %d\n",
__func__, ret);
goto err_supplies;
}
dev_set_drvdata(&client->dev, msm8x10);
core_res = &msm8x10->wcd9xxx_res;
core_res->parent = msm8x10;
core_res->dev = msm8x10->dev;
core_res->intr_table = interrupt_table;
core_res->intr_table_size = ARRAY_SIZE(interrupt_table);
wcd9xxx_core_res_init(core_res,
MSM8X10_WCD_NUM_IRQS,
MSM8X10_WCD_NUM_IRQ_REGS,
msm8x10_wcd_reg_read,
msm8x10_wcd_reg_write,
msm8x10_wcd_bulk_read,
msm8x10_wcd_bulk_write);
if (wcd9xxx_core_irq_init(core_res)) {
dev_err(msm8x10->dev,
"%s: irq initialization failed\n", __func__);
} else {
dev_info(msm8x10->dev,
"%s: irq initialization passed\n", __func__);
}
ret = snd_soc_register_codec(&client->dev, &soc_codec_dev_msm8x10_wcd,
msm8x10_wcd_i2s_dai,
ARRAY_SIZE(msm8x10_wcd_i2s_dai));
if (ret) {
dev_err(&client->dev,
"%s:snd_soc_register_codec failed with error %d\n",
__func__, ret);
} else {
wcd9xxx_set_intf_type(WCD9XXX_INTERFACE_TYPE_I2C);
goto rtn;
}
err_supplies:
msm8x10_wcd_disable_supplies(msm8x10, pdata);
err_codec:
kfree(msm8x10);
rtn:
return ret;
}
static void msm8x10_wcd_device_exit(struct msm8x10_wcd *msm8x10)
{
mutex_destroy(&msm8x10->io_lock);
mutex_destroy(&msm8x10->xfer_lock);
kfree(msm8x10);
}
static int __devexit msm8x10_wcd_i2c_remove(struct i2c_client *client)
{
struct msm8x10_wcd *msm8x10 = dev_get_drvdata(&client->dev);
msm8x10_wcd_device_exit(msm8x10);
return 0;
}
static struct i2c_device_id msm8x10_wcd_id_table[] = {
{"msm8x10-wcd-i2c", MSM8X10_WCD_I2C_TOP_LEVEL},
{"msm8x10-wcd-i2c", MSM8X10_WCD_I2C_ANALOG},
{"msm8x10-wcd-i2c", MSM8X10_WCD_I2C_DIGITAL_1},
{"msm8x10-wcd-i2c", MSM8X10_WCD_I2C_DIGITAL_2},
{}
};
static struct of_device_id msm8x10_wcd_of_match[] = {
{ .compatible = "qcom,msm8x10-wcd-i2c",},
{ },
};
#ifdef CONFIG_PM
static int msm8x10_wcd_i2c_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct msm8x10_wcd_priv *priv = i2c_get_clientdata(client);
struct msm8x10_wcd *msm8x10;
int ret = 0;
if (client->addr == HELICON_CORE_0_I2C_ADDR) {
if (!priv || !priv->codec || !priv->codec->control_data) {
ret = -EINVAL;
dev_err(dev, "%s: Invalid client data\n", __func__);
goto rtn;
}
msm8x10 = priv->codec->control_data;
return wcd9xxx_core_res_resume(&msm8x10->wcd9xxx_res);
}
rtn:
return 0;
}
static int msm8x10_wcd_i2c_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct msm8x10_wcd_priv *priv = i2c_get_clientdata(client);
struct msm8x10_wcd *msm8x10;
int ret = 0;
if (client->addr == HELICON_CORE_0_I2C_ADDR) {
if (!priv || !priv->codec || !priv->codec->control_data) {
ret = -EINVAL;
dev_err(dev, "%s: Invalid client data\n", __func__);
goto rtn;
}
msm8x10 = priv->codec->control_data;
return wcd9xxx_core_res_suspend(&msm8x10->wcd9xxx_res,
PMSG_SUSPEND);
}
rtn:
return ret;
}
static SIMPLE_DEV_PM_OPS(msm8x1_wcd_pm_ops, msm8x10_wcd_i2c_suspend,
msm8x10_wcd_i2c_resume);
#endif
static struct i2c_driver msm8x10_wcd_i2c_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "msm8x10-wcd-i2c-core",
.of_match_table = msm8x10_wcd_of_match,
#ifdef CONFIG_PM
.pm = &msm8x1_wcd_pm_ops,
#endif
},
.id_table = msm8x10_wcd_id_table,
.probe = msm8x10_wcd_i2c_probe,
.remove = __devexit_p(msm8x10_wcd_i2c_remove),
};
static int __init msm8x10_wcd_codec_init(void)
{
int ret;
pr_debug("%s:\n", __func__);
wcd9xxx_set_intf_type(WCD9XXX_INTERFACE_TYPE_PROBING);
ret = i2c_add_driver(&msm8x10_wcd_i2c_driver);
if (ret != 0)
pr_err("%s: Failed to add msm8x10 wcd I2C driver - error %d\n",
__func__, ret);
return ret;
}
static void __exit msm8x10_wcd_codec_exit(void)
{
i2c_del_driver(&msm8x10_wcd_i2c_driver);
}
module_init(msm8x10_wcd_codec_init);
module_exit(msm8x10_wcd_codec_exit);
MODULE_DESCRIPTION("MSM8x10 Audio codec driver");
MODULE_LICENSE("GPL v2");
MODULE_DEVICE_TABLE(i2c, msm8x10_wcd_id_table);