blob: 953f941dbbd772aa380e7f6dfaaca7c8fcf700c4 [file] [log] [blame]
/* Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "PDN %s: " fmt, __func__
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regulator/driver.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/krait-regulator.h>
#include <linux/debugfs.h>
#include <linux/syscore_ops.h>
#include <mach/msm_iomap.h>
#include "spm.h"
#include "pm.h"
/*
* supply
* from
* pmic
* gang
* |
* |________________________________
* | | |
* ___|___ | |
* | | | |
* | | / /
* | LDO | / /LDO BYP [6]
* | | / BHS[6] /(bypass is a weak BHS
* |_______| | | needs to be on when in
* | | | BHS mode)
* |________________|_______________|
* |
* ________|________
* | |
* | KRAIT |
* |_________________|
*/
#define PMIC_VOLTAGE_MIN 350000
#define PMIC_VOLTAGE_MAX 1355000
#define LV_RANGE_STEP 5000
#define LOAD_PER_PHASE 3200000
#define CORE_VOLTAGE_MIN 900000
#define KRAIT_LDO_VOLTAGE_MIN 465000
#define KRAIT_LDO_VOLTAGE_OFFSET 465000
#define KRAIT_LDO_STEP 5000
#define BHS_SETTLING_DELAY_US 1
#define LDO_SETTLING_DELAY_US 1
#define MDD_SETTLING_DELAY_US 5
#define _KRAIT_MASK(BITS, POS) (((u32)(1 << (BITS)) - 1) << POS)
#define KRAIT_MASK(LEFT_BIT_POS, RIGHT_BIT_POS) \
_KRAIT_MASK(LEFT_BIT_POS - RIGHT_BIT_POS + 1, RIGHT_BIT_POS)
#define APC_SECURE 0x00000000
#define CPU_PWR_CTL 0x00000004
#define APC_PWR_STATUS 0x00000008
#define APC_TEST_BUS_SEL 0x0000000C
#define CPU_TRGTD_DBG_RST 0x00000010
#define APC_PWR_GATE_CTL 0x00000014
#define APC_LDO_VREF_SET 0x00000018
#define APC_PWR_GATE_MODE 0x0000001C
#define APC_PWR_GATE_DLY 0x00000020
#define PWR_GATE_CONFIG 0x00000044
#define VERSION 0x00000FD0
/* MDD register group */
#define MDD_CONFIG_CTL 0x00000000
#define MDD_MODE 0x00000010
/* bit definitions for APC_PWR_GATE_CTL */
#define BHS_CNT_BIT_POS 24
#define BHS_CNT_MASK KRAIT_MASK(31, 24)
#define BHS_CNT_DEFAULT 64
#define CLK_SRC_SEL_BIT_POS 15
#define CLK_SRC_SEL_MASK KRAIT_MASK(15, 15)
#define CLK_SRC_DEFAULT 0
#define LDO_PWR_DWN_BIT_POS 16
#define LDO_PWR_DWN_MASK KRAIT_MASK(21, 16)
#define LDO_BYP_BIT_POS 8
#define LDO_BYP_MASK KRAIT_MASK(13, 8)
#define BHS_SEG_EN_BIT_POS 1
#define BHS_SEG_EN_MASK KRAIT_MASK(6, 1)
#define BHS_SEG_EN_DEFAULT 0x3F
#define BHS_EN_BIT_POS 0
#define BHS_EN_MASK KRAIT_MASK(0, 0)
/* bit definitions for APC_LDO_VREF_SET register */
#define VREF_RET_POS 8
#define VREF_RET_MASK KRAIT_MASK(14, 8)
#define VREF_LDO_BIT_POS 0
#define VREF_LDO_MASK KRAIT_MASK(6, 0)
#define LDO_HDROOM_MIN 50000
#define LDO_HDROOM_MAX 250000
#define LDO_UV_MIN 465000
#define LDO_UV_MAX 750000
#define LDO_TH_MIN 600000
#define LDO_TH_MAX 900000
#define LDO_DELTA_MIN 10000
#define LDO_DELTA_MAX 100000
/**
* struct pmic_gang_vreg -
* @name: the string used to represent the gang
* @pmic_vmax_uV: the current pmic gang voltage
* @pmic_phase_count: the number of phases turned on in the gang
* @krait_power_vregs: a list of krait consumers this gang supplies to
* @krait_power_vregs_lock: lock to prevent simultaneous access to the list
* and its nodes. This needs to be taken by each
* regulator's callback functions to prevent
* simultaneous updates to the pmic's phase
* voltage.
* @apcs_gcc_base virtual address of the APCS GCC registers
*/
struct pmic_gang_vreg {
const char *name;
int pmic_vmax_uV;
int pmic_phase_count;
struct list_head krait_power_vregs;
struct mutex krait_power_vregs_lock;
bool pfm_mode;
int pmic_min_uV_for_retention;
bool retention_enabled;
bool use_phase_switching;
void __iomem *apcs_gcc_base;
};
static struct pmic_gang_vreg *the_gang;
enum krait_supply_mode {
HS_MODE = REGULATOR_MODE_NORMAL,
LDO_MODE = REGULATOR_MODE_IDLE,
};
struct krait_power_vreg {
struct list_head link;
struct regulator_desc desc;
struct regulator_dev *rdev;
const char *name;
struct pmic_gang_vreg *pvreg;
int uV;
int load_uA;
enum krait_supply_mode mode;
void __iomem *reg_base;
void __iomem *mdd_base;
int ldo_default_uV;
int retention_uV;
int headroom_uV;
int ldo_threshold_uV;
int ldo_delta_uV;
int cpu_num;
bool online;
};
DEFINE_PER_CPU(struct krait_power_vreg *, krait_vregs);
static u32 version;
static int is_between(int left, int right, int value)
{
if (left >= right && left >= value && value >= right)
return 1;
if (left <= right && left <= value && value <= right)
return 1;
return 0;
}
static void krait_masked_write(struct krait_power_vreg *kvreg,
int reg, uint32_t mask, uint32_t val)
{
uint32_t reg_val;
reg_val = readl_relaxed(kvreg->reg_base + reg);
reg_val &= ~mask;
reg_val |= (val & mask);
writel_relaxed(reg_val, kvreg->reg_base + reg);
/*
* Barrier to ensure that the reads and writes from
* other regulator regions (they are 1k apart) execute in
* order to the above write.
*/
mb();
}
static int get_krait_retention_ldo_uv(struct krait_power_vreg *kvreg)
{
uint32_t reg_val;
int uV;
reg_val = readl_relaxed(kvreg->reg_base + APC_LDO_VREF_SET);
reg_val &= VREF_RET_MASK;
reg_val >>= VREF_RET_POS;
if (reg_val == 0)
uV = 0;
else
uV = KRAIT_LDO_VOLTAGE_OFFSET + reg_val * KRAIT_LDO_STEP;
return uV;
}
static int get_krait_ldo_uv(struct krait_power_vreg *kvreg)
{
uint32_t reg_val;
int uV;
reg_val = readl_relaxed(kvreg->reg_base + APC_LDO_VREF_SET);
reg_val &= VREF_LDO_MASK;
reg_val >>= VREF_LDO_BIT_POS;
if (reg_val == 0)
uV = 0;
else
uV = KRAIT_LDO_VOLTAGE_OFFSET + reg_val * KRAIT_LDO_STEP;
return uV;
}
static int set_krait_retention_uv(struct krait_power_vreg *kvreg, int uV)
{
uint32_t reg_val;
reg_val = DIV_ROUND_UP(uV - KRAIT_LDO_VOLTAGE_OFFSET, KRAIT_LDO_STEP);
krait_masked_write(kvreg, APC_LDO_VREF_SET, VREF_RET_MASK,
reg_val << VREF_RET_POS);
return 0;
}
static int set_krait_ldo_uv(struct krait_power_vreg *kvreg, int uV)
{
uint32_t reg_val;
reg_val = DIV_ROUND_UP(uV - KRAIT_LDO_VOLTAGE_OFFSET, KRAIT_LDO_STEP);
krait_masked_write(kvreg, APC_LDO_VREF_SET, VREF_LDO_MASK,
reg_val << VREF_LDO_BIT_POS);
return 0;
}
static int __krait_power_mdd_enable(struct krait_power_vreg *kvreg, bool on)
{
if (on) {
writel_relaxed(0x00000002, kvreg->mdd_base + MDD_MODE);
/* complete the above write before the delay */
mb();
udelay(MDD_SETTLING_DELAY_US);
} else {
writel_relaxed(0x00000000, kvreg->mdd_base + MDD_MODE);
/*
* complete the above write before other accesses
* to krait regulator
*/
mb();
}
return 0;
}
static int switch_to_using_hs(struct krait_power_vreg *kvreg)
{
if (kvreg->mode == HS_MODE)
return 0;
/* enable bhs */
krait_masked_write(kvreg, APC_PWR_GATE_CTL,
BHS_SEG_EN_MASK | BHS_EN_MASK,
BHS_SEG_EN_DEFAULT << BHS_SEG_EN_BIT_POS | BHS_EN_MASK);
/* complete the above write before the delay */
mb();
/*
* wait for the bhs to settle - note that
* after the voltage has settled both BHS and LDO are supplying power
* to the krait. This avoids glitches during switching
*/
udelay(BHS_SETTLING_DELAY_US);
/*
* enable ldo bypass - the krait is powered still by LDO since
* LDO is enabled
*/
krait_masked_write(kvreg, APC_PWR_GATE_CTL, LDO_BYP_MASK, LDO_BYP_MASK);
/* disable ldo - only the BHS provides voltage to the cpu after this */
krait_masked_write(kvreg, APC_PWR_GATE_CTL,
LDO_PWR_DWN_MASK, LDO_PWR_DWN_MASK);
kvreg->mode = HS_MODE;
pr_debug("%s using BHS\n", kvreg->name);
return 0;
}
static int switch_to_using_ldo(struct krait_power_vreg *kvreg)
{
if (kvreg->mode == LDO_MODE
&& get_krait_ldo_uv(kvreg) == kvreg->uV - kvreg->ldo_delta_uV)
return 0;
/*
* if the krait is in ldo mode and a voltage change is requested on the
* ldo switch to using hs before changing ldo voltage
*/
if (kvreg->mode == LDO_MODE)
switch_to_using_hs(kvreg);
set_krait_ldo_uv(kvreg, kvreg->uV - kvreg->ldo_delta_uV);
/*
* enable ldo - note that both LDO and BHS are are supplying voltage to
* the cpu after this. This avoids glitches during switching from BHS
* to LDO.
*/
krait_masked_write(kvreg, APC_PWR_GATE_CTL, LDO_PWR_DWN_MASK, 0);
/* complete the writes before the delay */
mb();
/* wait for the ldo to settle */
udelay(LDO_SETTLING_DELAY_US);
/*
* disable BHS and disable LDO bypass seperate from enabling
* the LDO above.
*/
krait_masked_write(kvreg, APC_PWR_GATE_CTL,
BHS_EN_MASK | LDO_BYP_MASK, 0);
krait_masked_write(kvreg, APC_PWR_GATE_CTL, BHS_SEG_EN_MASK, 0);
kvreg->mode = LDO_MODE;
pr_debug("%s using LDO\n", kvreg->name);
return 0;
}
static int set_pmic_gang_phases(struct pmic_gang_vreg *pvreg, int phase_count)
{
pr_debug("programming phase_count = %d\n", phase_count);
if (pvreg->use_phase_switching)
/*
* note the PMIC sets the phase count to one more than
* the value in the register - hence subtract 1 from it
*/
return msm_spm_apcs_set_phase(phase_count - 1);
else
return 0;
}
static int set_pmic_gang_voltage(struct pmic_gang_vreg *pvreg, int uV)
{
int setpoint;
int rc;
if (pvreg->pmic_vmax_uV == uV)
return 0;
pr_debug("%d\n", uV);
if (uV < PMIC_VOLTAGE_MIN) {
pr_err("requested %d < %d, restricting it to %d\n",
uV, PMIC_VOLTAGE_MIN, PMIC_VOLTAGE_MIN);
uV = PMIC_VOLTAGE_MIN;
}
if (uV > PMIC_VOLTAGE_MAX) {
pr_err("requested %d > %d, restricting it to %d\n",
uV, PMIC_VOLTAGE_MAX, PMIC_VOLTAGE_MAX);
uV = PMIC_VOLTAGE_MAX;
}
if (uV < pvreg->pmic_min_uV_for_retention) {
if (pvreg->retention_enabled) {
pr_debug("Disabling Retention pmic = %duV, pmic_min_uV_for_retention = %duV",
uV, pvreg->pmic_min_uV_for_retention);
msm_pm_enable_retention(false);
pvreg->retention_enabled = false;
}
} else {
if (!pvreg->retention_enabled) {
pr_debug("Enabling Retention pmic = %duV, pmic_min_uV_for_retention = %duV",
uV, pvreg->pmic_min_uV_for_retention);
msm_pm_enable_retention(true);
pvreg->retention_enabled = true;
}
}
setpoint = DIV_ROUND_UP(uV, LV_RANGE_STEP);
rc = msm_spm_apcs_set_vdd(setpoint);
if (rc < 0)
pr_err("could not set %duV setpt = 0x%x rc = %d\n",
uV, setpoint, rc);
else
pvreg->pmic_vmax_uV = uV;
return rc;
}
static int configure_ldo_or_hs_all(struct krait_power_vreg *from, int vmax)
{
struct pmic_gang_vreg *pvreg = from->pvreg;
struct krait_power_vreg *kvreg;
int rc = 0;
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
if (!kvreg->online)
continue;
if (kvreg->uV <= kvreg->ldo_threshold_uV
&& kvreg->uV - kvreg->ldo_delta_uV + kvreg->headroom_uV
<= vmax) {
rc = switch_to_using_ldo(kvreg);
if (rc < 0) {
pr_err("could not switch %s to ldo rc = %d\n",
kvreg->name, rc);
return rc;
}
} else {
rc = switch_to_using_hs(kvreg);
if (rc < 0) {
pr_err("could not switch %s to hs rc = %d\n",
kvreg->name, rc);
return rc;
}
}
}
return rc;
}
#define SLEW_RATE 2994
static int krait_voltage_increase(struct krait_power_vreg *from,
int vmax)
{
struct pmic_gang_vreg *pvreg = from->pvreg;
int rc = 0;
int settling_us;
/*
* since krait voltage is increasing set the gang voltage
* prior to changing ldo/hs states of the requesting krait
*/
rc = set_pmic_gang_voltage(pvreg, vmax);
if (rc < 0) {
dev_err(&from->rdev->dev, "%s failed set voltage %d rc = %d\n",
pvreg->name, vmax, rc);
return rc;
}
/* complete the above writes before the delay */
mb();
/* delay until the voltage is settled when it is raised */
settling_us = DIV_ROUND_UP(vmax - pvreg->pmic_vmax_uV, SLEW_RATE);
udelay(settling_us);
rc = configure_ldo_or_hs_all(from, vmax);
if (rc < 0) {
dev_err(&from->rdev->dev, "%s failed ldo/hs conf %d rc = %d\n",
pvreg->name, vmax, rc);
}
return rc;
}
static int krait_voltage_decrease(struct krait_power_vreg *from,
int vmax)
{
struct pmic_gang_vreg *pvreg = from->pvreg;
int rc = 0;
/*
* since krait voltage is decreasing ldos might get out of their
* operating range. Hence configure such kraits to be in hs mode prior
* to setting the pmic gang voltage
*/
rc = configure_ldo_or_hs_all(from, vmax);
if (rc < 0) {
dev_err(&from->rdev->dev, "%s failed ldo/hs conf %d rc = %d\n",
pvreg->name, vmax, rc);
return rc;
}
rc = set_pmic_gang_voltage(pvreg, vmax);
if (rc < 0) {
dev_err(&from->rdev->dev, "%s failed set voltage %d rc = %d\n",
pvreg->name, vmax, rc);
}
return rc;
}
#define PHASE_SETTLING_TIME_US 10
static unsigned int pmic_gang_set_phases(struct krait_power_vreg *from,
int load_uA)
{
struct pmic_gang_vreg *pvreg = from->pvreg;
int phase_count = DIV_ROUND_UP(load_uA, LOAD_PER_PHASE);
int rc = 0;
if (phase_count <= 0)
phase_count = 1;
/* Increase phases if it is less than the number of cpus online */
if (phase_count < num_online_cpus()) {
phase_count = num_online_cpus();
}
if (phase_count != pvreg->pmic_phase_count) {
rc = set_pmic_gang_phases(pvreg, phase_count);
if (rc < 0) {
dev_err(&from->rdev->dev,
"%s failed set phase %d rc = %d\n",
pvreg->name, phase_count, rc);
return rc;
}
/* complete the writes before the delay */
mb();
/*
* delay until the phases are settled when
* the count is raised
*/
if (phase_count > pvreg->pmic_phase_count)
udelay(PHASE_SETTLING_TIME_US);
pvreg->pmic_phase_count = phase_count;
}
return rc;
}
static int krait_power_get_voltage(struct regulator_dev *rdev)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
return kvreg->uV;
}
static int get_vmax(struct pmic_gang_vreg *pvreg)
{
int vmax = 0;
int v;
struct krait_power_vreg *kvreg;
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
if (!kvreg->online)
continue;
v = kvreg->uV;
if (vmax < v)
vmax = v;
}
return vmax;
}
static int get_total_load(struct krait_power_vreg *from)
{
int load_total = 0;
struct krait_power_vreg *kvreg;
struct pmic_gang_vreg *pvreg = from->pvreg;
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
if (!kvreg->online)
continue;
load_total += kvreg->load_uA;
}
return load_total;
}
#define ROUND_UP_VOLTAGE(v, res) (DIV_ROUND_UP(v, res) * res)
static int _set_voltage(struct regulator_dev *rdev,
int orig_krait_uV, int requested_uV)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
int rc;
int vmax;
pr_debug("%s: %d to %d\n", kvreg->name, orig_krait_uV, requested_uV);
/*
* Assign the voltage before updating the gang voltage as we iterate
* over all the core voltages and choose HS or LDO for each of them
*/
kvreg->uV = requested_uV;
vmax = get_vmax(pvreg);
/* round up the pmic voltage as per its resolution */
vmax = ROUND_UP_VOLTAGE(vmax, LV_RANGE_STEP);
if (requested_uV > orig_krait_uV)
rc = krait_voltage_increase(kvreg, vmax);
else
rc = krait_voltage_decrease(kvreg, vmax);
if (rc < 0) {
dev_err(&rdev->dev, "%s failed to set %duV from %duV rc = %d\n",
kvreg->name, requested_uV, orig_krait_uV, rc);
}
return rc;
}
static int krait_power_set_voltage(struct regulator_dev *rdev,
int min_uV, int max_uV, unsigned *selector)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
int rc;
/*
* if the voltage requested is below LDO_THRESHOLD this cpu could
* switch to LDO mode. Hence round the voltage as per the LDO
* resolution
*/
if (min_uV < kvreg->ldo_threshold_uV) {
if (min_uV < KRAIT_LDO_VOLTAGE_MIN)
min_uV = KRAIT_LDO_VOLTAGE_MIN;
min_uV = ROUND_UP_VOLTAGE(min_uV, KRAIT_LDO_STEP);
}
mutex_lock(&pvreg->krait_power_vregs_lock);
if (!kvreg->online) {
kvreg->uV = min_uV;
mutex_unlock(&pvreg->krait_power_vregs_lock);
return 0;
}
rc = _set_voltage(rdev, kvreg->uV, min_uV);
mutex_unlock(&pvreg->krait_power_vregs_lock);
return rc;
}
#define PMIC_FTS_MODE_PFM 0x00
#define PMIC_FTS_MODE_PWM 0x80
#define PFM_LOAD_UA 500000
static unsigned int _get_optimum_mode(struct regulator_dev *rdev,
int input_uV, int output_uV, int load_uA)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
int rc;
int load_total_uA;
load_total_uA = get_total_load(kvreg);
if (load_total_uA < PFM_LOAD_UA) {
if (!pvreg->pfm_mode) {
rc = msm_spm_enable_fts_lpm(PMIC_FTS_MODE_PFM);
if (rc) {
dev_err(&rdev->dev,
"%s enter PFM failed load %d rc = %d\n",
kvreg->name, load_total_uA, rc);
goto out;
} else {
pvreg->pfm_mode = true;
}
}
return kvreg->mode;
}
if (pvreg->pfm_mode) {
rc = msm_spm_enable_fts_lpm(PMIC_FTS_MODE_PWM);
if (rc) {
dev_err(&rdev->dev,
"%s exit PFM failed load %d rc = %d\n",
kvreg->name, load_total_uA, rc);
goto out;
} else {
pvreg->pfm_mode = false;
}
}
rc = pmic_gang_set_phases(kvreg, load_total_uA);
if (rc < 0) {
dev_err(&rdev->dev, "%s failed set mode %d rc = %d\n",
kvreg->name, load_total_uA, rc);
goto out;
}
out:
return kvreg->mode;
}
static unsigned int krait_power_get_optimum_mode(struct regulator_dev *rdev,
int input_uV, int output_uV, int load_uA)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
int rc;
mutex_lock(&pvreg->krait_power_vregs_lock);
kvreg->load_uA = load_uA;
if (!kvreg->online) {
mutex_unlock(&pvreg->krait_power_vregs_lock);
return kvreg->mode;
}
rc = _get_optimum_mode(rdev, input_uV, output_uV, load_uA);
mutex_unlock(&pvreg->krait_power_vregs_lock);
return rc;
}
static int krait_power_set_mode(struct regulator_dev *rdev, unsigned int mode)
{
return 0;
}
static unsigned int krait_power_get_mode(struct regulator_dev *rdev)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
return kvreg->mode;
}
static int krait_power_is_enabled(struct regulator_dev *rdev)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
return kvreg->online;
}
static int krait_power_enable(struct regulator_dev *rdev)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
int rc;
mutex_lock(&pvreg->krait_power_vregs_lock);
__krait_power_mdd_enable(kvreg, true);
kvreg->online = true;
rc = _get_optimum_mode(rdev, kvreg->uV, kvreg->uV, kvreg->load_uA);
if (rc < 0)
goto en_err;
/*
* since the core is being enabled, behave as if it is increasing
* the core voltage
*/
rc = _set_voltage(rdev, 0, kvreg->uV);
en_err:
mutex_unlock(&pvreg->krait_power_vregs_lock);
return rc;
}
static int krait_power_disable(struct regulator_dev *rdev)
{
struct krait_power_vreg *kvreg = rdev_get_drvdata(rdev);
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
int rc;
mutex_lock(&pvreg->krait_power_vregs_lock);
kvreg->online = false;
rc = _get_optimum_mode(rdev, kvreg->uV, kvreg->uV,
kvreg->load_uA);
if (rc < 0)
goto dis_err;
rc = _set_voltage(rdev, kvreg->uV, kvreg->uV);
__krait_power_mdd_enable(kvreg, false);
dis_err:
mutex_unlock(&pvreg->krait_power_vregs_lock);
return rc;
}
static struct regulator_ops krait_power_ops = {
.get_voltage = krait_power_get_voltage,
.set_voltage = krait_power_set_voltage,
.get_optimum_mode = krait_power_get_optimum_mode,
.set_mode = krait_power_set_mode,
.get_mode = krait_power_get_mode,
.enable = krait_power_enable,
.disable = krait_power_disable,
.is_enabled = krait_power_is_enabled,
};
static struct dentry *dent;
static int get_retention_dbg_uV(void *data, u64 *val)
{
struct pmic_gang_vreg *pvreg = data;
struct krait_power_vreg *kvreg;
mutex_lock(&pvreg->krait_power_vregs_lock);
if (!list_empty(&pvreg->krait_power_vregs)) {
/* return the retention voltage on just the first cpu */
kvreg = list_entry((&pvreg->krait_power_vregs)->next,
typeof(*kvreg), link);
*val = get_krait_retention_ldo_uv(kvreg);
}
mutex_unlock(&pvreg->krait_power_vregs_lock);
return 0;
}
static int set_retention_dbg_uV(void *data, u64 val)
{
struct pmic_gang_vreg *pvreg = data;
struct krait_power_vreg *kvreg;
int retention_uV = val;
if (!is_between(LDO_UV_MIN, LDO_UV_MAX, retention_uV))
return -EINVAL;
mutex_lock(&pvreg->krait_power_vregs_lock);
list_for_each_entry(kvreg, &pvreg->krait_power_vregs, link) {
kvreg->retention_uV = retention_uV;
set_krait_retention_uv(kvreg, retention_uV);
}
mutex_unlock(&pvreg->krait_power_vregs_lock);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(retention_fops,
get_retention_dbg_uV, set_retention_dbg_uV, "%llu\n");
static void kvreg_hw_init(struct krait_power_vreg *kvreg)
{
/*
* bhs_cnt value sets the ramp-up time from power collapse,
* initialize the ramp up time
*/
set_krait_retention_uv(kvreg, kvreg->retention_uV);
set_krait_ldo_uv(kvreg, kvreg->ldo_default_uV);
/* setup the bandgap that configures the reference to the LDO */
writel_relaxed(0x00000190, kvreg->mdd_base + MDD_CONFIG_CTL);
/* Enable MDD */
writel_relaxed(0x00000002, kvreg->mdd_base + MDD_MODE);
mb();
}
static void glb_init(void __iomem *apcs_gcc_base)
{
/* configure bi-modal switch */
writel_relaxed(0x0008736E, apcs_gcc_base + PWR_GATE_CONFIG);
/* read kpss version */
version = readl_relaxed(apcs_gcc_base + VERSION);
pr_debug("version= 0x%x\n", version);
}
static int __devinit krait_power_probe(struct platform_device *pdev)
{
struct krait_power_vreg *kvreg;
struct resource *res, *res_mdd;
struct regulator_init_data *init_data = pdev->dev.platform_data;
int rc = 0;
int headroom_uV, retention_uV, ldo_default_uV, ldo_threshold_uV;
int ldo_delta_uV;
int cpu_num;
if (pdev->dev.of_node) {
/* Get init_data from device tree. */
init_data = of_get_regulator_init_data(&pdev->dev,
pdev->dev.of_node);
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_DRMS
| REGULATOR_CHANGE_MODE;
init_data->constraints.valid_modes_mask
|= REGULATOR_MODE_NORMAL | REGULATOR_MODE_IDLE
| REGULATOR_MODE_FAST;
init_data->constraints.input_uV = init_data->constraints.max_uV;
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,headroom-voltage",
&headroom_uV);
if (rc < 0) {
pr_err("headroom-voltage missing rc=%d\n", rc);
return rc;
}
if (!is_between(LDO_HDROOM_MIN, LDO_HDROOM_MAX, headroom_uV)) {
pr_err("bad headroom-voltage = %d specified\n",
headroom_uV);
return -EINVAL;
}
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,retention-voltage",
&retention_uV);
if (rc < 0) {
pr_err("retention-voltage missing rc=%d\n", rc);
return rc;
}
if (!is_between(LDO_UV_MIN, LDO_UV_MAX, retention_uV)) {
pr_err("bad retention-voltage = %d specified\n",
retention_uV);
return -EINVAL;
}
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,ldo-default-voltage",
&ldo_default_uV);
if (rc < 0) {
pr_err("ldo-default-voltage missing rc=%d\n", rc);
return rc;
}
if (!is_between(LDO_UV_MIN, LDO_UV_MAX, ldo_default_uV)) {
pr_err("bad ldo-default-voltage = %d specified\n",
ldo_default_uV);
return -EINVAL;
}
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,ldo-threshold-voltage",
&ldo_threshold_uV);
if (rc < 0) {
pr_err("ldo-threshold-voltage missing rc=%d\n", rc);
return rc;
}
if (!is_between(LDO_TH_MIN, LDO_TH_MAX, ldo_threshold_uV)) {
pr_err("bad ldo-threshold-voltage = %d specified\n",
ldo_threshold_uV);
return -EINVAL;
}
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,ldo-delta-voltage",
&ldo_delta_uV);
if (rc < 0) {
pr_err("ldo-delta-voltage missing rc=%d\n", rc);
return rc;
}
if (!is_between(LDO_DELTA_MIN, LDO_DELTA_MAX, ldo_delta_uV)) {
pr_err("bad ldo-delta-voltage = %d specified\n",
ldo_delta_uV);
return -EINVAL;
}
rc = of_property_read_u32(pdev->dev.of_node,
"qcom,cpu-num",
&cpu_num);
if (cpu_num > num_possible_cpus()) {
pr_err("bad cpu-num= %d specified\n", cpu_num);
return -EINVAL;
}
}
if (!init_data) {
dev_err(&pdev->dev, "init data required.\n");
return -EINVAL;
}
if (!init_data->constraints.name) {
dev_err(&pdev->dev,
"regulator name must be specified in constraints.\n");
return -EINVAL;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "acs");
if (!res) {
dev_err(&pdev->dev, "missing physical register addresses\n");
return -EINVAL;
}
res_mdd = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mdd");
if (!res_mdd) {
dev_err(&pdev->dev, "missing mdd register addresses\n");
return -EINVAL;
}
kvreg = devm_kzalloc(&pdev->dev,
sizeof(struct krait_power_vreg), GFP_KERNEL);
if (!kvreg) {
dev_err(&pdev->dev, "kzalloc failed.\n");
return -ENOMEM;
}
kvreg->reg_base = devm_ioremap(&pdev->dev,
res->start, resource_size(res));
kvreg->mdd_base = devm_ioremap(&pdev->dev,
res_mdd->start, resource_size(res));
kvreg->pvreg = the_gang;
kvreg->name = init_data->constraints.name;
kvreg->desc.name = kvreg->name;
kvreg->desc.ops = &krait_power_ops;
kvreg->desc.type = REGULATOR_VOLTAGE;
kvreg->desc.owner = THIS_MODULE;
kvreg->uV = CORE_VOLTAGE_MIN;
kvreg->mode = HS_MODE;
kvreg->desc.ops = &krait_power_ops;
kvreg->headroom_uV = headroom_uV;
kvreg->retention_uV = retention_uV;
kvreg->ldo_default_uV = ldo_default_uV;
kvreg->ldo_threshold_uV = ldo_threshold_uV;
kvreg->ldo_delta_uV = ldo_delta_uV;
kvreg->cpu_num = cpu_num;
platform_set_drvdata(pdev, kvreg);
mutex_lock(&the_gang->krait_power_vregs_lock);
the_gang->pmic_min_uV_for_retention
= min(the_gang->pmic_min_uV_for_retention,
kvreg->retention_uV + kvreg->headroom_uV);
list_add_tail(&kvreg->link, &the_gang->krait_power_vregs);
mutex_unlock(&the_gang->krait_power_vregs_lock);
kvreg->rdev = regulator_register(&kvreg->desc, &pdev->dev, init_data,
kvreg, pdev->dev.of_node);
if (IS_ERR(kvreg->rdev)) {
rc = PTR_ERR(kvreg->rdev);
pr_err("regulator_register failed, rc=%d.\n", rc);
goto out;
}
kvreg_hw_init(kvreg);
per_cpu(krait_vregs, cpu_num) = kvreg;
dev_dbg(&pdev->dev, "id=%d, name=%s\n", pdev->id, kvreg->name);
return 0;
out:
mutex_lock(&the_gang->krait_power_vregs_lock);
list_del(&kvreg->link);
mutex_unlock(&the_gang->krait_power_vregs_lock);
platform_set_drvdata(pdev, NULL);
return rc;
}
static int __devexit krait_power_remove(struct platform_device *pdev)
{
struct krait_power_vreg *kvreg = platform_get_drvdata(pdev);
struct pmic_gang_vreg *pvreg = kvreg->pvreg;
mutex_lock(&pvreg->krait_power_vregs_lock);
list_del(&kvreg->link);
mutex_unlock(&pvreg->krait_power_vregs_lock);
regulator_unregister(kvreg->rdev);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct of_device_id krait_power_match_table[] = {
{ .compatible = "qcom,krait-regulator", },
{}
};
static struct platform_driver krait_power_driver = {
.probe = krait_power_probe,
.remove = __devexit_p(krait_power_remove),
.driver = {
.name = KRAIT_REGULATOR_DRIVER_NAME,
.of_match_table = krait_power_match_table,
.owner = THIS_MODULE,
},
};
static struct of_device_id krait_pdn_match_table[] = {
{ .compatible = "qcom,krait-pdn", },
{}
};
static int boot_cpu_mdd_off(void)
{
struct krait_power_vreg *kvreg = per_cpu(krait_vregs, 0);
__krait_power_mdd_enable(kvreg, false);
return 0;
}
static void boot_cpu_mdd_on(void)
{
struct krait_power_vreg *kvreg = per_cpu(krait_vregs, 0);
__krait_power_mdd_enable(kvreg, true);
}
static struct syscore_ops boot_cpu_mdd_ops = {
.suspend = boot_cpu_mdd_off,
.resume = boot_cpu_mdd_on,
};
static int __devinit krait_pdn_probe(struct platform_device *pdev)
{
int rc;
bool use_phase_switching = false;
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct pmic_gang_vreg *pvreg;
struct resource *res;
if (!dev->of_node) {
dev_err(dev, "device tree information missing\n");
return -ENODEV;
}
use_phase_switching = of_property_read_bool(node,
"qcom,use-phase-switching");
pvreg = devm_kzalloc(&pdev->dev,
sizeof(struct pmic_gang_vreg), GFP_KERNEL);
if (!pvreg) {
pr_err("kzalloc failed.\n");
return 0;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "apcs_gcc");
if (!res) {
dev_err(&pdev->dev, "missing apcs gcc base addresses\n");
return -EINVAL;
}
pvreg->apcs_gcc_base = devm_ioremap(&pdev->dev, res->start,
resource_size(res));
if (pvreg->apcs_gcc_base == NULL)
return -ENOMEM;
pvreg->name = "pmic_gang";
pvreg->pmic_vmax_uV = PMIC_VOLTAGE_MIN;
pvreg->pmic_phase_count = -EINVAL;
pvreg->retention_enabled = true;
pvreg->pmic_min_uV_for_retention = INT_MAX;
pvreg->use_phase_switching = use_phase_switching;
mutex_init(&pvreg->krait_power_vregs_lock);
INIT_LIST_HEAD(&pvreg->krait_power_vregs);
the_gang = pvreg;
pr_debug("name=%s inited\n", pvreg->name);
/* global initializtion */
glb_init(pvreg->apcs_gcc_base);
rc = of_platform_populate(node, NULL, NULL, dev);
if (rc) {
dev_err(dev, "failed to add child nodes, rc=%d\n", rc);
return rc;
}
dent = debugfs_create_dir(KRAIT_REGULATOR_DRIVER_NAME, NULL);
debugfs_create_file("retention_uV",
0644, dent, the_gang, &retention_fops);
register_syscore_ops(&boot_cpu_mdd_ops);
return 0;
}
static int __devexit krait_pdn_remove(struct platform_device *pdev)
{
the_gang = NULL;
debugfs_remove_recursive(dent);
return 0;
}
static struct platform_driver krait_pdn_driver = {
.probe = krait_pdn_probe,
.remove = __devexit_p(krait_pdn_remove),
.driver = {
.name = KRAIT_PDN_DRIVER_NAME,
.of_match_table = krait_pdn_match_table,
.owner = THIS_MODULE,
},
};
int __init krait_power_init(void)
{
int rc = platform_driver_register(&krait_power_driver);
if (rc) {
pr_err("failed to add %s driver rc = %d\n",
KRAIT_REGULATOR_DRIVER_NAME, rc);
return rc;
}
return platform_driver_register(&krait_pdn_driver);
}
static void __exit krait_power_exit(void)
{
platform_driver_unregister(&krait_power_driver);
platform_driver_unregister(&krait_pdn_driver);
}
module_exit(krait_power_exit);
void secondary_cpu_hs_init(void *base_ptr)
{
/* Turn on the BHS, turn off LDO Bypass and power down LDO */
writel_relaxed(
BHS_CNT_DEFAULT << BHS_CNT_BIT_POS
| LDO_PWR_DWN_MASK
| CLK_SRC_DEFAULT << CLK_SRC_SEL_BIT_POS
| BHS_SEG_EN_DEFAULT << BHS_SEG_EN_BIT_POS
| BHS_EN_MASK,
base_ptr + APC_PWR_GATE_CTL);
/* complete the above write before the delay */
mb();
/*
* wait for the bhs to settle
*/
udelay(BHS_SETTLING_DELAY_US);
/* Finally turn on the bypass so that BHS supplies power */
writel_relaxed(
BHS_CNT_DEFAULT << BHS_CNT_BIT_POS
| LDO_PWR_DWN_MASK
| CLK_SRC_DEFAULT << CLK_SRC_SEL_BIT_POS
| LDO_BYP_MASK
| BHS_SEG_EN_DEFAULT << BHS_SEG_EN_BIT_POS
| BHS_EN_MASK,
base_ptr + APC_PWR_GATE_CTL);
}
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("KRAIT POWER regulator driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:"KRAIT_REGULATOR_DRIVER_NAME);