blob: f61a1965f01919571bcbb56cb1f31aae665a2705 [file] [log] [blame]
/* Copyright (c) 2002,2007-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/vmalloc.h>
#include <linux/memory_alloc.h>
#include <asm/cacheflush.h>
#include <linux/slab.h>
#include <linux/kmemleak.h>
#include "kgsl.h"
#include "kgsl_sharedmem.h"
#include "kgsl_cffdump.h"
#include "kgsl_device.h"
/* An attribute for showing per-process memory statistics */
struct kgsl_mem_entry_attribute {
struct attribute attr;
int memtype;
ssize_t (*show)(struct kgsl_process_private *priv,
int type, char *buf);
};
#define to_mem_entry_attr(a) \
container_of(a, struct kgsl_mem_entry_attribute, attr)
#define __MEM_ENTRY_ATTR(_type, _name, _show) \
{ \
.attr = { .name = __stringify(_name), .mode = 0444 }, \
.memtype = _type, \
.show = _show, \
}
/*
* A structure to hold the attributes for a particular memory type.
* For each memory type in each process we store the current and maximum
* memory usage and display the counts in sysfs. This structure and
* the following macro allow us to simplify the definition for those
* adding new memory types
*/
struct mem_entry_stats {
int memtype;
struct kgsl_mem_entry_attribute attr;
struct kgsl_mem_entry_attribute max_attr;
};
#define MEM_ENTRY_STAT(_type, _name) \
{ \
.memtype = _type, \
.attr = __MEM_ENTRY_ATTR(_type, _name, mem_entry_show), \
.max_attr = __MEM_ENTRY_ATTR(_type, _name##_max, \
mem_entry_max_show), \
}
/**
* Given a kobj, find the process structure attached to it
*/
static struct kgsl_process_private *
_get_priv_from_kobj(struct kobject *kobj)
{
struct kgsl_process_private *private;
unsigned long name;
if (!kobj)
return NULL;
if (sscanf(kobj->name, "%ld", &name) != 1)
return NULL;
list_for_each_entry(private, &kgsl_driver.process_list, list) {
if (private->pid == name)
return private;
}
return NULL;
}
/**
* Show the current amount of memory allocated for the given memtype
*/
static ssize_t
mem_entry_show(struct kgsl_process_private *priv, int type, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].cur);
}
/**
* Show the maximum memory allocated for the given memtype through the life of
* the process
*/
static ssize_t
mem_entry_max_show(struct kgsl_process_private *priv, int type, char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", priv->stats[type].max);
}
static void mem_entry_sysfs_release(struct kobject *kobj)
{
}
static ssize_t mem_entry_sysfs_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct kgsl_mem_entry_attribute *pattr = to_mem_entry_attr(attr);
struct kgsl_process_private *priv;
ssize_t ret;
mutex_lock(&kgsl_driver.process_mutex);
priv = _get_priv_from_kobj(kobj);
if (priv && pattr->show)
ret = pattr->show(priv, pattr->memtype, buf);
else
ret = -EIO;
mutex_unlock(&kgsl_driver.process_mutex);
return ret;
}
static const struct sysfs_ops mem_entry_sysfs_ops = {
.show = mem_entry_sysfs_show,
};
static struct kobj_type ktype_mem_entry = {
.sysfs_ops = &mem_entry_sysfs_ops,
.default_attrs = NULL,
.release = mem_entry_sysfs_release
};
static struct mem_entry_stats mem_stats[] = {
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_KERNEL, kernel),
#ifdef CONFIG_ANDROID_PMEM
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_PMEM, pmem),
#endif
#ifdef CONFIG_ASHMEM
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ASHMEM, ashmem),
#endif
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_USER, user),
#ifdef CONFIG_ION
MEM_ENTRY_STAT(KGSL_MEM_ENTRY_ION, ion),
#endif
};
void
kgsl_process_uninit_sysfs(struct kgsl_process_private *private)
{
int i;
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
sysfs_remove_file(&private->kobj, &mem_stats[i].attr.attr);
sysfs_remove_file(&private->kobj,
&mem_stats[i].max_attr.attr);
}
kobject_put(&private->kobj);
}
void
kgsl_process_init_sysfs(struct kgsl_process_private *private)
{
unsigned char name[16];
int i, ret;
snprintf(name, sizeof(name), "%d", private->pid);
if (kobject_init_and_add(&private->kobj, &ktype_mem_entry,
kgsl_driver.prockobj, name))
return;
for (i = 0; i < ARRAY_SIZE(mem_stats); i++) {
/* We need to check the value of sysfs_create_file, but we
* don't really care if it passed or not */
ret = sysfs_create_file(&private->kobj,
&mem_stats[i].attr.attr);
ret = sysfs_create_file(&private->kobj,
&mem_stats[i].max_attr.attr);
}
}
static int kgsl_drv_memstat_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned int val = 0;
if (!strncmp(attr->attr.name, "vmalloc", 7))
val = kgsl_driver.stats.vmalloc;
else if (!strncmp(attr->attr.name, "vmalloc_max", 11))
val = kgsl_driver.stats.vmalloc_max;
else if (!strncmp(attr->attr.name, "coherent", 8))
val = kgsl_driver.stats.coherent;
else if (!strncmp(attr->attr.name, "coherent_max", 12))
val = kgsl_driver.stats.coherent_max;
else if (!strncmp(attr->attr.name, "mapped", 6))
val = kgsl_driver.stats.mapped;
else if (!strncmp(attr->attr.name, "mapped_max", 10))
val = kgsl_driver.stats.mapped_max;
return snprintf(buf, PAGE_SIZE, "%u\n", val);
}
static int kgsl_drv_histogram_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int len = 0;
int i;
for (i = 0; i < 16; i++)
len += snprintf(buf + len, PAGE_SIZE - len, "%d ",
kgsl_driver.stats.histogram[i]);
len += snprintf(buf + len, PAGE_SIZE - len, "\n");
return len;
}
DEVICE_ATTR(vmalloc, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(vmalloc_max, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(coherent, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(coherent_max, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(mapped, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(mapped_max, 0444, kgsl_drv_memstat_show, NULL);
DEVICE_ATTR(histogram, 0444, kgsl_drv_histogram_show, NULL);
static const struct device_attribute *drv_attr_list[] = {
&dev_attr_vmalloc,
&dev_attr_vmalloc_max,
&dev_attr_coherent,
&dev_attr_coherent_max,
&dev_attr_mapped,
&dev_attr_mapped_max,
&dev_attr_histogram,
NULL
};
void
kgsl_sharedmem_uninit_sysfs(void)
{
kgsl_remove_device_sysfs_files(&kgsl_driver.virtdev, drv_attr_list);
}
int
kgsl_sharedmem_init_sysfs(void)
{
return kgsl_create_device_sysfs_files(&kgsl_driver.virtdev,
drv_attr_list);
}
#ifdef CONFIG_OUTER_CACHE
static void _outer_cache_range_op(int op, unsigned long addr, size_t size)
{
switch (op) {
case KGSL_CACHE_OP_FLUSH:
outer_flush_range(addr, addr + size);
break;
case KGSL_CACHE_OP_CLEAN:
outer_clean_range(addr, addr + size);
break;
case KGSL_CACHE_OP_INV:
outer_inv_range(addr, addr + size);
break;
}
}
static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, sglen, i) {
unsigned int paddr = sg_phys(s);
_outer_cache_range_op(op, paddr, s->length);
}
}
#else
static void outer_cache_range_op_sg(struct scatterlist *sg, int sglen, int op)
{
}
#endif
static int kgsl_vmalloc_vmfault(struct kgsl_memdesc *memdesc,
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
unsigned long offset, pg;
struct page *page;
offset = (unsigned long) vmf->virtual_address - vma->vm_start;
pg = (unsigned long) memdesc->hostptr + offset;
page = vmalloc_to_page((void *) pg);
if (page == NULL)
return VM_FAULT_SIGBUS;
get_page(page);
vmf->page = page;
return 0;
}
static int kgsl_vmalloc_vmflags(struct kgsl_memdesc *memdesc)
{
return VM_RESERVED | VM_DONTEXPAND;
}
static void kgsl_vmalloc_free(struct kgsl_memdesc *memdesc)
{
kgsl_driver.stats.vmalloc -= memdesc->size;
vfree(memdesc->hostptr);
}
static int kgsl_contiguous_vmflags(struct kgsl_memdesc *memdesc)
{
return VM_RESERVED | VM_IO | VM_PFNMAP | VM_DONTEXPAND;
}
static int kgsl_contiguous_vmfault(struct kgsl_memdesc *memdesc,
struct vm_area_struct *vma,
struct vm_fault *vmf)
{
unsigned long offset, pfn;
int ret;
offset = ((unsigned long) vmf->virtual_address - vma->vm_start) >>
PAGE_SHIFT;
pfn = (memdesc->physaddr >> PAGE_SHIFT) + offset;
ret = vm_insert_pfn(vma, (unsigned long) vmf->virtual_address, pfn);
if (ret == -ENOMEM || ret == -EAGAIN)
return VM_FAULT_OOM;
else if (ret == -EFAULT)
return VM_FAULT_SIGBUS;
return VM_FAULT_NOPAGE;
}
static void kgsl_ebimem_free(struct kgsl_memdesc *memdesc)
{
kgsl_driver.stats.coherent -= memdesc->size;
if (memdesc->hostptr)
iounmap(memdesc->hostptr);
free_contiguous_memory_by_paddr(memdesc->physaddr);
}
static void kgsl_coherent_free(struct kgsl_memdesc *memdesc)
{
kgsl_driver.stats.coherent -= memdesc->size;
dma_free_coherent(NULL, memdesc->size,
memdesc->hostptr, memdesc->physaddr);
}
/* Global - also used by kgsl_drm.c */
struct kgsl_memdesc_ops kgsl_vmalloc_ops = {
.free = kgsl_vmalloc_free,
.vmflags = kgsl_vmalloc_vmflags,
.vmfault = kgsl_vmalloc_vmfault,
};
EXPORT_SYMBOL(kgsl_vmalloc_ops);
static struct kgsl_memdesc_ops kgsl_ebimem_ops = {
.free = kgsl_ebimem_free,
.vmflags = kgsl_contiguous_vmflags,
.vmfault = kgsl_contiguous_vmfault,
};
static struct kgsl_memdesc_ops kgsl_coherent_ops = {
.free = kgsl_coherent_free,
};
void kgsl_cache_range_op(struct kgsl_memdesc *memdesc, int op)
{
void *addr = memdesc->hostptr;
int size = memdesc->size;
switch (op) {
case KGSL_CACHE_OP_FLUSH:
dmac_flush_range(addr, addr + size);
break;
case KGSL_CACHE_OP_CLEAN:
dmac_clean_range(addr, addr + size);
break;
case KGSL_CACHE_OP_INV:
dmac_inv_range(addr, addr + size);
break;
}
outer_cache_range_op_sg(memdesc->sg, memdesc->sglen, op);
}
EXPORT_SYMBOL(kgsl_cache_range_op);
static int
_kgsl_sharedmem_vmalloc(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable,
void *ptr, size_t size, unsigned int protflags)
{
int order, ret = 0;
int sglen = PAGE_ALIGN(size) / PAGE_SIZE;
int i;
memdesc->size = size;
memdesc->pagetable = pagetable;
memdesc->priv = KGSL_MEMFLAGS_CACHED;
memdesc->ops = &kgsl_vmalloc_ops;
memdesc->hostptr = (void *) ptr;
memdesc->sg = vmalloc(sglen * sizeof(struct scatterlist));
if (memdesc->sg == NULL) {
ret = -ENOMEM;
goto done;
}
kmemleak_not_leak(memdesc->sg);
memdesc->sglen = sglen;
sg_init_table(memdesc->sg, sglen);
for (i = 0; i < memdesc->sglen; i++, ptr += PAGE_SIZE) {
struct page *page = vmalloc_to_page(ptr);
if (!page) {
ret = -EINVAL;
goto done;
}
sg_set_page(&memdesc->sg[i], page, PAGE_SIZE, 0);
}
kgsl_cache_range_op(memdesc, KGSL_CACHE_OP_INV);
ret = kgsl_mmu_map(pagetable, memdesc, protflags);
if (ret)
goto done;
KGSL_STATS_ADD(size, kgsl_driver.stats.vmalloc,
kgsl_driver.stats.vmalloc_max);
order = get_order(size);
if (order < 16)
kgsl_driver.stats.histogram[order]++;
done:
if (ret)
kgsl_sharedmem_free(memdesc);
return ret;
}
int
kgsl_sharedmem_vmalloc(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable, size_t size)
{
void *ptr;
BUG_ON(size == 0);
size = ALIGN(size, PAGE_SIZE * 2);
ptr = vmalloc(size);
if (ptr == NULL) {
KGSL_CORE_ERR("vmalloc(%d) failed\n", size);
return -ENOMEM;
}
return _kgsl_sharedmem_vmalloc(memdesc, pagetable, ptr, size,
GSL_PT_PAGE_RV | GSL_PT_PAGE_WV);
}
EXPORT_SYMBOL(kgsl_sharedmem_vmalloc);
int
kgsl_sharedmem_vmalloc_user(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable,
size_t size, int flags)
{
void *ptr;
unsigned int protflags;
BUG_ON(size == 0);
ptr = vmalloc_user(size);
if (ptr == NULL) {
KGSL_CORE_ERR("vmalloc_user(%d) failed: allocated=%d\n",
size, kgsl_driver.stats.vmalloc);
return -ENOMEM;
}
kmemleak_not_leak(ptr);
protflags = GSL_PT_PAGE_RV;
if (!(flags & KGSL_MEMFLAGS_GPUREADONLY))
protflags |= GSL_PT_PAGE_WV;
return _kgsl_sharedmem_vmalloc(memdesc, pagetable, ptr, size,
protflags);
}
EXPORT_SYMBOL(kgsl_sharedmem_vmalloc_user);
int
kgsl_sharedmem_alloc_coherent(struct kgsl_memdesc *memdesc, size_t size)
{
int result = 0;
size = ALIGN(size, PAGE_SIZE);
memdesc->size = size;
memdesc->ops = &kgsl_coherent_ops;
memdesc->hostptr = dma_alloc_coherent(NULL, size, &memdesc->physaddr,
GFP_KERNEL);
if (memdesc->hostptr == NULL) {
KGSL_CORE_ERR("dma_alloc_coherent(%d) failed\n", size);
result = -ENOMEM;
goto err;
}
result = memdesc_sg_phys(memdesc, memdesc->physaddr, size);
if (result)
goto err;
/* Record statistics */
KGSL_STATS_ADD(size, kgsl_driver.stats.coherent,
kgsl_driver.stats.coherent_max);
err:
if (result)
kgsl_sharedmem_free(memdesc);
return result;
}
EXPORT_SYMBOL(kgsl_sharedmem_alloc_coherent);
void kgsl_sharedmem_free(struct kgsl_memdesc *memdesc)
{
if (memdesc == NULL || memdesc->size == 0)
return;
if (memdesc->gpuaddr)
kgsl_mmu_unmap(memdesc->pagetable, memdesc);
if (memdesc->ops && memdesc->ops->free)
memdesc->ops->free(memdesc);
vfree(memdesc->sg);
memset(memdesc, 0, sizeof(*memdesc));
}
EXPORT_SYMBOL(kgsl_sharedmem_free);
static int
_kgsl_sharedmem_ebimem(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable, size_t size)
{
int result = 0;
memdesc->size = size;
memdesc->pagetable = pagetable;
memdesc->ops = &kgsl_ebimem_ops;
memdesc->physaddr = allocate_contiguous_ebi_nomap(size, SZ_8K);
if (memdesc->physaddr == 0) {
KGSL_CORE_ERR("allocate_contiguous_ebi_nomap(%d) failed\n",
size);
return -ENOMEM;
}
result = memdesc_sg_phys(memdesc, memdesc->physaddr, size);
if (result)
goto err;
result = kgsl_mmu_map(pagetable, memdesc,
GSL_PT_PAGE_RV | GSL_PT_PAGE_WV);
if (result)
goto err;
KGSL_STATS_ADD(size, kgsl_driver.stats.coherent,
kgsl_driver.stats.coherent_max);
err:
if (result)
kgsl_sharedmem_free(memdesc);
return result;
}
int
kgsl_sharedmem_ebimem_user(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable,
size_t size, int flags)
{
size = ALIGN(size, PAGE_SIZE);
return _kgsl_sharedmem_ebimem(memdesc, pagetable, size);
}
EXPORT_SYMBOL(kgsl_sharedmem_ebimem_user);
int
kgsl_sharedmem_ebimem(struct kgsl_memdesc *memdesc,
struct kgsl_pagetable *pagetable, size_t size)
{
int result;
size = ALIGN(size, 8192);
result = _kgsl_sharedmem_ebimem(memdesc, pagetable, size);
if (result)
return result;
memdesc->hostptr = ioremap(memdesc->physaddr, size);
if (memdesc->hostptr == NULL) {
KGSL_CORE_ERR("ioremap failed\n");
kgsl_sharedmem_free(memdesc);
return -ENOMEM;
}
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_ebimem);
int
kgsl_sharedmem_readl(const struct kgsl_memdesc *memdesc,
uint32_t *dst,
unsigned int offsetbytes)
{
uint32_t *src;
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL || dst == NULL);
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size);
if (offsetbytes + sizeof(uint32_t) > memdesc->size)
return -ERANGE;
src = (uint32_t *)(memdesc->hostptr + offsetbytes);
*dst = *src;
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_readl);
int
kgsl_sharedmem_writel(const struct kgsl_memdesc *memdesc,
unsigned int offsetbytes,
uint32_t src)
{
uint32_t *dst;
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL);
WARN_ON(offsetbytes % sizeof(uint32_t) != 0);
if (offsetbytes % sizeof(uint32_t) != 0)
return -EINVAL;
WARN_ON(offsetbytes + sizeof(uint32_t) > memdesc->size);
if (offsetbytes + sizeof(uint32_t) > memdesc->size)
return -ERANGE;
kgsl_cffdump_setmem(memdesc->gpuaddr + offsetbytes,
src, sizeof(uint32_t));
dst = (uint32_t *)(memdesc->hostptr + offsetbytes);
*dst = src;
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_writel);
int
kgsl_sharedmem_set(const struct kgsl_memdesc *memdesc, unsigned int offsetbytes,
unsigned int value, unsigned int sizebytes)
{
BUG_ON(memdesc == NULL || memdesc->hostptr == NULL);
BUG_ON(offsetbytes + sizebytes > memdesc->size);
kgsl_cffdump_setmem(memdesc->gpuaddr + offsetbytes, value,
sizebytes);
memset(memdesc->hostptr + offsetbytes, value, sizebytes);
return 0;
}
EXPORT_SYMBOL(kgsl_sharedmem_set);