| #ifndef __ASM_SH64_IO_H |
| #define __ASM_SH64_IO_H |
| |
| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * include/asm-sh64/io.h |
| * |
| * Copyright (C) 2000, 2001 Paolo Alberelli |
| * Copyright (C) 2003 Paul Mundt |
| * |
| */ |
| |
| /* |
| * Convention: |
| * read{b,w,l}/write{b,w,l} are for PCI, |
| * while in{b,w,l}/out{b,w,l} are for ISA |
| * These may (will) be platform specific function. |
| * |
| * In addition, we have |
| * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O. |
| * which are processor specific. Address should be the result of |
| * onchip_remap(); |
| */ |
| |
| #include <linux/compiler.h> |
| #include <asm/cache.h> |
| #include <asm/system.h> |
| #include <asm/page.h> |
| #include <asm-generic/iomap.h> |
| |
| #define virt_to_bus virt_to_phys |
| #define bus_to_virt phys_to_virt |
| #define page_to_bus page_to_phys |
| |
| /* |
| * Nothing overly special here.. instead of doing the same thing |
| * over and over again, we just define a set of sh64_in/out functions |
| * with an implicit size. The traditional read{b,w,l}/write{b,w,l} |
| * mess is wrapped to this, as are the SH-specific ctrl_in/out routines. |
| */ |
| static inline unsigned char sh64_in8(const volatile void __iomem *addr) |
| { |
| return *(volatile unsigned char __force *)addr; |
| } |
| |
| static inline unsigned short sh64_in16(const volatile void __iomem *addr) |
| { |
| return *(volatile unsigned short __force *)addr; |
| } |
| |
| static inline unsigned int sh64_in32(const volatile void __iomem *addr) |
| { |
| return *(volatile unsigned int __force *)addr; |
| } |
| |
| static inline unsigned long long sh64_in64(const volatile void __iomem *addr) |
| { |
| return *(volatile unsigned long long __force *)addr; |
| } |
| |
| static inline void sh64_out8(unsigned char b, volatile void __iomem *addr) |
| { |
| *(volatile unsigned char __force *)addr = b; |
| wmb(); |
| } |
| |
| static inline void sh64_out16(unsigned short b, volatile void __iomem *addr) |
| { |
| *(volatile unsigned short __force *)addr = b; |
| wmb(); |
| } |
| |
| static inline void sh64_out32(unsigned int b, volatile void __iomem *addr) |
| { |
| *(volatile unsigned int __force *)addr = b; |
| wmb(); |
| } |
| |
| static inline void sh64_out64(unsigned long long b, volatile void __iomem *addr) |
| { |
| *(volatile unsigned long long __force *)addr = b; |
| wmb(); |
| } |
| |
| #define readb(addr) sh64_in8(addr) |
| #define readw(addr) sh64_in16(addr) |
| #define readl(addr) sh64_in32(addr) |
| #define readb_relaxed(addr) sh64_in8(addr) |
| #define readw_relaxed(addr) sh64_in16(addr) |
| #define readl_relaxed(addr) sh64_in32(addr) |
| |
| #define writeb(b, addr) sh64_out8(b, addr) |
| #define writew(b, addr) sh64_out16(b, addr) |
| #define writel(b, addr) sh64_out32(b, addr) |
| |
| #define ctrl_inb(addr) sh64_in8(ioport_map(addr, 1)) |
| #define ctrl_inw(addr) sh64_in16(ioport_map(addr, 2)) |
| #define ctrl_inl(addr) sh64_in32(ioport_map(addr, 4)) |
| |
| #define ctrl_outb(b, addr) sh64_out8(b, ioport_map(addr, 1)) |
| #define ctrl_outw(b, addr) sh64_out16(b, ioport_map(addr, 2)) |
| #define ctrl_outl(b, addr) sh64_out32(b, ioport_map(addr, 4)) |
| |
| #define ioread8(addr) sh64_in8(addr) |
| #define ioread16(addr) sh64_in16(addr) |
| #define ioread32(addr) sh64_in32(addr) |
| #define iowrite8(b, addr) sh64_out8(b, addr) |
| #define iowrite16(b, addr) sh64_out16(b, addr) |
| #define iowrite32(b, addr) sh64_out32(b, addr) |
| |
| #define inb(addr) ctrl_inb(addr) |
| #define inw(addr) ctrl_inw(addr) |
| #define inl(addr) ctrl_inl(addr) |
| #define outb(b, addr) ctrl_outb(b, addr) |
| #define outw(b, addr) ctrl_outw(b, addr) |
| #define outl(b, addr) ctrl_outl(b, addr) |
| |
| void outsw(unsigned long port, const void *addr, unsigned long count); |
| void insw(unsigned long port, void *addr, unsigned long count); |
| void outsl(unsigned long port, const void *addr, unsigned long count); |
| void insl(unsigned long port, void *addr, unsigned long count); |
| |
| void memcpy_toio(void __iomem *to, const void *from, long count); |
| void memcpy_fromio(void *to, void __iomem *from, long count); |
| |
| #define mmiowb() |
| |
| #ifdef __KERNEL__ |
| |
| #ifdef CONFIG_SH_CAYMAN |
| extern unsigned long smsc_superio_virt; |
| #endif |
| #ifdef CONFIG_PCI |
| extern unsigned long pciio_virt; |
| #endif |
| |
| #define IO_SPACE_LIMIT 0xffffffff |
| |
| /* |
| * Change virtual addresses to physical addresses and vv. |
| * These are trivial on the 1:1 Linux/SuperH mapping |
| */ |
| extern __inline__ unsigned long virt_to_phys(volatile void * address) |
| { |
| return __pa(address); |
| } |
| |
| extern __inline__ void * phys_to_virt(unsigned long address) |
| { |
| return __va(address); |
| } |
| |
| extern void * __ioremap(unsigned long phys_addr, unsigned long size, |
| unsigned long flags); |
| |
| extern __inline__ void * ioremap(unsigned long phys_addr, unsigned long size) |
| { |
| return __ioremap(phys_addr, size, 1); |
| } |
| |
| extern __inline__ void * ioremap_nocache (unsigned long phys_addr, unsigned long size) |
| { |
| return __ioremap(phys_addr, size, 0); |
| } |
| |
| extern void iounmap(void *addr); |
| |
| unsigned long onchip_remap(unsigned long addr, unsigned long size, const char* name); |
| extern void onchip_unmap(unsigned long vaddr); |
| |
| static __inline__ int check_signature(volatile void __iomem *io_addr, |
| const unsigned char *signature, int length) |
| { |
| int retval = 0; |
| do { |
| if (readb(io_addr) != *signature) |
| goto out; |
| io_addr++; |
| signature++; |
| length--; |
| } while (length); |
| retval = 1; |
| out: |
| return retval; |
| } |
| |
| /* |
| * The caches on some architectures aren't dma-coherent and have need to |
| * handle this in software. There are three types of operations that |
| * can be applied to dma buffers. |
| * |
| * - dma_cache_wback_inv(start, size) makes caches and RAM coherent by |
| * writing the content of the caches back to memory, if necessary. |
| * The function also invalidates the affected part of the caches as |
| * necessary before DMA transfers from outside to memory. |
| * - dma_cache_inv(start, size) invalidates the affected parts of the |
| * caches. Dirty lines of the caches may be written back or simply |
| * be discarded. This operation is necessary before dma operations |
| * to the memory. |
| * - dma_cache_wback(start, size) writes back any dirty lines but does |
| * not invalidate the cache. This can be used before DMA reads from |
| * memory, |
| */ |
| |
| static __inline__ void dma_cache_wback_inv (unsigned long start, unsigned long size) |
| { |
| unsigned long s = start & L1_CACHE_ALIGN_MASK; |
| unsigned long e = (start + size) & L1_CACHE_ALIGN_MASK; |
| |
| for (; s <= e; s += L1_CACHE_BYTES) |
| asm volatile ("ocbp %0, 0" : : "r" (s)); |
| } |
| |
| static __inline__ void dma_cache_inv (unsigned long start, unsigned long size) |
| { |
| // Note that caller has to be careful with overzealous |
| // invalidation should there be partial cache lines at the extremities |
| // of the specified range |
| unsigned long s = start & L1_CACHE_ALIGN_MASK; |
| unsigned long e = (start + size) & L1_CACHE_ALIGN_MASK; |
| |
| for (; s <= e; s += L1_CACHE_BYTES) |
| asm volatile ("ocbi %0, 0" : : "r" (s)); |
| } |
| |
| static __inline__ void dma_cache_wback (unsigned long start, unsigned long size) |
| { |
| unsigned long s = start & L1_CACHE_ALIGN_MASK; |
| unsigned long e = (start + size) & L1_CACHE_ALIGN_MASK; |
| |
| for (; s <= e; s += L1_CACHE_BYTES) |
| asm volatile ("ocbwb %0, 0" : : "r" (s)); |
| } |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| #endif /* __KERNEL__ */ |
| #endif /* __ASM_SH64_IO_H */ |