blob: 67040e5aaf356dff6b19b53318a4b00e8c5b6dbe [file] [log] [blame]
/* ehci-msm-hsic.c - HSUSB Host Controller Driver Implementation
*
* Copyright (c) 2011-2013, The Linux Foundation. All rights reserved.
*
* Partly derived from ehci-fsl.c and ehci-hcd.c
* Copyright (c) 2000-2004 by David Brownell
* Copyright (c) 2005 MontaVista Software
*
* All source code in this file is licensed under the following license except
* where indicated.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can find it at http://www.fsf.org
*/
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/wakelock.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/usb/ulpi.h>
#include <linux/usb/msm_hsusb_hw.h>
#include <linux/usb/msm_hsusb.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/spinlock.h>
#include <linux/irq.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/pm_qos.h>
#include <mach/msm_bus.h>
#include <mach/clk.h>
#include <mach/msm_iomap.h>
#include <mach/msm_xo.h>
#include <linux/spinlock.h>
#include <linux/cpu.h>
#include <mach/rpm-regulator.h>
#define MSM_USB_BASE (hcd->regs)
#define USB_REG_START_OFFSET 0x90
#define USB_REG_END_OFFSET 0x250
static struct workqueue_struct *ehci_wq;
struct ehci_timer {
#define GPT_LD(p) ((p) & 0x00FFFFFF)
u32 gptimer0_ld;
#define GPT_RUN BIT(31)
#define GPT_RESET BIT(30)
#define GPT_MODE BIT(24)
#define GPT_CNT(p) ((p) & 0x00FFFFFF)
u32 gptimer0_ctrl;
u32 gptimer1_ld;
u32 gptimer1_ctrl;
};
struct msm_hsic_hcd {
struct ehci_hcd ehci;
spinlock_t wakeup_lock;
struct device *dev;
struct clk *ahb_clk;
struct clk *core_clk;
struct clk *alt_core_clk;
struct clk *phy_clk;
struct clk *cal_clk;
struct regulator *hsic_vddcx;
struct regulator *hsic_gdsc;
atomic_t async_int;
atomic_t in_lpm;
struct wake_lock wlock;
int peripheral_status_irq;
int wakeup_irq;
bool wakeup_irq_enabled;
int async_irq;
uint32_t async_int_cnt;
atomic_t pm_usage_cnt;
uint32_t bus_perf_client;
uint32_t wakeup_int_cnt;
enum usb_vdd_type vdd_type;
struct work_struct bus_vote_w;
bool bus_vote;
/* gp timer */
struct ehci_timer __iomem *timer;
struct completion gpt0_completion;
struct completion rt_completion;
int resume_status;
int resume_again;
struct pm_qos_request pm_qos_req_dma;
};
struct msm_hsic_hcd *__mehci;
static bool debug_bus_voting_enabled = true;
static u64 ehci_msm_hsic_dma_mask = DMA_BIT_MASK(32);
static struct platform_driver ehci_msm_hsic_driver;
static unsigned int enable_payload_log = 1;
module_param(enable_payload_log, uint, S_IRUGO | S_IWUSR);
static unsigned int enable_dbg_log = 1;
module_param(enable_dbg_log, uint, S_IRUGO | S_IWUSR);
/*by default log ep0 and efs sync ep*/
static unsigned int ep_addr_rxdbg_mask = 9;
module_param(ep_addr_rxdbg_mask, uint, S_IRUGO | S_IWUSR);
static unsigned int ep_addr_txdbg_mask = 9;
module_param(ep_addr_txdbg_mask, uint, S_IRUGO | S_IWUSR);
/* Maximum debug message length */
#define DBG_MSG_LEN 128UL
/* Maximum number of messages */
#define DBG_MAX_MSG 256UL
#define TIME_BUF_LEN 20
#define HEX_DUMP_LEN 72
enum event_type {
EVENT_UNDEF = -1,
URB_SUBMIT,
URB_COMPLETE,
EVENT_NONE,
};
#define EVENT_STR_LEN 5
static enum event_type str_to_event(const char *name)
{
if (!strncasecmp("S", name, EVENT_STR_LEN))
return URB_SUBMIT;
if (!strncasecmp("C", name, EVENT_STR_LEN))
return URB_COMPLETE;
if (!strncasecmp("", name, EVENT_STR_LEN))
return EVENT_NONE;
return EVENT_UNDEF;
}
/*log ep0 activity*/
static struct {
char (buf[DBG_MAX_MSG])[DBG_MSG_LEN]; /* buffer */
unsigned idx; /* index */
rwlock_t lck; /* lock */
} dbg_hsic_ctrl = {
.idx = 0,
.lck = __RW_LOCK_UNLOCKED(lck)
};
static struct {
char (buf[DBG_MAX_MSG])[DBG_MSG_LEN]; /* buffer */
unsigned idx; /* index */
rwlock_t lck; /* lock */
} dbg_hsic_data = {
.idx = 0,
.lck = __RW_LOCK_UNLOCKED(lck)
};
/**
* dbg_inc: increments debug event index
* @idx: buffer index
*/
static void dbg_inc(unsigned *idx)
{
*idx = (*idx + 1) & (DBG_MAX_MSG-1);
}
/*get_timestamp - returns time of day in us */
static char *get_timestamp(char *tbuf)
{
unsigned long long t;
unsigned long nanosec_rem;
t = cpu_clock(smp_processor_id());
nanosec_rem = do_div(t, 1000000000)/1000;
scnprintf(tbuf, TIME_BUF_LEN, "[%5lu.%06lu] ", (unsigned long)t,
nanosec_rem);
return tbuf;
}
static int allow_dbg_log(int ep_addr)
{
int dir, num;
dir = ep_addr & USB_DIR_IN ? USB_DIR_IN : USB_DIR_OUT;
num = ep_addr & ~USB_DIR_IN;
num = 1 << num;
if ((dir == USB_DIR_IN) && (num & ep_addr_rxdbg_mask))
return 1;
if ((dir == USB_DIR_OUT) && (num & ep_addr_txdbg_mask))
return 1;
return 0;
}
static char *get_hex_data(char *dbuf, struct urb *urb, int event, int status)
{
int ep_addr = urb->ep->desc.bEndpointAddress;
char *ubuf = urb->transfer_buffer;
size_t len = event ? \
urb->actual_length : urb->transfer_buffer_length;
if (status == -EINPROGRESS)
status = 0;
/*Only dump ep in completions and epout submissions*/
if (len && !status &&
(((ep_addr & USB_DIR_IN) && event) ||
(!(ep_addr & USB_DIR_IN) && !event))) {
if (len >= 32)
len = 32;
hex_dump_to_buffer(ubuf, len, 32, 4, dbuf, HEX_DUMP_LEN, 0);
} else {
dbuf = "";
}
return dbuf;
}
static void dbg_log_event(struct urb *urb, char * event, unsigned extra)
{
unsigned long flags;
int ep_addr;
char tbuf[TIME_BUF_LEN];
char dbuf[HEX_DUMP_LEN];
if (!enable_dbg_log)
return;
if (!urb) {
write_lock_irqsave(&dbg_hsic_ctrl.lck, flags);
scnprintf(dbg_hsic_ctrl.buf[dbg_hsic_ctrl.idx], DBG_MSG_LEN,
"%s: %s : %u", get_timestamp(tbuf), event, extra);
dbg_inc(&dbg_hsic_ctrl.idx);
write_unlock_irqrestore(&dbg_hsic_ctrl.lck, flags);
return;
}
ep_addr = urb->ep->desc.bEndpointAddress;
if (!allow_dbg_log(ep_addr))
return;
if ((ep_addr & 0x0f) == 0x0) {
/*submit event*/
if (!str_to_event(event)) {
write_lock_irqsave(&dbg_hsic_ctrl.lck, flags);
scnprintf(dbg_hsic_ctrl.buf[dbg_hsic_ctrl.idx],
DBG_MSG_LEN, "%s: [%s : %p]:[%s] "
"%02x %02x %04x %04x %04x %u %d",
get_timestamp(tbuf), event, urb,
(ep_addr & USB_DIR_IN) ? "in" : "out",
urb->setup_packet[0], urb->setup_packet[1],
(urb->setup_packet[3] << 8) |
urb->setup_packet[2],
(urb->setup_packet[5] << 8) |
urb->setup_packet[4],
(urb->setup_packet[7] << 8) |
urb->setup_packet[6],
urb->transfer_buffer_length, extra);
dbg_inc(&dbg_hsic_ctrl.idx);
write_unlock_irqrestore(&dbg_hsic_ctrl.lck, flags);
} else {
write_lock_irqsave(&dbg_hsic_ctrl.lck, flags);
scnprintf(dbg_hsic_ctrl.buf[dbg_hsic_ctrl.idx],
DBG_MSG_LEN, "%s: [%s : %p]:[%s] %u %d",
get_timestamp(tbuf), event, urb,
(ep_addr & USB_DIR_IN) ? "in" : "out",
urb->actual_length, extra);
dbg_inc(&dbg_hsic_ctrl.idx);
write_unlock_irqrestore(&dbg_hsic_ctrl.lck, flags);
}
} else {
write_lock_irqsave(&dbg_hsic_data.lck, flags);
scnprintf(dbg_hsic_data.buf[dbg_hsic_data.idx], DBG_MSG_LEN,
"%s: [%s : %p]:ep%d[%s] %u %d %s",
get_timestamp(tbuf), event, urb, ep_addr & 0x0f,
(ep_addr & USB_DIR_IN) ? "in" : "out",
str_to_event(event) ? urb->actual_length :
urb->transfer_buffer_length, extra,
enable_payload_log ? get_hex_data(dbuf, urb,
str_to_event(event), extra) : "");
dbg_inc(&dbg_hsic_data.idx);
write_unlock_irqrestore(&dbg_hsic_data.lck, flags);
}
}
static inline struct msm_hsic_hcd *hcd_to_hsic(struct usb_hcd *hcd)
{
return (struct msm_hsic_hcd *) (hcd->hcd_priv);
}
static inline struct usb_hcd *hsic_to_hcd(struct msm_hsic_hcd *mehci)
{
return container_of((void *) mehci, struct usb_hcd, hcd_priv);
}
static void dump_hsic_regs(struct usb_hcd *hcd)
{
int i;
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
if (atomic_read(&mehci->in_lpm))
return;
for (i = USB_REG_START_OFFSET; i <= USB_REG_END_OFFSET; i += 0x10)
pr_info("%p: %08x\t%08x\t%08x\t%08x\n", hcd->regs + i,
readl_relaxed(hcd->regs + i),
readl_relaxed(hcd->regs + i + 4),
readl_relaxed(hcd->regs + i + 8),
readl_relaxed(hcd->regs + i + 0xc));
}
#define ULPI_IO_TIMEOUT_USEC (10 * 1000)
#define USB_PHY_VDD_DIG_VOL_NONE 0 /*uV */
#define USB_PHY_VDD_DIG_VOL_MIN 945000 /* uV */
#define USB_PHY_VDD_DIG_VOL_MAX 1320000 /* uV */
#define HSIC_DBG1_REG 0x38
static const int vdd_val[VDD_TYPE_MAX][VDD_VAL_MAX] = {
{ /* VDD_CX CORNER Voting */
[VDD_NONE] = RPM_VREG_CORNER_NONE,
[VDD_MIN] = RPM_VREG_CORNER_NOMINAL,
[VDD_MAX] = RPM_VREG_CORNER_HIGH,
},
{ /* VDD_CX Voltage Voting */
[VDD_NONE] = USB_PHY_VDD_DIG_VOL_NONE,
[VDD_MIN] = USB_PHY_VDD_DIG_VOL_MIN,
[VDD_MAX] = USB_PHY_VDD_DIG_VOL_MAX,
},
};
static int msm_hsic_init_vddcx(struct msm_hsic_hcd *mehci, int init)
{
int ret = 0;
int none_vol, min_vol, max_vol;
if (!mehci->hsic_vddcx) {
mehci->vdd_type = VDDCX_CORNER;
mehci->hsic_vddcx = devm_regulator_get(mehci->dev,
"hsic_vdd_dig");
if (IS_ERR(mehci->hsic_vddcx)) {
mehci->hsic_vddcx = devm_regulator_get(mehci->dev,
"HSIC_VDDCX");
if (IS_ERR(mehci->hsic_vddcx)) {
dev_err(mehci->dev, "unable to get hsic vddcx\n");
return PTR_ERR(mehci->hsic_vddcx);
}
mehci->vdd_type = VDDCX;
}
}
none_vol = vdd_val[mehci->vdd_type][VDD_NONE];
min_vol = vdd_val[mehci->vdd_type][VDD_MIN];
max_vol = vdd_val[mehci->vdd_type][VDD_MAX];
if (!init)
goto disable_reg;
ret = regulator_set_voltage(mehci->hsic_vddcx, min_vol, max_vol);
if (ret) {
dev_err(mehci->dev, "unable to set the voltage"
"for hsic vddcx\n");
return ret;
}
ret = regulator_enable(mehci->hsic_vddcx);
if (ret) {
dev_err(mehci->dev, "unable to enable hsic vddcx\n");
goto reg_enable_err;
}
return 0;
disable_reg:
regulator_disable(mehci->hsic_vddcx);
reg_enable_err:
regulator_set_voltage(mehci->hsic_vddcx, none_vol, max_vol);
return ret;
}
/* Global Distributed Switch Controller (GDSC) init */
static int msm_hsic_init_gdsc(struct msm_hsic_hcd *mehci, int init)
{
int ret = 0;
if (IS_ERR(mehci->hsic_gdsc))
return 0;
if (!mehci->hsic_gdsc) {
mehci->hsic_gdsc = devm_regulator_get(mehci->dev,
"HSIC_GDSC");
if (IS_ERR(mehci->hsic_gdsc))
return 0;
}
if (init) {
ret = regulator_enable(mehci->hsic_gdsc);
if (ret) {
dev_err(mehci->dev, "unable to enable hsic gdsc\n");
return ret;
}
} else {
regulator_disable(mehci->hsic_gdsc);
}
return 0;
}
static int ulpi_read(struct msm_hsic_hcd *mehci, u32 reg)
{
struct usb_hcd *hcd = hsic_to_hcd(mehci);
int cnt = 0;
/* initiate read operation */
writel_relaxed(ULPI_RUN | ULPI_READ | ULPI_ADDR(reg),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(mehci->dev, "ulpi_read: timeout ULPI_VIEWPORT: %08x\n",
readl_relaxed(USB_ULPI_VIEWPORT));
dev_err(mehci->dev, "PORTSC: %08x USBCMD: %08x FRINDEX: %08x\n",
readl_relaxed(USB_PORTSC),
readl_relaxed(USB_USBCMD),
readl_relaxed(USB_FRINDEX));
/*frame counter increments afte 125us*/
udelay(130);
dev_err(mehci->dev, "ulpi_read: FRINDEX: %08x\n",
readl_relaxed(USB_FRINDEX));
return -ETIMEDOUT;
}
return ULPI_DATA_READ(readl_relaxed(USB_ULPI_VIEWPORT));
}
static int ulpi_write(struct msm_hsic_hcd *mehci, u32 val, u32 reg)
{
struct usb_hcd *hcd = hsic_to_hcd(mehci);
int cnt = 0;
/* initiate write operation */
writel_relaxed(ULPI_RUN | ULPI_WRITE |
ULPI_ADDR(reg) | ULPI_DATA(val),
USB_ULPI_VIEWPORT);
/* wait for completion */
while (cnt < ULPI_IO_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_RUN))
break;
udelay(1);
cnt++;
}
if (cnt >= ULPI_IO_TIMEOUT_USEC) {
dev_err(mehci->dev, "ulpi_write: timeout ULPI_VIEWPORT: %08x\n",
readl_relaxed(USB_ULPI_VIEWPORT));
dev_err(mehci->dev, "PORTSC: %08x USBCMD: %08x FRINDEX: %08x\n",
readl_relaxed(USB_PORTSC),
readl_relaxed(USB_USBCMD),
readl_relaxed(USB_FRINDEX));
/*frame counter increments afte 125us*/
udelay(130);
dev_err(mehci->dev, "ulpi_write: FRINDEX: %08x\n",
readl_relaxed(USB_FRINDEX));
return -ETIMEDOUT;
}
return 0;
}
#define HSIC_DBG1 0X38
#define ULPI_MANUAL_ENABLE BIT(4)
#define ULPI_LINESTATE_DATA BIT(5)
#define ULPI_LINESTATE_STROBE BIT(6)
static void ehci_msm_enable_ulpi_control(struct usb_hcd *hcd, u32 linestate)
{
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
int val;
switch (linestate) {
case PORT_RESET:
val = ulpi_read(mehci, HSIC_DBG1);
val |= ULPI_MANUAL_ENABLE;
val &= ~(ULPI_LINESTATE_DATA | ULPI_LINESTATE_STROBE);
ulpi_write(mehci, val, HSIC_DBG1);
break;
default:
pr_info("%s: Unknown linestate:%0x\n", __func__, linestate);
}
}
static void ehci_msm_disable_ulpi_control(struct usb_hcd *hcd)
{
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
int val;
val = ulpi_read(mehci, HSIC_DBG1);
val &= ~ULPI_MANUAL_ENABLE;
ulpi_write(mehci, val, HSIC_DBG1);
}
static int msm_hsic_config_gpios(struct msm_hsic_hcd *mehci, int gpio_en)
{
int rc = 0;
struct msm_hsic_host_platform_data *pdata;
static int gpio_status;
pdata = mehci->dev->platform_data;
if (!pdata || !pdata->strobe || !pdata->data)
return rc;
if (gpio_status == gpio_en)
return 0;
gpio_status = gpio_en;
if (!gpio_en)
goto free_gpio;
rc = gpio_request(pdata->strobe, "HSIC_STROBE_GPIO");
if (rc < 0) {
dev_err(mehci->dev, "gpio request failed for HSIC STROBE\n");
return rc;
}
rc = gpio_request(pdata->data, "HSIC_DATA_GPIO");
if (rc < 0) {
dev_err(mehci->dev, "gpio request failed for HSIC DATA\n");
goto free_strobe;
}
return 0;
free_gpio:
gpio_free(pdata->data);
free_strobe:
gpio_free(pdata->strobe);
return rc;
}
static void msm_hsic_clk_reset(struct msm_hsic_hcd *mehci)
{
int ret;
/* alt_core_clk exists in targets that do not use asynchronous reset */
if (!IS_ERR(mehci->alt_core_clk)) {
ret = clk_reset(mehci->core_clk, CLK_RESET_ASSERT);
if (ret) {
dev_err(mehci->dev, "hsic clk assert failed:%d\n", ret);
return;
}
/* Since a hw bug, turn off the clock before complete reset */
clk_disable(mehci->core_clk);
ret = clk_reset(mehci->core_clk, CLK_RESET_DEASSERT);
if (ret)
dev_err(mehci->dev, "hsic clk deassert failed:%d\n",
ret);
usleep_range(10000, 12000);
clk_enable(mehci->core_clk);
} else {
/* Using asynchronous block reset to the hardware */
clk_disable_unprepare(mehci->core_clk);
clk_disable_unprepare(mehci->phy_clk);
clk_disable_unprepare(mehci->cal_clk);
clk_disable_unprepare(mehci->ahb_clk);
ret = clk_reset(mehci->core_clk, CLK_RESET_ASSERT);
if (ret) {
dev_err(mehci->dev, "hsic clk assert failed:%d\n", ret);
return;
}
usleep_range(10000, 12000);
ret = clk_reset(mehci->core_clk, CLK_RESET_DEASSERT);
if (ret)
dev_err(mehci->dev, "hsic clk deassert failed:%d\n",
ret);
/*
* Required delay between the deassertion and
* clock enablement.
*/
ndelay(200);
clk_prepare_enable(mehci->core_clk);
clk_prepare_enable(mehci->phy_clk);
clk_prepare_enable(mehci->cal_clk);
clk_prepare_enable(mehci->ahb_clk);
}
}
#define HSIC_STROBE_GPIO_PAD_CTL (MSM_TLMM_BASE+0x20C0)
#define HSIC_DATA_GPIO_PAD_CTL (MSM_TLMM_BASE+0x20C4)
#define HSIC_CAL_PAD_CTL (MSM_TLMM_BASE+0x20C8)
#define HSIC_LV_MODE 0x04
#define HSIC_PAD_CALIBRATION 0xA8
#define HSIC_GPIO_PAD_VAL 0x0A0AAA10
#define LINK_RESET_TIMEOUT_USEC (250 * 1000)
static void msm_hsic_phy_reset(struct msm_hsic_hcd *mehci)
{
struct usb_hcd *hcd = hsic_to_hcd(mehci);
msm_hsic_clk_reset(mehci);
/* select ulpi phy */
writel_relaxed(0x80000000, USB_PORTSC);
mb();
}
static int msm_hsic_start(struct msm_hsic_hcd *mehci)
{
struct msm_hsic_host_platform_data *pdata = mehci->dev->platform_data;
int ret;
void __iomem *reg;
/* HSIC init sequence when HSIC signals (Strobe/Data) are
routed via GPIOs */
if (pdata && pdata->strobe && pdata->data) {
if (!pdata->ignore_cal_pad_config) {
/* Enable LV_MODE in HSIC_CAL_PAD_CTL register */
writel_relaxed(HSIC_LV_MODE, HSIC_CAL_PAD_CTL);
mb();
}
/*set periodic calibration interval to ~2.048sec in
HSIC_IO_CAL_REG */
ulpi_write(mehci, 0xFF, 0x33);
/* Enable periodic IO calibration in HSIC_CFG register */
ulpi_write(mehci, HSIC_PAD_CALIBRATION, 0x30);
/* Configure GPIO pins for HSIC functionality mode */
ret = msm_hsic_config_gpios(mehci, 1);
if (ret) {
dev_err(mehci->dev, " gpio configuarion failed\n");
return ret;
}
if (pdata->strobe_pad_offset) {
/* Set CORE_CTL_EN in STROBE GPIO PAD_CTL register */
reg = MSM_TLMM_BASE + pdata->strobe_pad_offset;
writel_relaxed(readl_relaxed(reg) | 0x2000000, reg);
} else {
/* Set LV_MODE=0x1 and DCC=0x2 in STROBE GPIO PAD_CTL */
reg = HSIC_STROBE_GPIO_PAD_CTL;
writel_relaxed(HSIC_GPIO_PAD_VAL, reg);
}
if (pdata->data_pad_offset) {
/* Set CORE_CTL_EN in HSIC_DATA GPIO PAD_CTL register */
reg = MSM_TLMM_BASE + pdata->data_pad_offset;
writel_relaxed(readl_relaxed(reg) | 0x2000000, reg);
} else {
/* Set LV_MODE=0x1 and DCC=0x2 in STROBE GPIO PAD_CTL */
reg = HSIC_DATA_GPIO_PAD_CTL;
writel_relaxed(HSIC_GPIO_PAD_VAL, reg);
}
mb();
/* Enable HSIC mode in HSIC_CFG register */
ulpi_write(mehci, 0x01, 0x31);
} else {
/* HSIC init sequence when HSIC signals (Strobe/Data) are routed
via dedicated I/O */
/* programmable length of connect signaling (33.2ns) */
ret = ulpi_write(mehci, 3, HSIC_DBG1_REG);
if (ret) {
pr_err("%s: Unable to program length of connect "
"signaling\n", __func__);
}
/*set periodic calibration interval to ~2.048sec in
HSIC_IO_CAL_REG */
ulpi_write(mehci, 0xFF, 0x33);
/* Enable HSIC mode in HSIC_CFG register */
ulpi_write(mehci, 0xA9, 0x30);
}
/*disable auto resume*/
ulpi_write(mehci, ULPI_IFC_CTRL_AUTORESUME, ULPI_CLR(ULPI_IFC_CTRL));
return 0;
}
#define PHY_SUSPEND_TIMEOUT_USEC (500 * 1000)
#define PHY_RESUME_TIMEOUT_USEC (100 * 1000)
#ifdef CONFIG_PM_SLEEP
static int msm_hsic_reset(struct msm_hsic_hcd *mehci)
{
/* reset HSIC phy */
msm_hsic_phy_reset(mehci);
/* HSIC init procedure (caliberation) */
return msm_hsic_start(mehci);
}
static int msm_hsic_suspend(struct msm_hsic_hcd *mehci)
{
struct usb_hcd *hcd = hsic_to_hcd(mehci);
int cnt = 0, ret;
u32 val;
int none_vol, max_vol;
struct msm_hsic_host_platform_data *pdata = mehci->dev->platform_data;
if (atomic_read(&mehci->in_lpm)) {
dev_dbg(mehci->dev, "%s called in lpm\n", __func__);
return 0;
}
disable_irq(hcd->irq);
/* make sure we don't race against a remote wakeup */
if (test_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags) ||
readl_relaxed(USB_PORTSC) & PORT_RESUME) {
dev_dbg(mehci->dev, "wakeup pending, aborting suspend\n");
enable_irq(hcd->irq);
return -EBUSY;
}
/*
* PHY may take some time or even fail to enter into low power
* mode (LPM). Hence poll for 500 msec and reset the PHY and link
* in failure case.
*/
val = readl_relaxed(USB_PORTSC);
val &= ~PORT_RWC_BITS;
val |= PORTSC_PHCD;
writel_relaxed(val, USB_PORTSC);
while (cnt < PHY_SUSPEND_TIMEOUT_USEC) {
if (readl_relaxed(USB_PORTSC) & PORTSC_PHCD)
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_SUSPEND_TIMEOUT_USEC) {
dev_err(mehci->dev, "Unable to suspend PHY\n");
msm_hsic_config_gpios(mehci, 0);
msm_hsic_reset(mehci);
}
/*
* PHY has capability to generate interrupt asynchronously in low
* power mode (LPM). This interrupt is level triggered. So USB IRQ
* line must be disabled till async interrupt enable bit is cleared
* in USBCMD register. Assert STP (ULPI interface STOP signal) to
* block data communication from PHY. Enable asynchronous interrupt
* only when wakeup gpio IRQ is not present.
*/
if (mehci->wakeup_irq)
writel_relaxed(readl_relaxed(USB_USBCMD) |
ULPI_STP_CTRL, USB_USBCMD);
else
writel_relaxed(readl_relaxed(USB_USBCMD) | ASYNC_INTR_CTRL |
ULPI_STP_CTRL, USB_USBCMD);
/*
* Ensure that hardware is put in low power mode before
* clocks are turned OFF and VDD is allowed to minimize.
*/
mb();
clk_disable_unprepare(mehci->core_clk);
clk_disable_unprepare(mehci->phy_clk);
clk_disable_unprepare(mehci->cal_clk);
clk_disable_unprepare(mehci->ahb_clk);
none_vol = vdd_val[mehci->vdd_type][VDD_NONE];
max_vol = vdd_val[mehci->vdd_type][VDD_MAX];
ret = regulator_set_voltage(mehci->hsic_vddcx, none_vol, max_vol);
if (ret < 0)
dev_err(mehci->dev, "unable to set vddcx voltage for VDD MIN\n");
if (mehci->bus_perf_client && debug_bus_voting_enabled) {
mehci->bus_vote = false;
queue_work(ehci_wq, &mehci->bus_vote_w);
}
atomic_set(&mehci->in_lpm, 1);
enable_irq(hcd->irq);
if (mehci->wakeup_irq) {
mehci->wakeup_irq_enabled = 1;
enable_irq_wake(mehci->wakeup_irq);
enable_irq(mehci->wakeup_irq);
}
if (pdata && pdata->standalone_latency)
pm_qos_update_request(&mehci->pm_qos_req_dma,
PM_QOS_DEFAULT_VALUE);
wake_unlock(&mehci->wlock);
dev_info(mehci->dev, "HSIC-USB in low power mode\n");
return 0;
}
static int msm_hsic_resume(struct msm_hsic_hcd *mehci)
{
struct usb_hcd *hcd = hsic_to_hcd(mehci);
int cnt = 0, ret;
unsigned temp;
int min_vol, max_vol;
unsigned long flags;
struct msm_hsic_host_platform_data *pdata = mehci->dev->platform_data;
if (!atomic_read(&mehci->in_lpm)) {
dev_dbg(mehci->dev, "%s called in !in_lpm\n", __func__);
return 0;
}
/* Handles race with Async interrupt */
disable_irq(hcd->irq);
if (pdata && pdata->standalone_latency)
pm_qos_update_request(&mehci->pm_qos_req_dma,
pdata->standalone_latency + 1);
if (mehci->wakeup_irq) {
spin_lock_irqsave(&mehci->wakeup_lock, flags);
if (mehci->wakeup_irq_enabled) {
disable_irq_wake(mehci->wakeup_irq);
disable_irq_nosync(mehci->wakeup_irq);
mehci->wakeup_irq_enabled = 0;
}
spin_unlock_irqrestore(&mehci->wakeup_lock, flags);
}
wake_lock(&mehci->wlock);
if (mehci->bus_perf_client && debug_bus_voting_enabled) {
mehci->bus_vote = true;
queue_work(ehci_wq, &mehci->bus_vote_w);
}
min_vol = vdd_val[mehci->vdd_type][VDD_MIN];
max_vol = vdd_val[mehci->vdd_type][VDD_MAX];
ret = regulator_set_voltage(mehci->hsic_vddcx, min_vol, max_vol);
if (ret < 0)
dev_err(mehci->dev, "unable to set nominal vddcx voltage (no VDD MIN)\n");
clk_prepare_enable(mehci->core_clk);
clk_prepare_enable(mehci->phy_clk);
clk_prepare_enable(mehci->cal_clk);
clk_prepare_enable(mehci->ahb_clk);
temp = readl_relaxed(USB_USBCMD);
temp &= ~ASYNC_INTR_CTRL;
temp &= ~ULPI_STP_CTRL;
writel_relaxed(temp, USB_USBCMD);
if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD))
goto skip_phy_resume;
temp = readl_relaxed(USB_PORTSC);
temp &= ~(PORT_RWC_BITS | PORTSC_PHCD);
writel_relaxed(temp, USB_PORTSC);
while (cnt < PHY_RESUME_TIMEOUT_USEC) {
if (!(readl_relaxed(USB_PORTSC) & PORTSC_PHCD) &&
(readl_relaxed(USB_ULPI_VIEWPORT) & ULPI_SYNC_STATE))
break;
udelay(1);
cnt++;
}
if (cnt >= PHY_RESUME_TIMEOUT_USEC) {
/*
* This is a fatal error. Reset the link and
* PHY to make hsic working.
*/
dev_err(mehci->dev, "Unable to resume USB. Reset the hsic\n");
msm_hsic_config_gpios(mehci, 0);
msm_hsic_reset(mehci);
}
skip_phy_resume:
usb_hcd_resume_root_hub(hcd);
atomic_set(&mehci->in_lpm, 0);
if (atomic_read(&mehci->async_int)) {
atomic_set(&mehci->async_int, 0);
pm_runtime_put_noidle(mehci->dev);
enable_irq(hcd->irq);
}
if (atomic_read(&mehci->pm_usage_cnt)) {
atomic_set(&mehci->pm_usage_cnt, 0);
pm_runtime_put_noidle(mehci->dev);
}
enable_irq(hcd->irq);
dev_info(mehci->dev, "HSIC-USB exited from low power mode\n");
return 0;
}
#endif
static void ehci_hsic_bus_vote_w(struct work_struct *w)
{
struct msm_hsic_hcd *mehci =
container_of(w, struct msm_hsic_hcd, bus_vote_w);
int ret;
ret = msm_bus_scale_client_update_request(mehci->bus_perf_client,
mehci->bus_vote);
if (ret)
dev_err(mehci->dev, "%s: Failed to vote for bus bandwidth %d\n",
__func__, ret);
}
#define STS_GPTIMER0_INTERRUPT BIT(24)
static irqreturn_t msm_hsic_irq(struct usb_hcd *hcd)
{
struct ehci_hcd *ehci = hcd_to_ehci(hcd);
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
u32 status;
int ret;
if (atomic_read(&mehci->in_lpm)) {
dev_dbg(mehci->dev, "phy async intr\n");
dbg_log_event(NULL, "Async IRQ", 0);
ret = pm_runtime_get(mehci->dev);
if ((ret == 1) || (ret == -EINPROGRESS)) {
pm_runtime_put_noidle(mehci->dev);
} else {
disable_irq_nosync(hcd->irq);
atomic_set(&mehci->async_int, 1);
}
return IRQ_HANDLED;
}
status = ehci_readl(ehci, &ehci->regs->status);
if (status & STS_GPTIMER0_INTERRUPT) {
int timeleft;
dbg_log_event(NULL, "FPR: gpt0_isr", 0);
timeleft = GPT_CNT(ehci_readl(ehci,
&mehci->timer->gptimer1_ctrl));
if (timeleft) {
ehci_writel(ehci, ehci_readl(ehci,
&ehci->regs->command) | CMD_RUN,
&ehci->regs->command);
} else
mehci->resume_again = 1;
dbg_log_event(NULL, "FPR: timeleft", timeleft);
complete(&mehci->gpt0_completion);
ehci_writel(ehci, STS_GPTIMER0_INTERRUPT, &ehci->regs->status);
}
return ehci_irq(hcd);
}
static int ehci_hsic_reset(struct usb_hcd *hcd)
{
struct ehci_hcd *ehci = hcd_to_ehci(hcd);
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
int retval;
mehci->timer = USB_HS_GPTIMER_BASE;
ehci->caps = USB_CAPLENGTH;
ehci->regs = USB_CAPLENGTH +
HC_LENGTH(ehci, ehci_readl(ehci, &ehci->caps->hc_capbase));
dbg_hcs_params(ehci, "reset");
dbg_hcc_params(ehci, "reset");
/* cache the data to minimize the chip reads*/
ehci->hcs_params = ehci_readl(ehci, &ehci->caps->hcs_params);
hcd->has_tt = 1;
ehci->sbrn = HCD_USB2;
retval = ehci_halt(ehci);
if (retval)
return retval;
/* data structure init */
retval = ehci_init(hcd);
if (retval)
return retval;
retval = ehci_reset(ehci);
if (retval)
return retval;
/* bursts of unspecified length. */
writel_relaxed(0, USB_AHBBURST);
/* Use the AHB transactor */
writel_relaxed(0x08, USB_AHBMODE);
/* Disable streaming mode and select host mode */
writel_relaxed(0x13, USB_USBMODE);
ehci_port_power(ehci, 1);
return 0;
}
#ifdef CONFIG_PM
static int ehci_hsic_bus_suspend(struct usb_hcd *hcd)
{
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
if (!(readl_relaxed(USB_PORTSC) & PORT_PE)) {
dbg_log_event(NULL, "RH suspend attempt failed", 0);
dev_dbg(mehci->dev, "%s:port is not enabled skip suspend\n",
__func__);
return -EAGAIN;
}
dbg_log_event(NULL, "Suspend RH", 0);
return ehci_bus_suspend(hcd);
}
#define RESUME_RETRY_LIMIT 3
#define RESUME_SIGNAL_TIME_USEC (21 * 1000)
#define RESUME_SIGNAL_TIME_SOF_USEC (23 * 1000)
static int msm_hsic_resume_thread(void *data)
{
struct msm_hsic_hcd *mehci = data;
struct usb_hcd *hcd = hsic_to_hcd(mehci);
struct ehci_hcd *ehci = hcd_to_ehci(hcd);
u32 temp;
unsigned long resume_needed = 0;
int retry_cnt = 0;
int tight_resume = 0;
struct msm_hsic_host_platform_data *pdata = mehci->dev->platform_data;
dbg_log_event(NULL, "Resume RH", 0);
/* keep delay between bus states */
if (time_before(jiffies, ehci->next_statechange))
usleep_range(5000, 5000);
spin_lock_irq(&ehci->lock);
if (!HCD_HW_ACCESSIBLE(hcd)) {
spin_unlock_irq(&ehci->lock);
mehci->resume_status = -ESHUTDOWN;
complete(&mehci->rt_completion);
return 0;
}
if (unlikely(ehci->debug)) {
if (!dbgp_reset_prep())
ehci->debug = NULL;
else
dbgp_external_startup();
}
/* at least some APM implementations will try to deliver
* IRQs right away, so delay them until we're ready.
*/
ehci_writel(ehci, 0, &ehci->regs->intr_enable);
/* re-init operational registers */
ehci_writel(ehci, 0, &ehci->regs->segment);
ehci_writel(ehci, ehci->periodic_dma, &ehci->regs->frame_list);
ehci_writel(ehci, (u32) ehci->async->qh_dma, &ehci->regs->async_next);
/*CMD_RUN will be set after, PORT_RESUME gets cleared*/
if (ehci->resume_sof_bug)
ehci->command &= ~CMD_RUN;
/* restore CMD_RUN, framelist size, and irq threshold */
ehci_writel(ehci, ehci->command, &ehci->regs->command);
/* manually resume the ports we suspended during bus_suspend() */
resume_again:
if (retry_cnt >= RESUME_RETRY_LIMIT) {
pr_info("retry count(%d) reached max, resume in tight loop\n",
retry_cnt);
tight_resume = 1;
}
temp = ehci_readl(ehci, &ehci->regs->port_status[0]);
temp &= ~(PORT_RWC_BITS | PORT_WAKE_BITS);
if (test_bit(0, &ehci->bus_suspended) && (temp & PORT_SUSPEND)) {
temp |= PORT_RESUME;
set_bit(0, &resume_needed);
}
dbg_log_event(NULL, "FPR: Set", temp);
ehci_writel(ehci, temp, &ehci->regs->port_status[0]);
/* HSIC controller has a h/w bug due to which it can try to send SOFs
* (start of frames) during port resume resulting in phy lockup. HSIC hw
* controller in MSM clears FPR bit after driving the resume signal for
* 20ms. Workaround is to stop SOFs before driving resume and then start
* sending SOFs immediately. Need to send SOFs within 3ms of resume
* completion otherwise peripheral may enter undefined state. As
* usleep_range does not gurantee exact sleep time, GPTimer is used to
* to time the resume sequence. If driver exceeds allowable time SOFs,
* repeat the resume process.
*/
if (ehci->resume_sof_bug && resume_needed) {
if (!tight_resume) {
mehci->resume_again = 0;
ehci_writel(ehci, GPT_LD(RESUME_SIGNAL_TIME_USEC - 1),
&mehci->timer->gptimer0_ld);
ehci_writel(ehci, GPT_RESET | GPT_RUN,
&mehci->timer->gptimer0_ctrl);
ehci_writel(ehci, INTR_MASK | STS_GPTIMER0_INTERRUPT,
&ehci->regs->intr_enable);
ehci_writel(ehci, GPT_LD(
RESUME_SIGNAL_TIME_SOF_USEC - 1),
&mehci->timer->gptimer1_ld);
ehci_writel(ehci, GPT_RESET | GPT_RUN,
&mehci->timer->gptimer1_ctrl);
spin_unlock_irq(&ehci->lock);
if (pdata && pdata->swfi_latency)
pm_qos_update_request(&mehci->pm_qos_req_dma,
pdata->swfi_latency + 1);
wait_for_completion(&mehci->gpt0_completion);
if (pdata && pdata->standalone_latency)
pm_qos_update_request(&mehci->pm_qos_req_dma,
pdata->standalone_latency + 1);
spin_lock_irq(&ehci->lock);
} else {
dbg_log_event(NULL, "FPR: Tightloop", 0);
/* do the resume in a tight loop */
handshake(ehci, &ehci->regs->port_status[0],
PORT_RESUME, 0, 22 * 1000);
ehci_writel(ehci, ehci_readl(ehci,
&ehci->regs->command) | CMD_RUN,
&ehci->regs->command);
}
if (mehci->resume_again) {
int temp;
dbg_log_event(NULL, "FPR: Re-Resume", retry_cnt);
pr_info("FPR: retry count: %d\n", retry_cnt);
spin_unlock_irq(&ehci->lock);
temp = ehci_readl(ehci, &ehci->regs->port_status[0]);
temp &= ~PORT_RWC_BITS;
temp |= PORT_SUSPEND;
ehci_writel(ehci, temp, &ehci->regs->port_status[0]);
/* Keep the bus idle for 5ms so that peripheral
* can detect and initiate suspend
*/
usleep_range(5000, 5000);
dbg_log_event(NULL,
"FPR: RResume",
ehci_readl(ehci, &ehci->regs->port_status[0]));
spin_lock_irq(&ehci->lock);
mehci->resume_again = 0;
retry_cnt++;
goto resume_again;
}
}
dbg_log_event(NULL, "FPR: RT-Done", 0);
mehci->resume_status = 1;
spin_unlock_irq(&ehci->lock);
complete(&mehci->rt_completion);
return 0;
}
static int ehci_hsic_bus_resume(struct usb_hcd *hcd)
{
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
struct ehci_hcd *ehci = hcd_to_ehci(hcd);
u32 temp;
struct task_struct *resume_thread = NULL;
mehci->resume_status = 0;
resume_thread = kthread_run(msm_hsic_resume_thread,
mehci, "hsic_resume_thread");
if (IS_ERR(resume_thread)) {
pr_err("Error creating resume thread:%lu\n",
PTR_ERR(resume_thread));
return PTR_ERR(resume_thread);
}
wait_for_completion(&mehci->rt_completion);
if (mehci->resume_status < 0)
return mehci->resume_status;
dbg_log_event(NULL, "FPR: Wokeup", 0);
spin_lock_irq(&ehci->lock);
(void) ehci_readl(ehci, &ehci->regs->command);
temp = 0;
if (ehci->async->qh_next.qh)
temp |= CMD_ASE;
if (ehci->periodic_sched)
temp |= CMD_PSE;
if (temp) {
ehci->command |= temp;
ehci_writel(ehci, ehci->command, &ehci->regs->command);
}
ehci->next_statechange = jiffies + msecs_to_jiffies(5);
hcd->state = HC_STATE_RUNNING;
ehci->rh_state = EHCI_RH_RUNNING;
ehci->command |= CMD_RUN;
/* Now we can safely re-enable irqs */
ehci_writel(ehci, INTR_MASK, &ehci->regs->intr_enable);
spin_unlock_irq(&ehci->lock);
return 0;
}
#else
#define ehci_hsic_bus_suspend NULL
#define ehci_hsic_bus_resume NULL
#endif /* CONFIG_PM */
static void ehci_msm_set_autosuspend_delay(struct usb_device *dev)
{
if (!dev->parent) /*for root hub no delay*/
pm_runtime_set_autosuspend_delay(&dev->dev, 0);
else
pm_runtime_set_autosuspend_delay(&dev->dev, 200);
}
static struct hc_driver msm_hsic_driver = {
.description = hcd_name,
.product_desc = "Qualcomm EHCI Host Controller using HSIC",
.hcd_priv_size = sizeof(struct msm_hsic_hcd),
/*
* generic hardware linkage
*/
.irq = msm_hsic_irq,
.flags = HCD_USB2 | HCD_MEMORY | HCD_OLD_ENUM,
.reset = ehci_hsic_reset,
.start = ehci_run,
.stop = ehci_stop,
.shutdown = ehci_shutdown,
/*
* managing i/o requests and associated device resources
*/
.urb_enqueue = ehci_urb_enqueue,
.urb_dequeue = ehci_urb_dequeue,
.endpoint_disable = ehci_endpoint_disable,
.endpoint_reset = ehci_endpoint_reset,
.clear_tt_buffer_complete = ehci_clear_tt_buffer_complete,
/*
* scheduling support
*/
.get_frame_number = ehci_get_frame,
/*
* root hub support
*/
.hub_status_data = ehci_hub_status_data,
.hub_control = ehci_hub_control,
.relinquish_port = ehci_relinquish_port,
.port_handed_over = ehci_port_handed_over,
/*
* PM support
*/
.bus_suspend = ehci_hsic_bus_suspend,
.bus_resume = ehci_hsic_bus_resume,
.log_urb = dbg_log_event,
.dump_regs = dump_hsic_regs,
.enable_ulpi_control = ehci_msm_enable_ulpi_control,
.disable_ulpi_control = ehci_msm_disable_ulpi_control,
.set_autosuspend_delay = ehci_msm_set_autosuspend_delay,
};
static int msm_hsic_init_clocks(struct msm_hsic_hcd *mehci, u32 init)
{
int ret = 0;
if (!init)
goto put_clocks;
/*core_clk is required for LINK protocol engine
*clock rate appropriately set by target specific clock driver */
mehci->core_clk = clk_get(mehci->dev, "core_clk");
if (IS_ERR(mehci->core_clk)) {
dev_err(mehci->dev, "failed to get core_clk\n");
ret = PTR_ERR(mehci->core_clk);
return ret;
}
/* alt_core_clk is for LINK to be used during PHY RESET in
* targets on which link does NOT use asynchronous reset methodology.
* clock rate appropriately set by target specific clock driver */
mehci->alt_core_clk = clk_get(mehci->dev, "alt_core_clk");
if (IS_ERR(mehci->alt_core_clk))
dev_dbg(mehci->dev, "failed to get alt_core_clk\n");
/* phy_clk is required for HSIC PHY operation
* clock rate appropriately set by target specific clock driver */
mehci->phy_clk = clk_get(mehci->dev, "phy_clk");
if (IS_ERR(mehci->phy_clk)) {
dev_err(mehci->dev, "failed to get phy_clk\n");
ret = PTR_ERR(mehci->phy_clk);
goto put_alt_core_clk;
}
/* 10MHz cal_clk is required for calibration of I/O pads */
mehci->cal_clk = clk_get(mehci->dev, "cal_clk");
if (IS_ERR(mehci->cal_clk)) {
dev_err(mehci->dev, "failed to get cal_clk\n");
ret = PTR_ERR(mehci->cal_clk);
goto put_phy_clk;
}
/* ahb_clk is required for data transfers */
mehci->ahb_clk = clk_get(mehci->dev, "iface_clk");
if (IS_ERR(mehci->ahb_clk)) {
dev_err(mehci->dev, "failed to get iface_clk\n");
ret = PTR_ERR(mehci->ahb_clk);
goto put_cal_clk;
}
clk_prepare_enable(mehci->core_clk);
clk_prepare_enable(mehci->phy_clk);
clk_prepare_enable(mehci->cal_clk);
clk_prepare_enable(mehci->ahb_clk);
return 0;
put_clocks:
if (!atomic_read(&mehci->in_lpm)) {
clk_disable_unprepare(mehci->core_clk);
clk_disable_unprepare(mehci->phy_clk);
clk_disable_unprepare(mehci->cal_clk);
clk_disable_unprepare(mehci->ahb_clk);
}
clk_put(mehci->ahb_clk);
put_cal_clk:
clk_put(mehci->cal_clk);
put_phy_clk:
clk_put(mehci->phy_clk);
put_alt_core_clk:
if (!IS_ERR(mehci->alt_core_clk))
clk_put(mehci->alt_core_clk);
clk_put(mehci->core_clk);
return ret;
}
static irqreturn_t hsic_peripheral_status_change(int irq, void *dev_id)
{
struct msm_hsic_hcd *mehci = dev_id;
pr_debug("%s: mehci:%p dev_id:%p\n", __func__, mehci, dev_id);
if (mehci)
msm_hsic_config_gpios(mehci, 0);
return IRQ_HANDLED;
}
static irqreturn_t msm_hsic_wakeup_irq(int irq, void *data)
{
struct msm_hsic_hcd *mehci = data;
int ret;
if (irq == mehci->async_irq) {
mehci->async_int_cnt++;
dbg_log_event(NULL, "Remote Wakeup (ASYNC) IRQ",
mehci->async_int_cnt);
} else {
mehci->wakeup_int_cnt++;
dbg_log_event(NULL, "Remote Wakeup IRQ", mehci->wakeup_int_cnt);
}
dev_dbg(mehci->dev, "%s: hsic remote wakeup interrupt %d cnt: %u, %u\n",
__func__, irq, mehci->wakeup_int_cnt, mehci->async_int_cnt);
wake_lock(&mehci->wlock);
if (mehci->wakeup_irq) {
spin_lock(&mehci->wakeup_lock);
if (mehci->wakeup_irq_enabled) {
mehci->wakeup_irq_enabled = 0;
disable_irq_wake(irq);
disable_irq_nosync(irq);
}
spin_unlock(&mehci->wakeup_lock);
}
if (!atomic_read(&mehci->pm_usage_cnt)) {
ret = pm_runtime_get(mehci->dev);
/*
* HSIC runtime resume can race with us.
* if we are active (ret == 1) or resuming
* (ret == -EINPROGRESS), decrement the
* PM usage counter before returning.
*/
if ((ret == 1) || (ret == -EINPROGRESS))
pm_runtime_put_noidle(mehci->dev);
else
atomic_set(&mehci->pm_usage_cnt, 1);
}
return IRQ_HANDLED;
}
static int ehci_hsic_msm_bus_show(struct seq_file *s, void *unused)
{
if (debug_bus_voting_enabled)
seq_printf(s, "enabled\n");
else
seq_printf(s, "disabled\n");
return 0;
}
static int ehci_hsic_msm_bus_open(struct inode *inode, struct file *file)
{
return single_open(file, ehci_hsic_msm_bus_show, inode->i_private);
}
static ssize_t ehci_hsic_msm_bus_write(struct file *file,
const char __user *ubuf, size_t count, loff_t *ppos)
{
char buf[8];
int ret;
struct seq_file *s = file->private_data;
struct msm_hsic_hcd *mehci = s->private;
memset(buf, 0x00, sizeof(buf));
if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
return -EFAULT;
if (!strncmp(buf, "enable", 6)) {
/* Do not vote here. Let hsic driver decide when to vote */
debug_bus_voting_enabled = true;
} else {
debug_bus_voting_enabled = false;
if (mehci->bus_perf_client) {
ret = msm_bus_scale_client_update_request(
mehci->bus_perf_client, 0);
if (ret)
dev_err(mehci->dev, "%s: Failed to devote "
"for bus bw %d\n", __func__, ret);
}
}
return count;
}
const struct file_operations ehci_hsic_msm_bus_fops = {
.open = ehci_hsic_msm_bus_open,
.read = seq_read,
.write = ehci_hsic_msm_bus_write,
.llseek = seq_lseek,
.release = single_release,
};
static int ehci_hsic_msm_wakeup_cnt_show(struct seq_file *s, void *unused)
{
struct msm_hsic_hcd *mehci = s->private;
seq_printf(s, "%u\n", mehci->wakeup_int_cnt);
return 0;
}
static int ehci_hsic_msm_wakeup_cnt_open(struct inode *inode, struct file *f)
{
return single_open(f, ehci_hsic_msm_wakeup_cnt_show, inode->i_private);
}
const struct file_operations ehci_hsic_msm_wakeup_cnt_fops = {
.open = ehci_hsic_msm_wakeup_cnt_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int ehci_hsic_msm_data_events_show(struct seq_file *s, void *unused)
{
unsigned long flags;
unsigned i;
read_lock_irqsave(&dbg_hsic_data.lck, flags);
i = dbg_hsic_data.idx;
for (dbg_inc(&i); i != dbg_hsic_data.idx; dbg_inc(&i)) {
if (!strnlen(dbg_hsic_data.buf[i], DBG_MSG_LEN))
continue;
seq_printf(s, "%s\n", dbg_hsic_data.buf[i]);
}
read_unlock_irqrestore(&dbg_hsic_data.lck, flags);
return 0;
}
static int ehci_hsic_msm_data_events_open(struct inode *inode, struct file *f)
{
return single_open(f, ehci_hsic_msm_data_events_show, inode->i_private);
}
const struct file_operations ehci_hsic_msm_dbg_data_fops = {
.open = ehci_hsic_msm_data_events_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int ehci_hsic_msm_ctrl_events_show(struct seq_file *s, void *unused)
{
unsigned long flags;
unsigned i;
read_lock_irqsave(&dbg_hsic_ctrl.lck, flags);
i = dbg_hsic_ctrl.idx;
for (dbg_inc(&i); i != dbg_hsic_ctrl.idx; dbg_inc(&i)) {
if (!strnlen(dbg_hsic_ctrl.buf[i], DBG_MSG_LEN))
continue;
seq_printf(s, "%s\n", dbg_hsic_ctrl.buf[i]);
}
read_unlock_irqrestore(&dbg_hsic_ctrl.lck, flags);
return 0;
}
static int ehci_hsic_msm_ctrl_events_open(struct inode *inode, struct file *f)
{
return single_open(f, ehci_hsic_msm_ctrl_events_show, inode->i_private);
}
const struct file_operations ehci_hsic_msm_dbg_ctrl_fops = {
.open = ehci_hsic_msm_ctrl_events_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static struct dentry *ehci_hsic_msm_dbg_root;
static int ehci_hsic_msm_debugfs_init(struct msm_hsic_hcd *mehci)
{
struct dentry *ehci_hsic_msm_dentry;
ehci_hsic_msm_dbg_root = debugfs_create_dir("ehci_hsic_msm_dbg", NULL);
if (!ehci_hsic_msm_dbg_root || IS_ERR(ehci_hsic_msm_dbg_root))
return -ENODEV;
ehci_hsic_msm_dentry = debugfs_create_file("bus_voting",
S_IRUGO | S_IWUSR,
ehci_hsic_msm_dbg_root, mehci,
&ehci_hsic_msm_bus_fops);
if (!ehci_hsic_msm_dentry) {
debugfs_remove_recursive(ehci_hsic_msm_dbg_root);
return -ENODEV;
}
ehci_hsic_msm_dentry = debugfs_create_file("wakeup_cnt",
S_IRUGO,
ehci_hsic_msm_dbg_root, mehci,
&ehci_hsic_msm_wakeup_cnt_fops);
if (!ehci_hsic_msm_dentry) {
debugfs_remove_recursive(ehci_hsic_msm_dbg_root);
return -ENODEV;
}
ehci_hsic_msm_dentry = debugfs_create_file("show_ctrl_events",
S_IRUGO,
ehci_hsic_msm_dbg_root, mehci,
&ehci_hsic_msm_dbg_ctrl_fops);
if (!ehci_hsic_msm_dentry) {
debugfs_remove_recursive(ehci_hsic_msm_dbg_root);
return -ENODEV;
}
ehci_hsic_msm_dentry = debugfs_create_file("show_data_events",
S_IRUGO,
ehci_hsic_msm_dbg_root, mehci,
&ehci_hsic_msm_dbg_data_fops);
if (!ehci_hsic_msm_dentry) {
debugfs_remove_recursive(ehci_hsic_msm_dbg_root);
return -ENODEV;
}
return 0;
}
static void ehci_hsic_msm_debugfs_cleanup(void)
{
debugfs_remove_recursive(ehci_hsic_msm_dbg_root);
}
struct msm_hsic_host_platform_data *msm_hsic_dt_to_pdata(
struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct msm_hsic_host_platform_data *pdata;
int res_gpio;
pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata) {
dev_err(&pdev->dev, "unable to allocate platform data\n");
return NULL;
}
res_gpio = of_get_named_gpio(node, "hsic,strobe-gpio", 0);
if (res_gpio < 0)
res_gpio = 0;
pdata->strobe = res_gpio;
res_gpio = of_get_named_gpio(node, "hsic,data-gpio", 0);
if (res_gpio < 0)
res_gpio = 0;
pdata->data = res_gpio;
pdata->ignore_cal_pad_config = of_property_read_bool(node,
"hsic,ignore-cal-pad-config");
of_property_read_u32(node, "hsic,strobe-pad-offset",
&pdata->strobe_pad_offset);
of_property_read_u32(node, "hsic,data-pad-offset",
&pdata->data_pad_offset);
pdata->bus_scale_table = msm_bus_cl_get_pdata(pdev);
return pdata;
}
static int __devinit ehci_hsic_msm_probe(struct platform_device *pdev)
{
struct usb_hcd *hcd;
struct resource *res;
struct msm_hsic_hcd *mehci;
struct msm_hsic_host_platform_data *pdata;
int ret;
dev_dbg(&pdev->dev, "ehci_msm-hsic probe\n");
if (pdev->dev.of_node) {
dev_dbg(&pdev->dev, "device tree enabled\n");
pdev->dev.platform_data = msm_hsic_dt_to_pdata(pdev);
dev_set_name(&pdev->dev, ehci_msm_hsic_driver.driver.name);
}
if (!pdev->dev.platform_data)
dev_dbg(&pdev->dev, "No platform data given\n");
if (!pdev->dev.dma_mask)
pdev->dev.dma_mask = &ehci_msm_hsic_dma_mask;
if (!pdev->dev.coherent_dma_mask)
pdev->dev.coherent_dma_mask = DMA_BIT_MASK(32);
/* After parent device's probe is executed, it will be put in suspend
* mode. When child device's probe is called, driver core is not
* resuming parent device due to which parent will be in suspend even
* though child is active. Hence resume the parent device explicitly.
*/
if (pdev->dev.parent)
pm_runtime_get_sync(pdev->dev.parent);
hcd = usb_create_hcd(&msm_hsic_driver, &pdev->dev,
dev_name(&pdev->dev));
if (!hcd) {
dev_err(&pdev->dev, "Unable to create HCD\n");
return -ENOMEM;
}
hcd_to_bus(hcd)->skip_resume = true;
hcd->irq = platform_get_irq(pdev, 0);
if (hcd->irq < 0) {
dev_err(&pdev->dev, "Unable to get IRQ resource\n");
ret = hcd->irq;
goto put_hcd;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(&pdev->dev, "Unable to get memory resource\n");
ret = -ENODEV;
goto put_hcd;
}
hcd->rsrc_start = res->start;
hcd->rsrc_len = resource_size(res);
hcd->regs = ioremap(hcd->rsrc_start, hcd->rsrc_len);
if (!hcd->regs) {
dev_err(&pdev->dev, "ioremap failed\n");
ret = -ENOMEM;
goto put_hcd;
}
mehci = hcd_to_hsic(hcd);
mehci->dev = &pdev->dev;
pdata = mehci->dev->platform_data;
spin_lock_init(&mehci->wakeup_lock);
mehci->ehci.susp_sof_bug = 1;
mehci->ehci.reset_sof_bug = 1;
mehci->ehci.resume_sof_bug = 1;
if (pdata)
mehci->ehci.log2_irq_thresh = pdata->log2_irq_thresh;
ret = msm_hsic_init_gdsc(mehci, 1);
if (ret) {
dev_err(&pdev->dev, "unable to initialize GDSC\n");
ret = -ENODEV;
goto put_hcd;
}
res = platform_get_resource_byname(pdev,
IORESOURCE_IRQ,
"peripheral_status_irq");
if (res)
mehci->peripheral_status_irq = res->start;
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "wakeup");
if (res) {
mehci->wakeup_irq = res->start;
dev_dbg(mehci->dev, "wakeup_irq: %d\n", mehci->wakeup_irq);
}
ret = msm_hsic_init_clocks(mehci, 1);
if (ret) {
dev_err(&pdev->dev, "unable to initialize clocks\n");
ret = -ENODEV;
goto unmap;
}
ret = msm_hsic_init_vddcx(mehci, 1);
if (ret) {
dev_err(&pdev->dev, "unable to initialize VDDCX\n");
ret = -ENODEV;
goto deinit_clocks;
}
init_completion(&mehci->rt_completion);
init_completion(&mehci->gpt0_completion);
msm_hsic_phy_reset(mehci);
ehci_wq = create_singlethread_workqueue("ehci_wq");
if (!ehci_wq) {
dev_err(&pdev->dev, "unable to create workqueue\n");
ret = -ENOMEM;
goto deinit_vddcx;
}
INIT_WORK(&mehci->bus_vote_w, ehci_hsic_bus_vote_w);
ret = usb_add_hcd(hcd, hcd->irq, IRQF_SHARED);
if (ret) {
dev_err(&pdev->dev, "unable to register HCD\n");
goto destroy_wq;
}
ret = msm_hsic_start(mehci);
if (ret) {
dev_err(&pdev->dev, "unable to initialize PHY\n");
goto destroy_wq;
}
device_init_wakeup(&pdev->dev, 1);
wake_lock_init(&mehci->wlock, WAKE_LOCK_SUSPEND, dev_name(&pdev->dev));
wake_lock(&mehci->wlock);
if (mehci->peripheral_status_irq) {
ret = request_threaded_irq(mehci->peripheral_status_irq,
NULL, hsic_peripheral_status_change,
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING
| IRQF_SHARED,
"hsic_peripheral_status", mehci);
if (ret)
dev_err(&pdev->dev, "%s:request_irq:%d failed:%d",
__func__, mehci->peripheral_status_irq, ret);
}
/* configure wakeup irq */
if (mehci->wakeup_irq) {
/* In case if wakeup gpio is pulled high at this point
* remote wakeup interrupt fires right after request_irq.
* Remote wake up interrupt only needs to be enabled when
* HSIC bus goes to suspend.
*/
irq_set_status_flags(mehci->wakeup_irq, IRQ_NOAUTOEN);
ret = request_irq(mehci->wakeup_irq, msm_hsic_wakeup_irq,
IRQF_TRIGGER_HIGH,
"msm_hsic_wakeup", mehci);
if (ret) {
dev_err(&pdev->dev, "request_irq(%d) failed: %d\n",
mehci->wakeup_irq, ret);
mehci->wakeup_irq = 0;
}
}
mehci->async_irq = platform_get_irq_byname(pdev, "async_irq");
if (mehci->async_irq < 0) {
dev_dbg(&pdev->dev, "platform_get_irq for async_int failed\n");
mehci->async_irq = 0;
} else {
ret = request_irq(mehci->async_irq, msm_hsic_wakeup_irq,
IRQF_TRIGGER_RISING, "msm_hsic_async", mehci);
if (ret) {
dev_err(&pdev->dev, "request irq failed (ASYNC INT)\n");
mehci->async_irq = 0;
} else {
enable_irq_wake(mehci->async_irq);
}
}
ret = ehci_hsic_msm_debugfs_init(mehci);
if (ret)
dev_dbg(&pdev->dev, "mode debugfs file is"
"not available\n");
if (pdata && pdata->bus_scale_table) {
mehci->bus_perf_client =
msm_bus_scale_register_client(pdata->bus_scale_table);
/* Configure BUS performance parameters for MAX bandwidth */
if (mehci->bus_perf_client) {
mehci->bus_vote = true;
queue_work(ehci_wq, &mehci->bus_vote_w);
} else {
dev_err(&pdev->dev, "%s: Failed to register BUS "
"scaling client!!\n", __func__);
}
}
__mehci = mehci;
if (pdata && pdata->standalone_latency)
pm_qos_add_request(&mehci->pm_qos_req_dma,
PM_QOS_CPU_DMA_LATENCY, pdata->standalone_latency + 1);
/*
* This pdev->dev is assigned parent of root-hub by USB core,
* hence, runtime framework automatically calls this driver's
* runtime APIs based on root-hub's state.
*/
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
/* Decrement the parent device's counter after probe.
* As child is active, parent will not be put into
* suspend mode.
*/
if (pdev->dev.parent)
pm_runtime_put_sync(pdev->dev.parent);
return 0;
destroy_wq:
destroy_workqueue(ehci_wq);
deinit_vddcx:
msm_hsic_init_vddcx(mehci, 0);
msm_hsic_init_gdsc(mehci, 0);
deinit_clocks:
msm_hsic_init_clocks(mehci, 0);
unmap:
iounmap(hcd->regs);
put_hcd:
usb_put_hcd(hcd);
return ret;
}
static int __devexit ehci_hsic_msm_remove(struct platform_device *pdev)
{
struct usb_hcd *hcd = platform_get_drvdata(pdev);
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
struct msm_hsic_host_platform_data *pdata = mehci->dev->platform_data;
/* Remove the HCD prior to releasing our resources. */
usb_remove_hcd(hcd);
if (pdata && pdata->standalone_latency)
pm_qos_remove_request(&mehci->pm_qos_req_dma);
if (mehci->peripheral_status_irq)
free_irq(mehci->peripheral_status_irq, mehci);
if (mehci->wakeup_irq) {
if (mehci->wakeup_irq_enabled)
disable_irq_wake(mehci->wakeup_irq);
free_irq(mehci->wakeup_irq, mehci);
}
if (mehci->async_irq) {
disable_irq_wake(mehci->async_irq);
free_irq(mehci->async_irq, mehci);
}
/*
* If the update request is called after unregister, the request will
* fail. Results are undefined if unregister is called in the middle of
* update request.
*/
mehci->bus_vote = false;
cancel_work_sync(&mehci->bus_vote_w);
if (mehci->bus_perf_client)
msm_bus_scale_unregister_client(mehci->bus_perf_client);
ehci_hsic_msm_debugfs_cleanup();
device_init_wakeup(&pdev->dev, 0);
pm_runtime_set_suspended(&pdev->dev);
destroy_workqueue(ehci_wq);
msm_hsic_config_gpios(mehci, 0);
msm_hsic_init_vddcx(mehci, 0);
msm_hsic_init_gdsc(mehci, 0);
msm_hsic_init_clocks(mehci, 0);
wake_lock_destroy(&mehci->wlock);
iounmap(hcd->regs);
usb_put_hcd(hcd);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int msm_hsic_pm_suspend(struct device *dev)
{
int ret;
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
dev_dbg(dev, "ehci-msm-hsic PM suspend\n");
dbg_log_event(NULL, "PM Suspend", 0);
if (device_may_wakeup(dev))
enable_irq_wake(hcd->irq);
ret = msm_hsic_suspend(mehci);
if (ret && device_may_wakeup(dev))
disable_irq_wake(hcd->irq);
return ret;
}
static int msm_hsic_pm_suspend_noirq(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
if (atomic_read(&mehci->async_int)) {
dev_dbg(dev, "suspend_noirq: Aborting due to pending interrupt\n");
return -EBUSY;
}
return 0;
}
static int msm_hsic_pm_resume(struct device *dev)
{
int ret;
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
dev_dbg(dev, "ehci-msm-hsic PM resume\n");
dbg_log_event(NULL, "PM Resume", 0);
if (device_may_wakeup(dev))
disable_irq_wake(hcd->irq);
/*
* Keep HSIC in Low Power Mode if system is resumed
* by any other wakeup source. HSIC is resumed later
* when remote wakeup is received or interface driver
* start I/O.
*/
if (!atomic_read(&mehci->pm_usage_cnt) &&
!atomic_read(&mehci->async_int) &&
pm_runtime_suspended(dev))
return 0;
ret = msm_hsic_resume(mehci);
if (ret)
return ret;
/* Bring the device to full powered state upon system resume */
pm_runtime_disable(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
return 0;
}
#endif
#ifdef CONFIG_PM_RUNTIME
static int msm_hsic_runtime_idle(struct device *dev)
{
dev_dbg(dev, "EHCI runtime idle\n");
return 0;
}
static int msm_hsic_runtime_suspend(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
dev_dbg(dev, "EHCI runtime suspend\n");
dbg_log_event(NULL, "Run Time PM Suspend", 0);
return msm_hsic_suspend(mehci);
}
static int msm_hsic_runtime_resume(struct device *dev)
{
struct usb_hcd *hcd = dev_get_drvdata(dev);
struct msm_hsic_hcd *mehci = hcd_to_hsic(hcd);
dev_dbg(dev, "EHCI runtime resume\n");
dbg_log_event(NULL, "Run Time PM Resume", 0);
return msm_hsic_resume(mehci);
}
#endif
#ifdef CONFIG_PM
static const struct dev_pm_ops msm_hsic_dev_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(msm_hsic_pm_suspend, msm_hsic_pm_resume)
.suspend_noirq = msm_hsic_pm_suspend_noirq,
SET_RUNTIME_PM_OPS(msm_hsic_runtime_suspend, msm_hsic_runtime_resume,
msm_hsic_runtime_idle)
};
#endif
static const struct of_device_id hsic_host_dt_match[] = {
{ .compatible = "qcom,hsic-host",
},
{}
};
static struct platform_driver ehci_msm_hsic_driver = {
.probe = ehci_hsic_msm_probe,
.remove = __devexit_p(ehci_hsic_msm_remove),
.driver = {
.name = "msm_hsic_host",
#ifdef CONFIG_PM
.pm = &msm_hsic_dev_pm_ops,
#endif
.of_match_table = hsic_host_dt_match,
},
};