| /* | 
 |  *  arch/ppc/mm/fault.c | 
 |  * | 
 |  *  PowerPC version | 
 |  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
 |  * | 
 |  *  Derived from "arch/i386/mm/fault.c" | 
 |  *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 |  * | 
 |  *  Modified by Cort Dougan and Paul Mackerras. | 
 |  * | 
 |  *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or | 
 |  *  modify it under the terms of the GNU General Public License | 
 |  *  as published by the Free Software Foundation; either version | 
 |  *  2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/signal.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/string.h> | 
 | #include <linux/types.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kprobes.h> | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/mmu.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/system.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/kdebug.h> | 
 | #include <asm/siginfo.h> | 
 |  | 
 | /* | 
 |  * Check whether the instruction at regs->nip is a store using | 
 |  * an update addressing form which will update r1. | 
 |  */ | 
 | static int store_updates_sp(struct pt_regs *regs) | 
 | { | 
 | 	unsigned int inst; | 
 |  | 
 | 	if (get_user(inst, (unsigned int __user *)regs->nip)) | 
 | 		return 0; | 
 | 	/* check for 1 in the rA field */ | 
 | 	if (((inst >> 16) & 0x1f) != 1) | 
 | 		return 0; | 
 | 	/* check major opcode */ | 
 | 	switch (inst >> 26) { | 
 | 	case 37:	/* stwu */ | 
 | 	case 39:	/* stbu */ | 
 | 	case 45:	/* sthu */ | 
 | 	case 53:	/* stfsu */ | 
 | 	case 55:	/* stfdu */ | 
 | 		return 1; | 
 | 	case 62:	/* std or stdu */ | 
 | 		return (inst & 3) == 1; | 
 | 	case 31: | 
 | 		/* check minor opcode */ | 
 | 		switch ((inst >> 1) & 0x3ff) { | 
 | 		case 181:	/* stdux */ | 
 | 		case 183:	/* stwux */ | 
 | 		case 247:	/* stbux */ | 
 | 		case 439:	/* sthux */ | 
 | 		case 695:	/* stfsux */ | 
 | 		case 759:	/* stfdux */ | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) | 
 | static void do_dabr(struct pt_regs *regs, unsigned long error_code) | 
 | { | 
 | 	siginfo_t info; | 
 |  | 
 | 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, | 
 | 			11, SIGSEGV) == NOTIFY_STOP) | 
 | 		return; | 
 |  | 
 | 	if (debugger_dabr_match(regs)) | 
 | 		return; | 
 |  | 
 | 	/* Clear the DABR */ | 
 | 	set_dabr(0); | 
 |  | 
 | 	/* Deliver the signal to userspace */ | 
 | 	info.si_signo = SIGTRAP; | 
 | 	info.si_errno = 0; | 
 | 	info.si_code = TRAP_HWBKPT; | 
 | 	info.si_addr = (void __user *)regs->nip; | 
 | 	force_sig_info(SIGTRAP, &info, current); | 
 | } | 
 | #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/ | 
 |  | 
 | /* | 
 |  * For 600- and 800-family processors, the error_code parameter is DSISR | 
 |  * for a data fault, SRR1 for an instruction fault. For 400-family processors | 
 |  * the error_code parameter is ESR for a data fault, 0 for an instruction | 
 |  * fault. | 
 |  * For 64-bit processors, the error_code parameter is | 
 |  *  - DSISR for a non-SLB data access fault, | 
 |  *  - SRR1 & 0x08000000 for a non-SLB instruction access fault | 
 |  *  - 0 any SLB fault. | 
 |  * | 
 |  * The return value is 0 if the fault was handled, or the signal | 
 |  * number if this is a kernel fault that can't be handled here. | 
 |  */ | 
 | int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, | 
 | 			    unsigned long error_code) | 
 | { | 
 | 	struct vm_area_struct * vma; | 
 | 	struct mm_struct *mm = current->mm; | 
 | 	siginfo_t info; | 
 | 	int code = SEGV_MAPERR; | 
 | 	int is_write = 0; | 
 | 	int trap = TRAP(regs); | 
 |  	int is_exec = trap == 0x400; | 
 |  | 
 | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) | 
 | 	/* | 
 | 	 * Fortunately the bit assignments in SRR1 for an instruction | 
 | 	 * fault and DSISR for a data fault are mostly the same for the | 
 | 	 * bits we are interested in.  But there are some bits which | 
 | 	 * indicate errors in DSISR but can validly be set in SRR1. | 
 | 	 */ | 
 | 	if (trap == 0x400) | 
 | 		error_code &= 0x48200000; | 
 | 	else | 
 | 		is_write = error_code & DSISR_ISSTORE; | 
 | #else | 
 | 	is_write = error_code & ESR_DST; | 
 | #endif /* CONFIG_4xx || CONFIG_BOOKE */ | 
 |  | 
 | 	if (notify_die(DIE_PAGE_FAULT, "page_fault", regs, error_code, | 
 | 				11, SIGSEGV) == NOTIFY_STOP) | 
 | 		return 0; | 
 |  | 
 | 	if (trap == 0x300) { | 
 | 		if (debugger_fault_handler(regs)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* On a kernel SLB miss we can only check for a valid exception entry */ | 
 | 	if (!user_mode(regs) && (address >= TASK_SIZE)) | 
 | 		return SIGSEGV; | 
 |  | 
 | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) | 
 |   	if (error_code & DSISR_DABRMATCH) { | 
 | 		/* DABR match */ | 
 | 		do_dabr(regs, error_code); | 
 | 		return 0; | 
 | 	} | 
 | #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/ | 
 |  | 
 | 	if (in_atomic() || mm == NULL) { | 
 | 		if (!user_mode(regs)) | 
 | 			return SIGSEGV; | 
 | 		/* in_atomic() in user mode is really bad, | 
 | 		   as is current->mm == NULL. */ | 
 | 		printk(KERN_EMERG "Page fault in user mode with" | 
 | 		       "in_atomic() = %d mm = %p\n", in_atomic(), mm); | 
 | 		printk(KERN_EMERG "NIP = %lx  MSR = %lx\n", | 
 | 		       regs->nip, regs->msr); | 
 | 		die("Weird page fault", regs, SIGSEGV); | 
 | 	} | 
 |  | 
 | 	/* When running in the kernel we expect faults to occur only to | 
 | 	 * addresses in user space.  All other faults represent errors in the | 
 | 	 * kernel and should generate an OOPS.  Unfortunatly, in the case of an | 
 | 	 * erroneous fault occuring in a code path which already holds mmap_sem | 
 | 	 * we will deadlock attempting to validate the fault against the | 
 | 	 * address space.  Luckily the kernel only validly references user | 
 | 	 * space from well defined areas of code, which are listed in the | 
 | 	 * exceptions table. | 
 | 	 * | 
 | 	 * As the vast majority of faults will be valid we will only perform | 
 | 	 * the source reference check when there is a possibilty of a deadlock. | 
 | 	 * Attempt to lock the address space, if we cannot we then validate the | 
 | 	 * source.  If this is invalid we can skip the address space check, | 
 | 	 * thus avoiding the deadlock. | 
 | 	 */ | 
 | 	if (!down_read_trylock(&mm->mmap_sem)) { | 
 | 		if (!user_mode(regs) && !search_exception_tables(regs->nip)) | 
 | 			goto bad_area_nosemaphore; | 
 |  | 
 | 		down_read(&mm->mmap_sem); | 
 | 	} | 
 |  | 
 | 	vma = find_vma(mm, address); | 
 | 	if (!vma) | 
 | 		goto bad_area; | 
 | 	if (vma->vm_start <= address) | 
 | 		goto good_area; | 
 | 	if (!(vma->vm_flags & VM_GROWSDOWN)) | 
 | 		goto bad_area; | 
 |  | 
 | 	/* | 
 | 	 * N.B. The POWER/Open ABI allows programs to access up to | 
 | 	 * 288 bytes below the stack pointer. | 
 | 	 * The kernel signal delivery code writes up to about 1.5kB | 
 | 	 * below the stack pointer (r1) before decrementing it. | 
 | 	 * The exec code can write slightly over 640kB to the stack | 
 | 	 * before setting the user r1.  Thus we allow the stack to | 
 | 	 * expand to 1MB without further checks. | 
 | 	 */ | 
 | 	if (address + 0x100000 < vma->vm_end) { | 
 | 		/* get user regs even if this fault is in kernel mode */ | 
 | 		struct pt_regs *uregs = current->thread.regs; | 
 | 		if (uregs == NULL) | 
 | 			goto bad_area; | 
 |  | 
 | 		/* | 
 | 		 * A user-mode access to an address a long way below | 
 | 		 * the stack pointer is only valid if the instruction | 
 | 		 * is one which would update the stack pointer to the | 
 | 		 * address accessed if the instruction completed, | 
 | 		 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb | 
 | 		 * (or the byte, halfword, float or double forms). | 
 | 		 * | 
 | 		 * If we don't check this then any write to the area | 
 | 		 * between the last mapped region and the stack will | 
 | 		 * expand the stack rather than segfaulting. | 
 | 		 */ | 
 | 		if (address + 2048 < uregs->gpr[1] | 
 | 		    && (!user_mode(regs) || !store_updates_sp(regs))) | 
 | 			goto bad_area; | 
 | 	} | 
 | 	if (expand_stack(vma, address)) | 
 | 		goto bad_area; | 
 |  | 
 | good_area: | 
 | 	code = SEGV_ACCERR; | 
 | #if defined(CONFIG_6xx) | 
 | 	if (error_code & 0x95700000) | 
 | 		/* an error such as lwarx to I/O controller space, | 
 | 		   address matching DABR, eciwx, etc. */ | 
 | 		goto bad_area; | 
 | #endif /* CONFIG_6xx */ | 
 | #if defined(CONFIG_8xx) | 
 |         /* The MPC8xx seems to always set 0x80000000, which is | 
 |          * "undefined".  Of those that can be set, this is the only | 
 |          * one which seems bad. | 
 |          */ | 
 | 	if (error_code & 0x10000000) | 
 |                 /* Guarded storage error. */ | 
 | 		goto bad_area; | 
 | #endif /* CONFIG_8xx */ | 
 |  | 
 | 	if (is_exec) { | 
 | #ifdef CONFIG_PPC64 | 
 | 		/* protection fault */ | 
 | 		if (error_code & DSISR_PROTFAULT) | 
 | 			goto bad_area; | 
 | 		if (!(vma->vm_flags & VM_EXEC)) | 
 | 			goto bad_area; | 
 | #endif | 
 | #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) | 
 | 		pte_t *ptep; | 
 |  | 
 | 		/* Since 4xx/Book-E supports per-page execute permission, | 
 | 		 * we lazily flush dcache to icache. */ | 
 | 		ptep = NULL; | 
 | 		if (get_pteptr(mm, address, &ptep) && pte_present(*ptep)) { | 
 | 			struct page *page = pte_page(*ptep); | 
 |  | 
 | 			if (! test_bit(PG_arch_1, &page->flags)) { | 
 | 				flush_dcache_icache_page(page); | 
 | 				set_bit(PG_arch_1, &page->flags); | 
 | 			} | 
 | 			pte_update(ptep, 0, _PAGE_HWEXEC); | 
 | 			_tlbie(address); | 
 | 			pte_unmap(ptep); | 
 | 			up_read(&mm->mmap_sem); | 
 | 			return 0; | 
 | 		} | 
 | 		if (ptep != NULL) | 
 | 			pte_unmap(ptep); | 
 | #endif | 
 | 	/* a write */ | 
 | 	} else if (is_write) { | 
 | 		if (!(vma->vm_flags & VM_WRITE)) | 
 | 			goto bad_area; | 
 | 	/* a read */ | 
 | 	} else { | 
 | 		/* protection fault */ | 
 | 		if (error_code & 0x08000000) | 
 | 			goto bad_area; | 
 | 		if (!(vma->vm_flags & (VM_READ | VM_EXEC))) | 
 | 			goto bad_area; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If for any reason at all we couldn't handle the fault, | 
 | 	 * make sure we exit gracefully rather than endlessly redo | 
 | 	 * the fault. | 
 | 	 */ | 
 |  survive: | 
 | 	switch (handle_mm_fault(mm, vma, address, is_write)) { | 
 |  | 
 | 	case VM_FAULT_MINOR: | 
 | 		current->min_flt++; | 
 | 		break; | 
 | 	case VM_FAULT_MAJOR: | 
 | 		current->maj_flt++; | 
 | 		break; | 
 | 	case VM_FAULT_SIGBUS: | 
 | 		goto do_sigbus; | 
 | 	case VM_FAULT_OOM: | 
 | 		goto out_of_memory; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	up_read(&mm->mmap_sem); | 
 | 	return 0; | 
 |  | 
 | bad_area: | 
 | 	up_read(&mm->mmap_sem); | 
 |  | 
 | bad_area_nosemaphore: | 
 | 	/* User mode accesses cause a SIGSEGV */ | 
 | 	if (user_mode(regs)) { | 
 | 		_exception(SIGSEGV, regs, code, address); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (is_exec && (error_code & DSISR_PROTFAULT) | 
 | 	    && printk_ratelimit()) | 
 | 		printk(KERN_CRIT "kernel tried to execute NX-protected" | 
 | 		       " page (%lx) - exploit attempt? (uid: %d)\n", | 
 | 		       address, current->uid); | 
 |  | 
 | 	return SIGSEGV; | 
 |  | 
 | /* | 
 |  * We ran out of memory, or some other thing happened to us that made | 
 |  * us unable to handle the page fault gracefully. | 
 |  */ | 
 | out_of_memory: | 
 | 	up_read(&mm->mmap_sem); | 
 | 	if (current->pid == 1) { | 
 | 		yield(); | 
 | 		down_read(&mm->mmap_sem); | 
 | 		goto survive; | 
 | 	} | 
 | 	printk("VM: killing process %s\n", current->comm); | 
 | 	if (user_mode(regs)) | 
 | 		do_exit(SIGKILL); | 
 | 	return SIGKILL; | 
 |  | 
 | do_sigbus: | 
 | 	up_read(&mm->mmap_sem); | 
 | 	if (user_mode(regs)) { | 
 | 		info.si_signo = SIGBUS; | 
 | 		info.si_errno = 0; | 
 | 		info.si_code = BUS_ADRERR; | 
 | 		info.si_addr = (void __user *)address; | 
 | 		force_sig_info(SIGBUS, &info, current); | 
 | 		return 0; | 
 | 	} | 
 | 	return SIGBUS; | 
 | } | 
 |  | 
 | /* | 
 |  * bad_page_fault is called when we have a bad access from the kernel. | 
 |  * It is called from the DSI and ISI handlers in head.S and from some | 
 |  * of the procedures in traps.c. | 
 |  */ | 
 | void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) | 
 | { | 
 | 	const struct exception_table_entry *entry; | 
 |  | 
 | 	/* Are we prepared to handle this fault?  */ | 
 | 	if ((entry = search_exception_tables(regs->nip)) != NULL) { | 
 | 		regs->nip = entry->fixup; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* kernel has accessed a bad area */ | 
 |  | 
 | 	printk(KERN_ALERT "Unable to handle kernel paging request for "); | 
 | 	switch (regs->trap) { | 
 | 		case 0x300: | 
 | 		case 0x380: | 
 | 			printk("data at address 0x%08lx\n", regs->dar); | 
 | 			break; | 
 | 		case 0x400: | 
 | 		case 0x480: | 
 | 			printk("instruction fetch\n"); | 
 | 			break; | 
 | 		default: | 
 | 			printk("unknown fault\n"); | 
 | 	} | 
 | 	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", | 
 | 		regs->nip); | 
 |  | 
 | 	die("Kernel access of bad area", regs, sig); | 
 | } |