| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Copyright (c) 1994 - 1997, 1999, 2000 Ralf Baechle (ralf@gnu.org) |
| * Copyright (c) 1999, 2000 Silicon Graphics, Inc. |
| */ |
| #ifndef _ASM_BITOPS_H |
| #define _ASM_BITOPS_H |
| |
| #include <linux/config.h> |
| #include <linux/compiler.h> |
| #include <linux/types.h> |
| #include <asm/byteorder.h> /* sigh ... */ |
| #include <asm/cpu-features.h> |
| |
| #if (_MIPS_SZLONG == 32) |
| #define SZLONG_LOG 5 |
| #define SZLONG_MASK 31UL |
| #define __LL "ll " |
| #define __SC "sc " |
| #define cpu_to_lelongp(x) cpu_to_le32p((__u32 *) (x)) |
| #elif (_MIPS_SZLONG == 64) |
| #define SZLONG_LOG 6 |
| #define SZLONG_MASK 63UL |
| #define __LL "lld " |
| #define __SC "scd " |
| #define cpu_to_lelongp(x) cpu_to_le64p((__u64 *) (x)) |
| #endif |
| |
| #ifdef __KERNEL__ |
| |
| #include <asm/interrupt.h> |
| #include <asm/sgidefs.h> |
| #include <asm/war.h> |
| |
| /* |
| * clear_bit() doesn't provide any barrier for the compiler. |
| */ |
| #define smp_mb__before_clear_bit() smp_mb() |
| #define smp_mb__after_clear_bit() smp_mb() |
| |
| /* |
| * Only disable interrupt for kernel mode stuff to keep usermode stuff |
| * that dares to use kernel include files alive. |
| */ |
| |
| #define __bi_flags unsigned long flags |
| #define __bi_local_irq_save(x) local_irq_save(x) |
| #define __bi_local_irq_restore(x) local_irq_restore(x) |
| #else |
| #define __bi_flags |
| #define __bi_local_irq_save(x) |
| #define __bi_local_irq_restore(x) |
| #endif /* __KERNEL__ */ |
| |
| /* |
| * set_bit - Atomically set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * This function is atomic and may not be reordered. See __set_bit() |
| * if you do not require the atomic guarantees. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static inline void set_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp; |
| |
| if (cpu_has_llsc && R10000_LLSC_WAR) { |
| __asm__ __volatile__( |
| "1: " __LL "%0, %1 # set_bit \n" |
| " or %0, %2 \n" |
| " "__SC "%0, %1 \n" |
| " beqzl %0, 1b \n" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); |
| } else if (cpu_has_llsc) { |
| __asm__ __volatile__( |
| "1: " __LL "%0, %1 # set_bit \n" |
| " or %0, %2 \n" |
| " "__SC "%0, %1 \n" |
| " beqz %0, 1b \n" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); |
| } else { |
| volatile unsigned long *a = addr; |
| unsigned long mask; |
| __bi_flags; |
| |
| a += nr >> SZLONG_LOG; |
| mask = 1UL << (nr & SZLONG_MASK); |
| __bi_local_irq_save(flags); |
| *a |= mask; |
| __bi_local_irq_restore(flags); |
| } |
| } |
| |
| /* |
| * __set_bit - Set a bit in memory |
| * @nr: the bit to set |
| * @addr: the address to start counting from |
| * |
| * Unlike set_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static inline void __set_bit(unsigned long nr, volatile unsigned long * addr) |
| { |
| unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| |
| *m |= 1UL << (nr & SZLONG_MASK); |
| } |
| |
| /* |
| * clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * clear_bit() is atomic and may not be reordered. However, it does |
| * not contain a memory barrier, so if it is used for locking purposes, |
| * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit() |
| * in order to ensure changes are visible on other processors. |
| */ |
| static inline void clear_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp; |
| |
| if (cpu_has_llsc && R10000_LLSC_WAR) { |
| __asm__ __volatile__( |
| "1: " __LL "%0, %1 # clear_bit \n" |
| " and %0, %2 \n" |
| " " __SC "%0, %1 \n" |
| " beqzl %0, 1b \n" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m)); |
| } else if (cpu_has_llsc) { |
| __asm__ __volatile__( |
| "1: " __LL "%0, %1 # clear_bit \n" |
| " and %0, %2 \n" |
| " " __SC "%0, %1 \n" |
| " beqz %0, 1b \n" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (~(1UL << (nr & SZLONG_MASK))), "m" (*m)); |
| } else { |
| volatile unsigned long *a = addr; |
| unsigned long mask; |
| __bi_flags; |
| |
| a += nr >> SZLONG_LOG; |
| mask = 1UL << (nr & SZLONG_MASK); |
| __bi_local_irq_save(flags); |
| *a &= ~mask; |
| __bi_local_irq_restore(flags); |
| } |
| } |
| |
| /* |
| * __clear_bit - Clears a bit in memory |
| * @nr: Bit to clear |
| * @addr: Address to start counting from |
| * |
| * Unlike clear_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static inline void __clear_bit(unsigned long nr, volatile unsigned long * addr) |
| { |
| unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| |
| *m &= ~(1UL << (nr & SZLONG_MASK)); |
| } |
| |
| /* |
| * change_bit - Toggle a bit in memory |
| * @nr: Bit to change |
| * @addr: Address to start counting from |
| * |
| * change_bit() is atomic and may not be reordered. |
| * Note that @nr may be almost arbitrarily large; this function is not |
| * restricted to acting on a single-word quantity. |
| */ |
| static inline void change_bit(unsigned long nr, volatile unsigned long *addr) |
| { |
| if (cpu_has_llsc && R10000_LLSC_WAR) { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp; |
| |
| __asm__ __volatile__( |
| "1: " __LL "%0, %1 # change_bit \n" |
| " xor %0, %2 \n" |
| " "__SC "%0, %1 \n" |
| " beqzl %0, 1b \n" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); |
| } else if (cpu_has_llsc) { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp; |
| |
| __asm__ __volatile__( |
| "1: " __LL "%0, %1 # change_bit \n" |
| " xor %0, %2 \n" |
| " "__SC "%0, %1 \n" |
| " beqz %0, 1b \n" |
| : "=&r" (temp), "=m" (*m) |
| : "ir" (1UL << (nr & SZLONG_MASK)), "m" (*m)); |
| } else { |
| volatile unsigned long *a = addr; |
| unsigned long mask; |
| __bi_flags; |
| |
| a += nr >> SZLONG_LOG; |
| mask = 1UL << (nr & SZLONG_MASK); |
| __bi_local_irq_save(flags); |
| *a ^= mask; |
| __bi_local_irq_restore(flags); |
| } |
| } |
| |
| /* |
| * __change_bit - Toggle a bit in memory |
| * @nr: the bit to change |
| * @addr: the address to start counting from |
| * |
| * Unlike change_bit(), this function is non-atomic and may be reordered. |
| * If it's called on the same region of memory simultaneously, the effect |
| * may be that only one operation succeeds. |
| */ |
| static inline void __change_bit(unsigned long nr, volatile unsigned long * addr) |
| { |
| unsigned long * m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| |
| *m ^= 1UL << (nr & SZLONG_MASK); |
| } |
| |
| /* |
| * test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static inline int test_and_set_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| if (cpu_has_llsc && R10000_LLSC_WAR) { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| "1: " __LL "%0, %1 # test_and_set_bit \n" |
| " or %2, %0, %3 \n" |
| " " __SC "%2, %1 \n" |
| " beqzl %2, 1b \n" |
| " and %2, %0, %3 \n" |
| #ifdef CONFIG_SMP |
| "sync \n" |
| #endif |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } else if (cpu_has_llsc) { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| " .set noreorder # test_and_set_bit \n" |
| "1: " __LL "%0, %1 \n" |
| " or %2, %0, %3 \n" |
| " " __SC "%2, %1 \n" |
| " beqz %2, 1b \n" |
| " and %2, %0, %3 \n" |
| #ifdef CONFIG_SMP |
| "sync \n" |
| #endif |
| ".set\treorder" |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } else { |
| volatile unsigned long *a = addr; |
| unsigned long mask; |
| int retval; |
| __bi_flags; |
| |
| a += nr >> SZLONG_LOG; |
| mask = 1UL << (nr & SZLONG_MASK); |
| __bi_local_irq_save(flags); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| __bi_local_irq_restore(flags); |
| |
| return retval; |
| } |
| } |
| |
| /* |
| * __test_and_set_bit - Set a bit and return its old value |
| * @nr: Bit to set |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static inline int __test_and_set_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| volatile unsigned long *a = addr; |
| unsigned long mask; |
| int retval; |
| |
| a += nr >> SZLONG_LOG; |
| mask = 1UL << (nr & SZLONG_MASK); |
| retval = (mask & *a) != 0; |
| *a |= mask; |
| |
| return retval; |
| } |
| |
| /* |
| * test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static inline int test_and_clear_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| if (cpu_has_llsc && R10000_LLSC_WAR) { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| "1: " __LL "%0, %1 # test_and_clear_bit \n" |
| " or %2, %0, %3 \n" |
| " xor %2, %3 \n" |
| __SC "%2, %1 \n" |
| " beqzl %2, 1b \n" |
| " and %2, %0, %3 \n" |
| #ifdef CONFIG_SMP |
| " sync \n" |
| #endif |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } else if (cpu_has_llsc) { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| " .set noreorder # test_and_clear_bit \n" |
| "1: " __LL "%0, %1 \n" |
| " or %2, %0, %3 \n" |
| " xor %2, %3 \n" |
| __SC "%2, %1 \n" |
| " beqz %2, 1b \n" |
| " and %2, %0, %3 \n" |
| #ifdef CONFIG_SMP |
| " sync \n" |
| #endif |
| " .set reorder \n" |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } else { |
| volatile unsigned long *a = addr; |
| unsigned long mask; |
| int retval; |
| __bi_flags; |
| |
| a += nr >> SZLONG_LOG; |
| mask = 1UL << (nr & SZLONG_MASK); |
| __bi_local_irq_save(flags); |
| retval = (mask & *a) != 0; |
| *a &= ~mask; |
| __bi_local_irq_restore(flags); |
| |
| return retval; |
| } |
| } |
| |
| /* |
| * __test_and_clear_bit - Clear a bit and return its old value |
| * @nr: Bit to clear |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static inline int __test_and_clear_bit(unsigned long nr, |
| volatile unsigned long * addr) |
| { |
| volatile unsigned long *a = addr; |
| unsigned long mask; |
| int retval; |
| |
| a += (nr >> SZLONG_LOG); |
| mask = 1UL << (nr & SZLONG_MASK); |
| retval = ((mask & *a) != 0); |
| *a &= ~mask; |
| |
| return retval; |
| } |
| |
| /* |
| * test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to change |
| * @addr: Address to count from |
| * |
| * This operation is atomic and cannot be reordered. |
| * It also implies a memory barrier. |
| */ |
| static inline int test_and_change_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| if (cpu_has_llsc && R10000_LLSC_WAR) { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| "1: " __LL " %0, %1 # test_and_change_bit \n" |
| " xor %2, %0, %3 \n" |
| " "__SC "%2, %1 \n" |
| " beqzl %2, 1b \n" |
| " and %2, %0, %3 \n" |
| #ifdef CONFIG_SMP |
| " sync \n" |
| #endif |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } else if (cpu_has_llsc) { |
| unsigned long *m = ((unsigned long *) addr) + (nr >> SZLONG_LOG); |
| unsigned long temp, res; |
| |
| __asm__ __volatile__( |
| " .set noreorder # test_and_change_bit \n" |
| "1: " __LL " %0, %1 \n" |
| " xor %2, %0, %3 \n" |
| " "__SC "\t%2, %1 \n" |
| " beqz %2, 1b \n" |
| " and %2, %0, %3 \n" |
| #ifdef CONFIG_SMP |
| " sync \n" |
| #endif |
| " .set reorder \n" |
| : "=&r" (temp), "=m" (*m), "=&r" (res) |
| : "r" (1UL << (nr & SZLONG_MASK)), "m" (*m) |
| : "memory"); |
| |
| return res != 0; |
| } else { |
| volatile unsigned long *a = addr; |
| unsigned long mask, retval; |
| __bi_flags; |
| |
| a += nr >> SZLONG_LOG; |
| mask = 1UL << (nr & SZLONG_MASK); |
| __bi_local_irq_save(flags); |
| retval = (mask & *a) != 0; |
| *a ^= mask; |
| __bi_local_irq_restore(flags); |
| |
| return retval; |
| } |
| } |
| |
| /* |
| * __test_and_change_bit - Change a bit and return its old value |
| * @nr: Bit to change |
| * @addr: Address to count from |
| * |
| * This operation is non-atomic and can be reordered. |
| * If two examples of this operation race, one can appear to succeed |
| * but actually fail. You must protect multiple accesses with a lock. |
| */ |
| static inline int __test_and_change_bit(unsigned long nr, |
| volatile unsigned long *addr) |
| { |
| volatile unsigned long *a = addr; |
| unsigned long mask; |
| int retval; |
| |
| a += (nr >> SZLONG_LOG); |
| mask = 1UL << (nr & SZLONG_MASK); |
| retval = ((mask & *a) != 0); |
| *a ^= mask; |
| |
| return retval; |
| } |
| |
| #undef __bi_flags |
| #undef __bi_local_irq_save |
| #undef __bi_local_irq_restore |
| |
| /* |
| * test_bit - Determine whether a bit is set |
| * @nr: bit number to test |
| * @addr: Address to start counting from |
| */ |
| static inline int test_bit(unsigned long nr, const volatile unsigned long *addr) |
| { |
| return 1UL & (addr[nr >> SZLONG_LOG] >> (nr & SZLONG_MASK)); |
| } |
| |
| /* |
| * ffz - find first zero in word. |
| * @word: The word to search |
| * |
| * Undefined if no zero exists, so code should check against ~0UL first. |
| */ |
| static inline unsigned long ffz(unsigned long word) |
| { |
| int b = 0, s; |
| |
| word = ~word; |
| #ifdef CONFIG_32BIT |
| s = 16; if (word << 16 != 0) s = 0; b += s; word >>= s; |
| s = 8; if (word << 24 != 0) s = 0; b += s; word >>= s; |
| s = 4; if (word << 28 != 0) s = 0; b += s; word >>= s; |
| s = 2; if (word << 30 != 0) s = 0; b += s; word >>= s; |
| s = 1; if (word << 31 != 0) s = 0; b += s; |
| #endif |
| #ifdef CONFIG_64BIT |
| s = 32; if (word << 32 != 0) s = 0; b += s; word >>= s; |
| s = 16; if (word << 48 != 0) s = 0; b += s; word >>= s; |
| s = 8; if (word << 56 != 0) s = 0; b += s; word >>= s; |
| s = 4; if (word << 60 != 0) s = 0; b += s; word >>= s; |
| s = 2; if (word << 62 != 0) s = 0; b += s; word >>= s; |
| s = 1; if (word << 63 != 0) s = 0; b += s; |
| #endif |
| |
| return b; |
| } |
| |
| /* |
| * __ffs - find first bit in word. |
| * @word: The word to search |
| * |
| * Undefined if no bit exists, so code should check against 0 first. |
| */ |
| static inline unsigned long __ffs(unsigned long word) |
| { |
| return ffz(~word); |
| } |
| |
| /* |
| * fls: find last bit set. |
| */ |
| |
| #define fls(x) generic_fls(x) |
| |
| /* |
| * find_next_zero_bit - find the first zero bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static inline unsigned long find_next_zero_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + (offset >> SZLONG_LOG); |
| unsigned long result = offset & ~SZLONG_MASK; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= SZLONG_MASK; |
| if (offset) { |
| tmp = *(p++); |
| tmp |= ~0UL >> (_MIPS_SZLONG-offset); |
| if (size < _MIPS_SZLONG) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= _MIPS_SZLONG; |
| result += _MIPS_SZLONG; |
| } |
| while (size & ~SZLONG_MASK) { |
| if (~(tmp = *(p++))) |
| goto found_middle; |
| result += _MIPS_SZLONG; |
| size -= _MIPS_SZLONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp |= ~0UL << size; |
| if (tmp == ~0UL) /* Are any bits zero? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| #define find_first_zero_bit(addr, size) \ |
| find_next_zero_bit((addr), (size), 0) |
| |
| /* |
| * find_next_bit - find the next set bit in a memory region |
| * @addr: The address to base the search on |
| * @offset: The bitnumber to start searching at |
| * @size: The maximum size to search |
| */ |
| static inline unsigned long find_next_bit(const unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| const unsigned long *p = addr + (offset >> SZLONG_LOG); |
| unsigned long result = offset & ~SZLONG_MASK; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= SZLONG_MASK; |
| if (offset) { |
| tmp = *(p++); |
| tmp &= ~0UL << offset; |
| if (size < _MIPS_SZLONG) |
| goto found_first; |
| if (tmp) |
| goto found_middle; |
| size -= _MIPS_SZLONG; |
| result += _MIPS_SZLONG; |
| } |
| while (size & ~SZLONG_MASK) { |
| if ((tmp = *(p++))) |
| goto found_middle; |
| result += _MIPS_SZLONG; |
| size -= _MIPS_SZLONG; |
| } |
| if (!size) |
| return result; |
| tmp = *p; |
| |
| found_first: |
| tmp &= ~0UL >> (_MIPS_SZLONG - size); |
| if (tmp == 0UL) /* Are any bits set? */ |
| return result + size; /* Nope. */ |
| found_middle: |
| return result + __ffs(tmp); |
| } |
| |
| /* |
| * find_first_bit - find the first set bit in a memory region |
| * @addr: The address to start the search at |
| * @size: The maximum size to search |
| * |
| * Returns the bit-number of the first set bit, not the number of the byte |
| * containing a bit. |
| */ |
| #define find_first_bit(addr, size) \ |
| find_next_bit((addr), (size), 0) |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * Every architecture must define this function. It's the fastest |
| * way of searching a 140-bit bitmap where the first 100 bits are |
| * unlikely to be set. It's guaranteed that at least one of the 140 |
| * bits is cleared. |
| */ |
| static inline int sched_find_first_bit(const unsigned long *b) |
| { |
| #ifdef CONFIG_32BIT |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 32; |
| if (unlikely(b[2])) |
| return __ffs(b[2]) + 64; |
| if (b[3]) |
| return __ffs(b[3]) + 96; |
| return __ffs(b[4]) + 128; |
| #endif |
| #ifdef CONFIG_64BIT |
| if (unlikely(b[0])) |
| return __ffs(b[0]); |
| if (unlikely(b[1])) |
| return __ffs(b[1]) + 64; |
| return __ffs(b[2]) + 128; |
| #endif |
| } |
| |
| /* |
| * ffs - find first bit set |
| * @x: the word to search |
| * |
| * This is defined the same way as |
| * the libc and compiler builtin ffs routines, therefore |
| * differs in spirit from the above ffz (man ffs). |
| */ |
| |
| #define ffs(x) generic_ffs(x) |
| |
| /* |
| * hweightN - returns the hamming weight of a N-bit word |
| * @x: the word to weigh |
| * |
| * The Hamming Weight of a number is the total number of bits set in it. |
| */ |
| |
| #define hweight64(x) generic_hweight64(x) |
| #define hweight32(x) generic_hweight32(x) |
| #define hweight16(x) generic_hweight16(x) |
| #define hweight8(x) generic_hweight8(x) |
| |
| static inline int __test_and_set_le_bit(unsigned long nr, unsigned long *addr) |
| { |
| unsigned char *ADDR = (unsigned char *) addr; |
| int mask, retval; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| retval = (mask & *ADDR) != 0; |
| *ADDR |= mask; |
| |
| return retval; |
| } |
| |
| static inline int __test_and_clear_le_bit(unsigned long nr, unsigned long *addr) |
| { |
| unsigned char *ADDR = (unsigned char *) addr; |
| int mask, retval; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| retval = (mask & *ADDR) != 0; |
| *ADDR &= ~mask; |
| |
| return retval; |
| } |
| |
| static inline int test_le_bit(unsigned long nr, const unsigned long * addr) |
| { |
| const unsigned char *ADDR = (const unsigned char *) addr; |
| int mask; |
| |
| ADDR += nr >> 3; |
| mask = 1 << (nr & 0x07); |
| |
| return ((mask & *ADDR) != 0); |
| } |
| |
| static inline unsigned long find_next_zero_le_bit(unsigned long *addr, |
| unsigned long size, unsigned long offset) |
| { |
| unsigned long *p = ((unsigned long *) addr) + (offset >> SZLONG_LOG); |
| unsigned long result = offset & ~SZLONG_MASK; |
| unsigned long tmp; |
| |
| if (offset >= size) |
| return size; |
| size -= result; |
| offset &= SZLONG_MASK; |
| if (offset) { |
| tmp = cpu_to_lelongp(p++); |
| tmp |= ~0UL >> (_MIPS_SZLONG-offset); /* bug or feature ? */ |
| if (size < _MIPS_SZLONG) |
| goto found_first; |
| if (~tmp) |
| goto found_middle; |
| size -= _MIPS_SZLONG; |
| result += _MIPS_SZLONG; |
| } |
| while (size & ~SZLONG_MASK) { |
| if (~(tmp = cpu_to_lelongp(p++))) |
| goto found_middle; |
| result += _MIPS_SZLONG; |
| size -= _MIPS_SZLONG; |
| } |
| if (!size) |
| return result; |
| tmp = cpu_to_lelongp(p); |
| |
| found_first: |
| tmp |= ~0UL << size; |
| if (tmp == ~0UL) /* Are any bits zero? */ |
| return result + size; /* Nope. */ |
| |
| found_middle: |
| return result + ffz(tmp); |
| } |
| |
| #define find_first_zero_le_bit(addr, size) \ |
| find_next_zero_le_bit((addr), (size), 0) |
| |
| #define ext2_set_bit(nr,addr) \ |
| __test_and_set_le_bit((nr),(unsigned long*)addr) |
| #define ext2_clear_bit(nr, addr) \ |
| __test_and_clear_le_bit((nr),(unsigned long*)addr) |
| #define ext2_set_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_set_bit((nr), (addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| |
| #define ext2_clear_bit_atomic(lock, nr, addr) \ |
| ({ \ |
| int ret; \ |
| spin_lock(lock); \ |
| ret = ext2_clear_bit((nr), (addr)); \ |
| spin_unlock(lock); \ |
| ret; \ |
| }) |
| #define ext2_test_bit(nr, addr) test_le_bit((nr),(unsigned long*)addr) |
| #define ext2_find_first_zero_bit(addr, size) \ |
| find_first_zero_le_bit((unsigned long*)addr, size) |
| #define ext2_find_next_zero_bit(addr, size, off) \ |
| find_next_zero_le_bit((unsigned long*)addr, size, off) |
| |
| /* |
| * Bitmap functions for the minix filesystem. |
| * |
| * FIXME: These assume that Minix uses the native byte/bitorder. |
| * This limits the Minix filesystem's value for data exchange very much. |
| */ |
| #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) |
| #define minix_set_bit(nr,addr) set_bit(nr,addr) |
| #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) |
| #define minix_test_bit(nr,addr) test_bit(nr,addr) |
| #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) |
| |
| #endif /* __KERNEL__ */ |
| |
| #endif /* _ASM_BITOPS_H */ |