| /* |
| * linux/kernel/profile.c |
| * Simple profiling. Manages a direct-mapped profile hit count buffer, |
| * with configurable resolution, support for restricting the cpus on |
| * which profiling is done, and switching between cpu time and |
| * schedule() calls via kernel command line parameters passed at boot. |
| * |
| * Scheduler profiling support, Arjan van de Ven and Ingo Molnar, |
| * Red Hat, July 2004 |
| * Consolidation of architecture support code for profiling, |
| * William Irwin, Oracle, July 2004 |
| * Amortized hit count accounting via per-cpu open-addressed hashtables |
| * to resolve timer interrupt livelocks, William Irwin, Oracle, 2004 |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/profile.h> |
| #include <linux/bootmem.h> |
| #include <linux/notifier.h> |
| #include <linux/mm.h> |
| #include <linux/cpumask.h> |
| #include <linux/cpu.h> |
| #include <linux/highmem.h> |
| #include <linux/mutex.h> |
| #include <asm/sections.h> |
| #include <asm/irq_regs.h> |
| #include <asm/ptrace.h> |
| |
| struct profile_hit { |
| u32 pc, hits; |
| }; |
| #define PROFILE_GRPSHIFT 3 |
| #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT) |
| #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit)) |
| #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ) |
| |
| /* Oprofile timer tick hook */ |
| static int (*timer_hook)(struct pt_regs *) __read_mostly; |
| |
| static atomic_t *prof_buffer; |
| static unsigned long prof_len, prof_shift; |
| |
| int prof_on __read_mostly; |
| EXPORT_SYMBOL_GPL(prof_on); |
| |
| static cpumask_t prof_cpu_mask = CPU_MASK_ALL; |
| #ifdef CONFIG_SMP |
| static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits); |
| static DEFINE_PER_CPU(int, cpu_profile_flip); |
| static DEFINE_MUTEX(profile_flip_mutex); |
| #endif /* CONFIG_SMP */ |
| |
| static int __init profile_setup(char *str) |
| { |
| static char __initdata schedstr[] = "schedule"; |
| static char __initdata sleepstr[] = "sleep"; |
| static char __initdata kvmstr[] = "kvm"; |
| int par; |
| |
| if (!strncmp(str, sleepstr, strlen(sleepstr))) { |
| #ifdef CONFIG_SCHEDSTATS |
| prof_on = SLEEP_PROFILING; |
| if (str[strlen(sleepstr)] == ',') |
| str += strlen(sleepstr) + 1; |
| if (get_option(&str, &par)) |
| prof_shift = par; |
| printk(KERN_INFO |
| "kernel sleep profiling enabled (shift: %ld)\n", |
| prof_shift); |
| #else |
| printk(KERN_WARNING |
| "kernel sleep profiling requires CONFIG_SCHEDSTATS\n"); |
| #endif /* CONFIG_SCHEDSTATS */ |
| } else if (!strncmp(str, schedstr, strlen(schedstr))) { |
| prof_on = SCHED_PROFILING; |
| if (str[strlen(schedstr)] == ',') |
| str += strlen(schedstr) + 1; |
| if (get_option(&str, &par)) |
| prof_shift = par; |
| printk(KERN_INFO |
| "kernel schedule profiling enabled (shift: %ld)\n", |
| prof_shift); |
| } else if (!strncmp(str, kvmstr, strlen(kvmstr))) { |
| prof_on = KVM_PROFILING; |
| if (str[strlen(kvmstr)] == ',') |
| str += strlen(kvmstr) + 1; |
| if (get_option(&str, &par)) |
| prof_shift = par; |
| printk(KERN_INFO |
| "kernel KVM profiling enabled (shift: %ld)\n", |
| prof_shift); |
| } else if (get_option(&str, &par)) { |
| prof_shift = par; |
| prof_on = CPU_PROFILING; |
| printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n", |
| prof_shift); |
| } |
| return 1; |
| } |
| __setup("profile=", profile_setup); |
| |
| |
| void __init profile_init(void) |
| { |
| if (!prof_on) |
| return; |
| |
| /* only text is profiled */ |
| prof_len = (_etext - _stext) >> prof_shift; |
| prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t)); |
| } |
| |
| /* Profile event notifications */ |
| |
| #ifdef CONFIG_PROFILING |
| |
| static BLOCKING_NOTIFIER_HEAD(task_exit_notifier); |
| static ATOMIC_NOTIFIER_HEAD(task_free_notifier); |
| static BLOCKING_NOTIFIER_HEAD(munmap_notifier); |
| |
| void profile_task_exit(struct task_struct *task) |
| { |
| blocking_notifier_call_chain(&task_exit_notifier, 0, task); |
| } |
| |
| int profile_handoff_task(struct task_struct *task) |
| { |
| int ret; |
| ret = atomic_notifier_call_chain(&task_free_notifier, 0, task); |
| return (ret == NOTIFY_OK) ? 1 : 0; |
| } |
| |
| void profile_munmap(unsigned long addr) |
| { |
| blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr); |
| } |
| |
| int task_handoff_register(struct notifier_block *n) |
| { |
| return atomic_notifier_chain_register(&task_free_notifier, n); |
| } |
| EXPORT_SYMBOL_GPL(task_handoff_register); |
| |
| int task_handoff_unregister(struct notifier_block *n) |
| { |
| return atomic_notifier_chain_unregister(&task_free_notifier, n); |
| } |
| EXPORT_SYMBOL_GPL(task_handoff_unregister); |
| |
| int profile_event_register(enum profile_type type, struct notifier_block *n) |
| { |
| int err = -EINVAL; |
| |
| switch (type) { |
| case PROFILE_TASK_EXIT: |
| err = blocking_notifier_chain_register( |
| &task_exit_notifier, n); |
| break; |
| case PROFILE_MUNMAP: |
| err = blocking_notifier_chain_register( |
| &munmap_notifier, n); |
| break; |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(profile_event_register); |
| |
| int profile_event_unregister(enum profile_type type, struct notifier_block *n) |
| { |
| int err = -EINVAL; |
| |
| switch (type) { |
| case PROFILE_TASK_EXIT: |
| err = blocking_notifier_chain_unregister( |
| &task_exit_notifier, n); |
| break; |
| case PROFILE_MUNMAP: |
| err = blocking_notifier_chain_unregister( |
| &munmap_notifier, n); |
| break; |
| } |
| |
| return err; |
| } |
| EXPORT_SYMBOL_GPL(profile_event_unregister); |
| |
| int register_timer_hook(int (*hook)(struct pt_regs *)) |
| { |
| if (timer_hook) |
| return -EBUSY; |
| timer_hook = hook; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(register_timer_hook); |
| |
| void unregister_timer_hook(int (*hook)(struct pt_regs *)) |
| { |
| WARN_ON(hook != timer_hook); |
| timer_hook = NULL; |
| /* make sure all CPUs see the NULL hook */ |
| synchronize_sched(); /* Allow ongoing interrupts to complete. */ |
| } |
| EXPORT_SYMBOL_GPL(unregister_timer_hook); |
| |
| #endif /* CONFIG_PROFILING */ |
| |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Each cpu has a pair of open-addressed hashtables for pending |
| * profile hits. read_profile() IPI's all cpus to request them |
| * to flip buffers and flushes their contents to prof_buffer itself. |
| * Flip requests are serialized by the profile_flip_mutex. The sole |
| * use of having a second hashtable is for avoiding cacheline |
| * contention that would otherwise happen during flushes of pending |
| * profile hits required for the accuracy of reported profile hits |
| * and so resurrect the interrupt livelock issue. |
| * |
| * The open-addressed hashtables are indexed by profile buffer slot |
| * and hold the number of pending hits to that profile buffer slot on |
| * a cpu in an entry. When the hashtable overflows, all pending hits |
| * are accounted to their corresponding profile buffer slots with |
| * atomic_add() and the hashtable emptied. As numerous pending hits |
| * may be accounted to a profile buffer slot in a hashtable entry, |
| * this amortizes a number of atomic profile buffer increments likely |
| * to be far larger than the number of entries in the hashtable, |
| * particularly given that the number of distinct profile buffer |
| * positions to which hits are accounted during short intervals (e.g. |
| * several seconds) is usually very small. Exclusion from buffer |
| * flipping is provided by interrupt disablement (note that for |
| * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from |
| * process context). |
| * The hash function is meant to be lightweight as opposed to strong, |
| * and was vaguely inspired by ppc64 firmware-supported inverted |
| * pagetable hash functions, but uses a full hashtable full of finite |
| * collision chains, not just pairs of them. |
| * |
| * -- wli |
| */ |
| static void __profile_flip_buffers(void *unused) |
| { |
| int cpu = smp_processor_id(); |
| |
| per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu); |
| } |
| |
| static void profile_flip_buffers(void) |
| { |
| int i, j, cpu; |
| |
| mutex_lock(&profile_flip_mutex); |
| j = per_cpu(cpu_profile_flip, get_cpu()); |
| put_cpu(); |
| on_each_cpu(__profile_flip_buffers, NULL, 1); |
| for_each_online_cpu(cpu) { |
| struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j]; |
| for (i = 0; i < NR_PROFILE_HIT; ++i) { |
| if (!hits[i].hits) { |
| if (hits[i].pc) |
| hits[i].pc = 0; |
| continue; |
| } |
| atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); |
| hits[i].hits = hits[i].pc = 0; |
| } |
| } |
| mutex_unlock(&profile_flip_mutex); |
| } |
| |
| static void profile_discard_flip_buffers(void) |
| { |
| int i, cpu; |
| |
| mutex_lock(&profile_flip_mutex); |
| i = per_cpu(cpu_profile_flip, get_cpu()); |
| put_cpu(); |
| on_each_cpu(__profile_flip_buffers, NULL, 1); |
| for_each_online_cpu(cpu) { |
| struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i]; |
| memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit)); |
| } |
| mutex_unlock(&profile_flip_mutex); |
| } |
| |
| void profile_hits(int type, void *__pc, unsigned int nr_hits) |
| { |
| unsigned long primary, secondary, flags, pc = (unsigned long)__pc; |
| int i, j, cpu; |
| struct profile_hit *hits; |
| |
| if (prof_on != type || !prof_buffer) |
| return; |
| pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1); |
| i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; |
| secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT; |
| cpu = get_cpu(); |
| hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)]; |
| if (!hits) { |
| put_cpu(); |
| return; |
| } |
| /* |
| * We buffer the global profiler buffer into a per-CPU |
| * queue and thus reduce the number of global (and possibly |
| * NUMA-alien) accesses. The write-queue is self-coalescing: |
| */ |
| local_irq_save(flags); |
| do { |
| for (j = 0; j < PROFILE_GRPSZ; ++j) { |
| if (hits[i + j].pc == pc) { |
| hits[i + j].hits += nr_hits; |
| goto out; |
| } else if (!hits[i + j].hits) { |
| hits[i + j].pc = pc; |
| hits[i + j].hits = nr_hits; |
| goto out; |
| } |
| } |
| i = (i + secondary) & (NR_PROFILE_HIT - 1); |
| } while (i != primary); |
| |
| /* |
| * Add the current hit(s) and flush the write-queue out |
| * to the global buffer: |
| */ |
| atomic_add(nr_hits, &prof_buffer[pc]); |
| for (i = 0; i < NR_PROFILE_HIT; ++i) { |
| atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]); |
| hits[i].pc = hits[i].hits = 0; |
| } |
| out: |
| local_irq_restore(flags); |
| put_cpu(); |
| } |
| |
| static int __devinit profile_cpu_callback(struct notifier_block *info, |
| unsigned long action, void *__cpu) |
| { |
| int node, cpu = (unsigned long)__cpu; |
| struct page *page; |
| |
| switch (action) { |
| case CPU_UP_PREPARE: |
| case CPU_UP_PREPARE_FROZEN: |
| node = cpu_to_node(cpu); |
| per_cpu(cpu_profile_flip, cpu) = 0; |
| if (!per_cpu(cpu_profile_hits, cpu)[1]) { |
| page = alloc_pages_node(node, |
| GFP_KERNEL | __GFP_ZERO, |
| 0); |
| if (!page) |
| return NOTIFY_BAD; |
| per_cpu(cpu_profile_hits, cpu)[1] = page_address(page); |
| } |
| if (!per_cpu(cpu_profile_hits, cpu)[0]) { |
| page = alloc_pages_node(node, |
| GFP_KERNEL | __GFP_ZERO, |
| 0); |
| if (!page) |
| goto out_free; |
| per_cpu(cpu_profile_hits, cpu)[0] = page_address(page); |
| } |
| break; |
| out_free: |
| page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); |
| per_cpu(cpu_profile_hits, cpu)[1] = NULL; |
| __free_page(page); |
| return NOTIFY_BAD; |
| case CPU_ONLINE: |
| case CPU_ONLINE_FROZEN: |
| cpu_set(cpu, prof_cpu_mask); |
| break; |
| case CPU_UP_CANCELED: |
| case CPU_UP_CANCELED_FROZEN: |
| case CPU_DEAD: |
| case CPU_DEAD_FROZEN: |
| cpu_clear(cpu, prof_cpu_mask); |
| if (per_cpu(cpu_profile_hits, cpu)[0]) { |
| page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); |
| per_cpu(cpu_profile_hits, cpu)[0] = NULL; |
| __free_page(page); |
| } |
| if (per_cpu(cpu_profile_hits, cpu)[1]) { |
| page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); |
| per_cpu(cpu_profile_hits, cpu)[1] = NULL; |
| __free_page(page); |
| } |
| break; |
| } |
| return NOTIFY_OK; |
| } |
| #else /* !CONFIG_SMP */ |
| #define profile_flip_buffers() do { } while (0) |
| #define profile_discard_flip_buffers() do { } while (0) |
| #define profile_cpu_callback NULL |
| |
| void profile_hits(int type, void *__pc, unsigned int nr_hits) |
| { |
| unsigned long pc; |
| |
| if (prof_on != type || !prof_buffer) |
| return; |
| pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift; |
| atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]); |
| } |
| #endif /* !CONFIG_SMP */ |
| EXPORT_SYMBOL_GPL(profile_hits); |
| |
| void profile_tick(int type) |
| { |
| struct pt_regs *regs = get_irq_regs(); |
| |
| if (type == CPU_PROFILING && timer_hook) |
| timer_hook(regs); |
| if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask)) |
| profile_hit(type, (void *)profile_pc(regs)); |
| } |
| |
| #ifdef CONFIG_PROC_FS |
| #include <linux/proc_fs.h> |
| #include <asm/uaccess.h> |
| #include <asm/ptrace.h> |
| |
| static int prof_cpu_mask_read_proc(char *page, char **start, off_t off, |
| int count, int *eof, void *data) |
| { |
| int len = cpumask_scnprintf(page, count, *(cpumask_t *)data); |
| if (count - len < 2) |
| return -EINVAL; |
| len += sprintf(page + len, "\n"); |
| return len; |
| } |
| |
| static int prof_cpu_mask_write_proc(struct file *file, |
| const char __user *buffer, unsigned long count, void *data) |
| { |
| cpumask_t *mask = (cpumask_t *)data; |
| unsigned long full_count = count, err; |
| cpumask_t new_value; |
| |
| err = cpumask_parse_user(buffer, count, new_value); |
| if (err) |
| return err; |
| |
| *mask = new_value; |
| return full_count; |
| } |
| |
| void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir) |
| { |
| struct proc_dir_entry *entry; |
| |
| /* create /proc/irq/prof_cpu_mask */ |
| entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir); |
| if (!entry) |
| return; |
| entry->data = (void *)&prof_cpu_mask; |
| entry->read_proc = prof_cpu_mask_read_proc; |
| entry->write_proc = prof_cpu_mask_write_proc; |
| } |
| |
| /* |
| * This function accesses profiling information. The returned data is |
| * binary: the sampling step and the actual contents of the profile |
| * buffer. Use of the program readprofile is recommended in order to |
| * get meaningful info out of these data. |
| */ |
| static ssize_t |
| read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos) |
| { |
| unsigned long p = *ppos; |
| ssize_t read; |
| char *pnt; |
| unsigned int sample_step = 1 << prof_shift; |
| |
| profile_flip_buffers(); |
| if (p >= (prof_len+1)*sizeof(unsigned int)) |
| return 0; |
| if (count > (prof_len+1)*sizeof(unsigned int) - p) |
| count = (prof_len+1)*sizeof(unsigned int) - p; |
| read = 0; |
| |
| while (p < sizeof(unsigned int) && count > 0) { |
| if (put_user(*((char *)(&sample_step)+p), buf)) |
| return -EFAULT; |
| buf++; p++; count--; read++; |
| } |
| pnt = (char *)prof_buffer + p - sizeof(atomic_t); |
| if (copy_to_user(buf, (void *)pnt, count)) |
| return -EFAULT; |
| read += count; |
| *ppos += read; |
| return read; |
| } |
| |
| /* |
| * Writing to /proc/profile resets the counters |
| * |
| * Writing a 'profiling multiplier' value into it also re-sets the profiling |
| * interrupt frequency, on architectures that support this. |
| */ |
| static ssize_t write_profile(struct file *file, const char __user *buf, |
| size_t count, loff_t *ppos) |
| { |
| #ifdef CONFIG_SMP |
| extern int setup_profiling_timer(unsigned int multiplier); |
| |
| if (count == sizeof(int)) { |
| unsigned int multiplier; |
| |
| if (copy_from_user(&multiplier, buf, sizeof(int))) |
| return -EFAULT; |
| |
| if (setup_profiling_timer(multiplier)) |
| return -EINVAL; |
| } |
| #endif |
| profile_discard_flip_buffers(); |
| memset(prof_buffer, 0, prof_len * sizeof(atomic_t)); |
| return count; |
| } |
| |
| static const struct file_operations proc_profile_operations = { |
| .read = read_profile, |
| .write = write_profile, |
| }; |
| |
| #ifdef CONFIG_SMP |
| static void __init profile_nop(void *unused) |
| { |
| } |
| |
| static int __init create_hash_tables(void) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) { |
| int node = cpu_to_node(cpu); |
| struct page *page; |
| |
| page = alloc_pages_node(node, |
| GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, |
| 0); |
| if (!page) |
| goto out_cleanup; |
| per_cpu(cpu_profile_hits, cpu)[1] |
| = (struct profile_hit *)page_address(page); |
| page = alloc_pages_node(node, |
| GFP_KERNEL | __GFP_ZERO | GFP_THISNODE, |
| 0); |
| if (!page) |
| goto out_cleanup; |
| per_cpu(cpu_profile_hits, cpu)[0] |
| = (struct profile_hit *)page_address(page); |
| } |
| return 0; |
| out_cleanup: |
| prof_on = 0; |
| smp_mb(); |
| on_each_cpu(profile_nop, NULL, 1); |
| for_each_online_cpu(cpu) { |
| struct page *page; |
| |
| if (per_cpu(cpu_profile_hits, cpu)[0]) { |
| page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]); |
| per_cpu(cpu_profile_hits, cpu)[0] = NULL; |
| __free_page(page); |
| } |
| if (per_cpu(cpu_profile_hits, cpu)[1]) { |
| page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]); |
| per_cpu(cpu_profile_hits, cpu)[1] = NULL; |
| __free_page(page); |
| } |
| } |
| return -1; |
| } |
| #else |
| #define create_hash_tables() ({ 0; }) |
| #endif |
| |
| static int __init create_proc_profile(void) |
| { |
| struct proc_dir_entry *entry; |
| |
| if (!prof_on) |
| return 0; |
| if (create_hash_tables()) |
| return -1; |
| entry = proc_create("profile", S_IWUSR | S_IRUGO, |
| NULL, &proc_profile_operations); |
| if (!entry) |
| return 0; |
| entry->size = (1+prof_len) * sizeof(atomic_t); |
| hotcpu_notifier(profile_cpu_callback, 0); |
| return 0; |
| } |
| module_init(create_proc_profile); |
| #endif /* CONFIG_PROC_FS */ |