| /* |
| * linux/arch/x86_64/mm/init.c |
| * |
| * Copyright (C) 1995 Linus Torvalds |
| * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> |
| * Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> |
| */ |
| |
| #include <linux/signal.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/errno.h> |
| #include <linux/string.h> |
| #include <linux/types.h> |
| #include <linux/ptrace.h> |
| #include <linux/mman.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/smp.h> |
| #include <linux/init.h> |
| #include <linux/pagemap.h> |
| #include <linux/bootmem.h> |
| #include <linux/proc_fs.h> |
| #include <linux/pci.h> |
| #include <linux/pfn.h> |
| #include <linux/poison.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/module.h> |
| #include <linux/memory_hotplug.h> |
| #include <linux/nmi.h> |
| |
| #include <asm/processor.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/pgtable.h> |
| #include <asm/pgalloc.h> |
| #include <asm/dma.h> |
| #include <asm/fixmap.h> |
| #include <asm/e820.h> |
| #include <asm/apic.h> |
| #include <asm/tlb.h> |
| #include <asm/mmu_context.h> |
| #include <asm/proto.h> |
| #include <asm/smp.h> |
| #include <asm/sections.h> |
| #include <asm/kdebug.h> |
| #include <asm/numa.h> |
| |
| #ifndef Dprintk |
| #define Dprintk(x...) |
| #endif |
| |
| const struct dma_mapping_ops* dma_ops; |
| EXPORT_SYMBOL(dma_ops); |
| |
| static unsigned long dma_reserve __initdata; |
| |
| DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); |
| |
| /* |
| * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the |
| * physical space so we can cache the place of the first one and move |
| * around without checking the pgd every time. |
| */ |
| |
| void show_mem(void) |
| { |
| long i, total = 0, reserved = 0; |
| long shared = 0, cached = 0; |
| pg_data_t *pgdat; |
| struct page *page; |
| |
| printk(KERN_INFO "Mem-info:\n"); |
| show_free_areas(); |
| printk(KERN_INFO "Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| |
| for_each_online_pgdat(pgdat) { |
| for (i = 0; i < pgdat->node_spanned_pages; ++i) { |
| /* this loop can take a while with 256 GB and 4k pages |
| so update the NMI watchdog */ |
| if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) { |
| touch_nmi_watchdog(); |
| } |
| if (!pfn_valid(pgdat->node_start_pfn + i)) |
| continue; |
| page = pfn_to_page(pgdat->node_start_pfn + i); |
| total++; |
| if (PageReserved(page)) |
| reserved++; |
| else if (PageSwapCache(page)) |
| cached++; |
| else if (page_count(page)) |
| shared += page_count(page) - 1; |
| } |
| } |
| printk(KERN_INFO "%lu pages of RAM\n", total); |
| printk(KERN_INFO "%lu reserved pages\n",reserved); |
| printk(KERN_INFO "%lu pages shared\n",shared); |
| printk(KERN_INFO "%lu pages swap cached\n",cached); |
| } |
| |
| int after_bootmem; |
| |
| static __init void *spp_getpage(void) |
| { |
| void *ptr; |
| if (after_bootmem) |
| ptr = (void *) get_zeroed_page(GFP_ATOMIC); |
| else |
| ptr = alloc_bootmem_pages(PAGE_SIZE); |
| if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) |
| panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":""); |
| |
| Dprintk("spp_getpage %p\n", ptr); |
| return ptr; |
| } |
| |
| static __init void set_pte_phys(unsigned long vaddr, |
| unsigned long phys, pgprot_t prot) |
| { |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte, new_pte; |
| |
| Dprintk("set_pte_phys %lx to %lx\n", vaddr, phys); |
| |
| pgd = pgd_offset_k(vaddr); |
| if (pgd_none(*pgd)) { |
| printk("PGD FIXMAP MISSING, it should be setup in head.S!\n"); |
| return; |
| } |
| pud = pud_offset(pgd, vaddr); |
| if (pud_none(*pud)) { |
| pmd = (pmd_t *) spp_getpage(); |
| set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER)); |
| if (pmd != pmd_offset(pud, 0)) { |
| printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0)); |
| return; |
| } |
| } |
| pmd = pmd_offset(pud, vaddr); |
| if (pmd_none(*pmd)) { |
| pte = (pte_t *) spp_getpage(); |
| set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE | _PAGE_USER)); |
| if (pte != pte_offset_kernel(pmd, 0)) { |
| printk("PAGETABLE BUG #02!\n"); |
| return; |
| } |
| } |
| new_pte = pfn_pte(phys >> PAGE_SHIFT, prot); |
| |
| pte = pte_offset_kernel(pmd, vaddr); |
| if (!pte_none(*pte) && |
| pte_val(*pte) != (pte_val(new_pte) & __supported_pte_mask)) |
| pte_ERROR(*pte); |
| set_pte(pte, new_pte); |
| |
| /* |
| * It's enough to flush this one mapping. |
| * (PGE mappings get flushed as well) |
| */ |
| __flush_tlb_one(vaddr); |
| } |
| |
| /* NOTE: this is meant to be run only at boot */ |
| void __init |
| __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t prot) |
| { |
| unsigned long address = __fix_to_virt(idx); |
| |
| if (idx >= __end_of_fixed_addresses) { |
| printk("Invalid __set_fixmap\n"); |
| return; |
| } |
| set_pte_phys(address, phys, prot); |
| } |
| |
| static unsigned long __initdata table_start; |
| static unsigned long __meminitdata table_end; |
| |
| static __meminit void *alloc_low_page(unsigned long *phys) |
| { |
| unsigned long pfn = table_end++; |
| void *adr; |
| |
| if (after_bootmem) { |
| adr = (void *)get_zeroed_page(GFP_ATOMIC); |
| *phys = __pa(adr); |
| return adr; |
| } |
| |
| if (pfn >= end_pfn) |
| panic("alloc_low_page: ran out of memory"); |
| |
| adr = early_ioremap(pfn * PAGE_SIZE, PAGE_SIZE); |
| memset(adr, 0, PAGE_SIZE); |
| *phys = pfn * PAGE_SIZE; |
| return adr; |
| } |
| |
| static __meminit void unmap_low_page(void *adr) |
| { |
| |
| if (after_bootmem) |
| return; |
| |
| early_iounmap(adr, PAGE_SIZE); |
| } |
| |
| /* Must run before zap_low_mappings */ |
| __meminit void *early_ioremap(unsigned long addr, unsigned long size) |
| { |
| unsigned long vaddr; |
| pmd_t *pmd, *last_pmd; |
| int i, pmds; |
| |
| pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE; |
| vaddr = __START_KERNEL_map; |
| pmd = level2_kernel_pgt; |
| last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1; |
| for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) { |
| for (i = 0; i < pmds; i++) { |
| if (pmd_present(pmd[i])) |
| goto next; |
| } |
| vaddr += addr & ~PMD_MASK; |
| addr &= PMD_MASK; |
| for (i = 0; i < pmds; i++, addr += PMD_SIZE) |
| set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC)); |
| __flush_tlb_all(); |
| return (void *)vaddr; |
| next: |
| ; |
| } |
| printk("early_ioremap(0x%lx, %lu) failed\n", addr, size); |
| return NULL; |
| } |
| |
| /* To avoid virtual aliases later */ |
| __meminit void early_iounmap(void *addr, unsigned long size) |
| { |
| unsigned long vaddr; |
| pmd_t *pmd; |
| int i, pmds; |
| |
| vaddr = (unsigned long)addr; |
| pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE; |
| pmd = level2_kernel_pgt + pmd_index(vaddr); |
| for (i = 0; i < pmds; i++) |
| pmd_clear(pmd + i); |
| __flush_tlb_all(); |
| } |
| |
| static void __meminit |
| phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end) |
| { |
| int i = pmd_index(address); |
| |
| for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) { |
| unsigned long entry; |
| pmd_t *pmd = pmd_page + pmd_index(address); |
| |
| if (address >= end) { |
| if (!after_bootmem) |
| for (; i < PTRS_PER_PMD; i++, pmd++) |
| set_pmd(pmd, __pmd(0)); |
| break; |
| } |
| |
| if (pmd_val(*pmd)) |
| continue; |
| |
| entry = __PAGE_KERNEL_LARGE|_PAGE_GLOBAL|address; |
| entry &= __supported_pte_mask; |
| set_pmd(pmd, __pmd(entry)); |
| } |
| } |
| |
| static void __meminit |
| phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end) |
| { |
| pmd_t *pmd = pmd_offset(pud,0); |
| spin_lock(&init_mm.page_table_lock); |
| phys_pmd_init(pmd, address, end); |
| spin_unlock(&init_mm.page_table_lock); |
| __flush_tlb_all(); |
| } |
| |
| static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end) |
| { |
| int i = pud_index(addr); |
| |
| |
| for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE ) { |
| unsigned long pmd_phys; |
| pud_t *pud = pud_page + pud_index(addr); |
| pmd_t *pmd; |
| |
| if (addr >= end) |
| break; |
| |
| if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) { |
| set_pud(pud, __pud(0)); |
| continue; |
| } |
| |
| if (pud_val(*pud)) { |
| phys_pmd_update(pud, addr, end); |
| continue; |
| } |
| |
| pmd = alloc_low_page(&pmd_phys); |
| spin_lock(&init_mm.page_table_lock); |
| set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE)); |
| phys_pmd_init(pmd, addr, end); |
| spin_unlock(&init_mm.page_table_lock); |
| unmap_low_page(pmd); |
| } |
| __flush_tlb_all(); |
| } |
| |
| static void __init find_early_table_space(unsigned long end) |
| { |
| unsigned long puds, pmds, tables, start; |
| |
| puds = (end + PUD_SIZE - 1) >> PUD_SHIFT; |
| pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT; |
| tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) + |
| round_up(pmds * sizeof(pmd_t), PAGE_SIZE); |
| |
| /* RED-PEN putting page tables only on node 0 could |
| cause a hotspot and fill up ZONE_DMA. The page tables |
| need roughly 0.5KB per GB. */ |
| start = 0x8000; |
| table_start = find_e820_area(start, end, tables); |
| if (table_start == -1UL) |
| panic("Cannot find space for the kernel page tables"); |
| |
| table_start >>= PAGE_SHIFT; |
| table_end = table_start; |
| |
| early_printk("kernel direct mapping tables up to %lx @ %lx-%lx\n", |
| end, table_start << PAGE_SHIFT, |
| (table_start << PAGE_SHIFT) + tables); |
| } |
| |
| /* Setup the direct mapping of the physical memory at PAGE_OFFSET. |
| This runs before bootmem is initialized and gets pages directly from the |
| physical memory. To access them they are temporarily mapped. */ |
| void __init_refok init_memory_mapping(unsigned long start, unsigned long end) |
| { |
| unsigned long next; |
| |
| Dprintk("init_memory_mapping\n"); |
| |
| /* |
| * Find space for the kernel direct mapping tables. |
| * Later we should allocate these tables in the local node of the memory |
| * mapped. Unfortunately this is done currently before the nodes are |
| * discovered. |
| */ |
| if (!after_bootmem) |
| find_early_table_space(end); |
| |
| start = (unsigned long)__va(start); |
| end = (unsigned long)__va(end); |
| |
| for (; start < end; start = next) { |
| unsigned long pud_phys; |
| pgd_t *pgd = pgd_offset_k(start); |
| pud_t *pud; |
| |
| if (after_bootmem) |
| pud = pud_offset(pgd, start & PGDIR_MASK); |
| else |
| pud = alloc_low_page(&pud_phys); |
| |
| next = start + PGDIR_SIZE; |
| if (next > end) |
| next = end; |
| phys_pud_init(pud, __pa(start), __pa(next)); |
| if (!after_bootmem) |
| set_pgd(pgd_offset_k(start), mk_kernel_pgd(pud_phys)); |
| unmap_low_page(pud); |
| } |
| |
| if (!after_bootmem) |
| mmu_cr4_features = read_cr4(); |
| __flush_tlb_all(); |
| |
| reserve_early(table_start << PAGE_SHIFT, table_end << PAGE_SHIFT); |
| } |
| |
| #ifndef CONFIG_NUMA |
| void __init paging_init(void) |
| { |
| unsigned long max_zone_pfns[MAX_NR_ZONES]; |
| memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); |
| max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN; |
| max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN; |
| max_zone_pfns[ZONE_NORMAL] = end_pfn; |
| |
| memory_present(0, 0, end_pfn); |
| sparse_init(); |
| free_area_init_nodes(max_zone_pfns); |
| } |
| #endif |
| |
| /* Unmap a kernel mapping if it exists. This is useful to avoid prefetches |
| from the CPU leading to inconsistent cache lines. address and size |
| must be aligned to 2MB boundaries. |
| Does nothing when the mapping doesn't exist. */ |
| void __init clear_kernel_mapping(unsigned long address, unsigned long size) |
| { |
| unsigned long end = address + size; |
| |
| BUG_ON(address & ~LARGE_PAGE_MASK); |
| BUG_ON(size & ~LARGE_PAGE_MASK); |
| |
| for (; address < end; address += LARGE_PAGE_SIZE) { |
| pgd_t *pgd = pgd_offset_k(address); |
| pud_t *pud; |
| pmd_t *pmd; |
| if (pgd_none(*pgd)) |
| continue; |
| pud = pud_offset(pgd, address); |
| if (pud_none(*pud)) |
| continue; |
| pmd = pmd_offset(pud, address); |
| if (!pmd || pmd_none(*pmd)) |
| continue; |
| if (0 == (pmd_val(*pmd) & _PAGE_PSE)) { |
| /* Could handle this, but it should not happen currently. */ |
| printk(KERN_ERR |
| "clear_kernel_mapping: mapping has been split. will leak memory\n"); |
| pmd_ERROR(*pmd); |
| } |
| set_pmd(pmd, __pmd(0)); |
| } |
| __flush_tlb_all(); |
| } |
| |
| /* |
| * Memory hotplug specific functions |
| */ |
| void online_page(struct page *page) |
| { |
| ClearPageReserved(page); |
| init_page_count(page); |
| __free_page(page); |
| totalram_pages++; |
| num_physpages++; |
| } |
| |
| #ifdef CONFIG_MEMORY_HOTPLUG |
| /* |
| * Memory is added always to NORMAL zone. This means you will never get |
| * additional DMA/DMA32 memory. |
| */ |
| int arch_add_memory(int nid, u64 start, u64 size) |
| { |
| struct pglist_data *pgdat = NODE_DATA(nid); |
| struct zone *zone = pgdat->node_zones + ZONE_NORMAL; |
| unsigned long start_pfn = start >> PAGE_SHIFT; |
| unsigned long nr_pages = size >> PAGE_SHIFT; |
| int ret; |
| |
| init_memory_mapping(start, (start + size -1)); |
| |
| ret = __add_pages(zone, start_pfn, nr_pages); |
| if (ret) |
| goto error; |
| |
| return ret; |
| error: |
| printk("%s: Problem encountered in __add_pages!\n", __func__); |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(arch_add_memory); |
| |
| #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA) |
| int memory_add_physaddr_to_nid(u64 start) |
| { |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); |
| #endif |
| |
| #endif /* CONFIG_MEMORY_HOTPLUG */ |
| |
| static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules, |
| kcore_vsyscall; |
| |
| void __init mem_init(void) |
| { |
| long codesize, reservedpages, datasize, initsize; |
| |
| pci_iommu_alloc(); |
| |
| /* clear_bss() already clear the empty_zero_page */ |
| |
| /* temporary debugging - double check it's true: */ |
| { |
| int i; |
| |
| for (i = 0; i < 1024; i++) |
| WARN_ON_ONCE(empty_zero_page[i]); |
| } |
| |
| reservedpages = 0; |
| |
| /* this will put all low memory onto the freelists */ |
| #ifdef CONFIG_NUMA |
| totalram_pages = numa_free_all_bootmem(); |
| #else |
| totalram_pages = free_all_bootmem(); |
| #endif |
| reservedpages = end_pfn - totalram_pages - |
| absent_pages_in_range(0, end_pfn); |
| |
| after_bootmem = 1; |
| |
| codesize = (unsigned long) &_etext - (unsigned long) &_text; |
| datasize = (unsigned long) &_edata - (unsigned long) &_etext; |
| initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; |
| |
| /* Register memory areas for /proc/kcore */ |
| kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); |
| kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, |
| VMALLOC_END-VMALLOC_START); |
| kclist_add(&kcore_kernel, &_stext, _end - _stext); |
| kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN); |
| kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, |
| VSYSCALL_END - VSYSCALL_START); |
| |
| printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n", |
| (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), |
| end_pfn << (PAGE_SHIFT-10), |
| codesize >> 10, |
| reservedpages << (PAGE_SHIFT-10), |
| datasize >> 10, |
| initsize >> 10); |
| } |
| |
| void free_init_pages(char *what, unsigned long begin, unsigned long end) |
| { |
| unsigned long addr; |
| |
| if (begin >= end) |
| return; |
| |
| printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10); |
| for (addr = begin; addr < end; addr += PAGE_SIZE) { |
| ClearPageReserved(virt_to_page(addr)); |
| init_page_count(virt_to_page(addr)); |
| memset((void *)(addr & ~(PAGE_SIZE-1)), |
| POISON_FREE_INITMEM, PAGE_SIZE); |
| free_page(addr); |
| totalram_pages++; |
| } |
| #ifdef CONFIG_DEBUG_RODATA |
| /* |
| * This will make the __init pages not present and |
| * not executable, so that any attempt to use a |
| * __init function from now on will fault immediately |
| * rather than supriously later when memory gets reused. |
| * |
| * We only do this for DEBUG_RODATA to not break up the |
| * 2Mb kernel mapping just for this debug feature. |
| */ |
| if (begin >= __START_KERNEL_map) { |
| set_memory_np(begin, (end - begin)/PAGE_SIZE); |
| set_memory_nx(begin, (end - begin)/PAGE_SIZE); |
| } |
| #endif |
| } |
| |
| void free_initmem(void) |
| { |
| free_init_pages("unused kernel memory", |
| (unsigned long)(&__init_begin), |
| (unsigned long)(&__init_end)); |
| } |
| |
| #ifdef CONFIG_DEBUG_RODATA |
| |
| void mark_rodata_ro(void) |
| { |
| unsigned long start = (unsigned long)_stext, end; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| /* It must still be possible to apply SMP alternatives. */ |
| if (num_possible_cpus() > 1) |
| start = (unsigned long)_etext; |
| #endif |
| |
| #ifdef CONFIG_KPROBES |
| start = (unsigned long)__start_rodata; |
| #endif |
| |
| end = (unsigned long)__end_rodata; |
| start = (start + PAGE_SIZE - 1) & PAGE_MASK; |
| end &= PAGE_MASK; |
| if (end <= start) |
| return; |
| |
| set_memory_ro(start, (end - start) >> PAGE_SHIFT); |
| |
| printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", |
| (end - start) >> 10); |
| |
| /* |
| * set_memory_*() requires a global_flush_tlb() call after it. |
| * We do this after the printk so that if something went wrong in the |
| * change, the printk gets out at least to give a better debug hint |
| * of who is the culprit. |
| */ |
| global_flush_tlb(); |
| |
| #ifdef CONFIG_CPA_DEBUG |
| printk("Testing CPA: undo %lx-%lx\n", start, end); |
| set_memory_rw(start, (end-start) >> PAGE_SHIFT); |
| global_flush_tlb(); |
| |
| printk("Testing CPA: again\n"); |
| set_memory_ro(start, (end-start) >> PAGE_SHIFT); |
| global_flush_tlb(); |
| #endif |
| } |
| #endif |
| |
| #ifdef CONFIG_BLK_DEV_INITRD |
| void free_initrd_mem(unsigned long start, unsigned long end) |
| { |
| free_init_pages("initrd memory", start, end); |
| } |
| #endif |
| |
| void __init reserve_bootmem_generic(unsigned long phys, unsigned len) |
| { |
| #ifdef CONFIG_NUMA |
| int nid = phys_to_nid(phys); |
| #endif |
| unsigned long pfn = phys >> PAGE_SHIFT; |
| if (pfn >= end_pfn) { |
| /* This can happen with kdump kernels when accessing firmware |
| tables. */ |
| if (pfn < end_pfn_map) |
| return; |
| printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n", |
| phys, len); |
| return; |
| } |
| |
| /* Should check here against the e820 map to avoid double free */ |
| #ifdef CONFIG_NUMA |
| reserve_bootmem_node(NODE_DATA(nid), phys, len); |
| #else |
| reserve_bootmem(phys, len); |
| #endif |
| if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) { |
| dma_reserve += len / PAGE_SIZE; |
| set_dma_reserve(dma_reserve); |
| } |
| } |
| |
| int kern_addr_valid(unsigned long addr) |
| { |
| unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| pte_t *pte; |
| |
| if (above != 0 && above != -1UL) |
| return 0; |
| |
| pgd = pgd_offset_k(addr); |
| if (pgd_none(*pgd)) |
| return 0; |
| |
| pud = pud_offset(pgd, addr); |
| if (pud_none(*pud)) |
| return 0; |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) |
| return 0; |
| if (pmd_large(*pmd)) |
| return pfn_valid(pmd_pfn(*pmd)); |
| |
| pte = pte_offset_kernel(pmd, addr); |
| if (pte_none(*pte)) |
| return 0; |
| return pfn_valid(pte_pfn(*pte)); |
| } |
| |
| /* A pseudo VMA to allow ptrace access for the vsyscall page. This only |
| covers the 64bit vsyscall page now. 32bit has a real VMA now and does |
| not need special handling anymore. */ |
| |
| static struct vm_area_struct gate_vma = { |
| .vm_start = VSYSCALL_START, |
| .vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT), |
| .vm_page_prot = PAGE_READONLY_EXEC, |
| .vm_flags = VM_READ | VM_EXEC |
| }; |
| |
| struct vm_area_struct *get_gate_vma(struct task_struct *tsk) |
| { |
| #ifdef CONFIG_IA32_EMULATION |
| if (test_tsk_thread_flag(tsk, TIF_IA32)) |
| return NULL; |
| #endif |
| return &gate_vma; |
| } |
| |
| int in_gate_area(struct task_struct *task, unsigned long addr) |
| { |
| struct vm_area_struct *vma = get_gate_vma(task); |
| if (!vma) |
| return 0; |
| return (addr >= vma->vm_start) && (addr < vma->vm_end); |
| } |
| |
| /* Use this when you have no reliable task/vma, typically from interrupt |
| * context. It is less reliable than using the task's vma and may give |
| * false positives. |
| */ |
| int in_gate_area_no_task(unsigned long addr) |
| { |
| return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); |
| } |
| |
| const char *arch_vma_name(struct vm_area_struct *vma) |
| { |
| if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) |
| return "[vdso]"; |
| if (vma == &gate_vma) |
| return "[vsyscall]"; |
| return NULL; |
| } |
| |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP |
| /* |
| * Initialise the sparsemem vmemmap using huge-pages at the PMD level. |
| */ |
| int __meminit vmemmap_populate(struct page *start_page, |
| unsigned long size, int node) |
| { |
| unsigned long addr = (unsigned long)start_page; |
| unsigned long end = (unsigned long)(start_page + size); |
| unsigned long next; |
| pgd_t *pgd; |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| for (; addr < end; addr = next) { |
| next = pmd_addr_end(addr, end); |
| |
| pgd = vmemmap_pgd_populate(addr, node); |
| if (!pgd) |
| return -ENOMEM; |
| pud = vmemmap_pud_populate(pgd, addr, node); |
| if (!pud) |
| return -ENOMEM; |
| |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) { |
| pte_t entry; |
| void *p = vmemmap_alloc_block(PMD_SIZE, node); |
| if (!p) |
| return -ENOMEM; |
| |
| entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL_LARGE); |
| set_pmd(pmd, __pmd(pte_val(entry))); |
| |
| printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n", |
| addr, addr + PMD_SIZE - 1, p, node); |
| } else |
| vmemmap_verify((pte_t *)pmd, node, addr, next); |
| } |
| |
| return 0; |
| } |
| #endif |