| /* |
| * xHCI host controller driver |
| * |
| * Copyright (C) 2008 Intel Corp. |
| * |
| * Author: Sarah Sharp |
| * Some code borrowed from the Linux EHCI driver. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software Foundation, |
| * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #include <linux/usb.h> |
| #include <linux/pci.h> |
| #include <linux/dmapool.h> |
| |
| #include "xhci.h" |
| |
| /* |
| * Allocates a generic ring segment from the ring pool, sets the dma address, |
| * initializes the segment to zero, and sets the private next pointer to NULL. |
| * |
| * Section 4.11.1.1: |
| * "All components of all Command and Transfer TRBs shall be initialized to '0'" |
| */ |
| static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags) |
| { |
| struct xhci_segment *seg; |
| dma_addr_t dma; |
| |
| seg = kzalloc(sizeof *seg, flags); |
| if (!seg) |
| return 0; |
| xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg); |
| |
| seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma); |
| if (!seg->trbs) { |
| kfree(seg); |
| return 0; |
| } |
| xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n", |
| seg->trbs, (unsigned long long)dma); |
| |
| memset(seg->trbs, 0, SEGMENT_SIZE); |
| seg->dma = dma; |
| seg->next = NULL; |
| |
| return seg; |
| } |
| |
| static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) |
| { |
| if (!seg) |
| return; |
| if (seg->trbs) { |
| xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n", |
| seg->trbs, (unsigned long long)seg->dma); |
| dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); |
| seg->trbs = NULL; |
| } |
| xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg); |
| kfree(seg); |
| } |
| |
| /* |
| * Make the prev segment point to the next segment. |
| * |
| * Change the last TRB in the prev segment to be a Link TRB which points to the |
| * DMA address of the next segment. The caller needs to set any Link TRB |
| * related flags, such as End TRB, Toggle Cycle, and no snoop. |
| */ |
| static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, |
| struct xhci_segment *next, bool link_trbs) |
| { |
| u32 val; |
| |
| if (!prev || !next) |
| return; |
| prev->next = next; |
| if (link_trbs) { |
| prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr[0] = next->dma; |
| |
| /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ |
| val = prev->trbs[TRBS_PER_SEGMENT-1].link.control; |
| val &= ~TRB_TYPE_BITMASK; |
| val |= TRB_TYPE(TRB_LINK); |
| prev->trbs[TRBS_PER_SEGMENT-1].link.control = val; |
| } |
| xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n", |
| (unsigned long long)prev->dma, |
| (unsigned long long)next->dma); |
| } |
| |
| /* XXX: Do we need the hcd structure in all these functions? */ |
| void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) |
| { |
| struct xhci_segment *seg; |
| struct xhci_segment *first_seg; |
| |
| if (!ring || !ring->first_seg) |
| return; |
| first_seg = ring->first_seg; |
| seg = first_seg->next; |
| xhci_dbg(xhci, "Freeing ring at %p\n", ring); |
| while (seg != first_seg) { |
| struct xhci_segment *next = seg->next; |
| xhci_segment_free(xhci, seg); |
| seg = next; |
| } |
| xhci_segment_free(xhci, first_seg); |
| ring->first_seg = NULL; |
| kfree(ring); |
| } |
| |
| /** |
| * Create a new ring with zero or more segments. |
| * |
| * Link each segment together into a ring. |
| * Set the end flag and the cycle toggle bit on the last segment. |
| * See section 4.9.1 and figures 15 and 16. |
| */ |
| static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, |
| unsigned int num_segs, bool link_trbs, gfp_t flags) |
| { |
| struct xhci_ring *ring; |
| struct xhci_segment *prev; |
| |
| ring = kzalloc(sizeof *(ring), flags); |
| xhci_dbg(xhci, "Allocating ring at %p\n", ring); |
| if (!ring) |
| return 0; |
| |
| INIT_LIST_HEAD(&ring->td_list); |
| INIT_LIST_HEAD(&ring->cancelled_td_list); |
| if (num_segs == 0) |
| return ring; |
| |
| ring->first_seg = xhci_segment_alloc(xhci, flags); |
| if (!ring->first_seg) |
| goto fail; |
| num_segs--; |
| |
| prev = ring->first_seg; |
| while (num_segs > 0) { |
| struct xhci_segment *next; |
| |
| next = xhci_segment_alloc(xhci, flags); |
| if (!next) |
| goto fail; |
| xhci_link_segments(xhci, prev, next, link_trbs); |
| |
| prev = next; |
| num_segs--; |
| } |
| xhci_link_segments(xhci, prev, ring->first_seg, link_trbs); |
| |
| if (link_trbs) { |
| /* See section 4.9.2.1 and 6.4.4.1 */ |
| prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE); |
| xhci_dbg(xhci, "Wrote link toggle flag to" |
| " segment %p (virtual), 0x%llx (DMA)\n", |
| prev, (unsigned long long)prev->dma); |
| } |
| /* The ring is empty, so the enqueue pointer == dequeue pointer */ |
| ring->enqueue = ring->first_seg->trbs; |
| ring->enq_seg = ring->first_seg; |
| ring->dequeue = ring->enqueue; |
| ring->deq_seg = ring->first_seg; |
| /* The ring is initialized to 0. The producer must write 1 to the cycle |
| * bit to handover ownership of the TRB, so PCS = 1. The consumer must |
| * compare CCS to the cycle bit to check ownership, so CCS = 1. |
| */ |
| ring->cycle_state = 1; |
| |
| return ring; |
| |
| fail: |
| xhci_ring_free(xhci, ring); |
| return 0; |
| } |
| |
| /* All the xhci_tds in the ring's TD list should be freed at this point */ |
| void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) |
| { |
| struct xhci_virt_device *dev; |
| int i; |
| |
| /* Slot ID 0 is reserved */ |
| if (slot_id == 0 || !xhci->devs[slot_id]) |
| return; |
| |
| dev = xhci->devs[slot_id]; |
| xhci->dcbaa->dev_context_ptrs[2*slot_id] = 0; |
| xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0; |
| if (!dev) |
| return; |
| |
| for (i = 0; i < 31; ++i) |
| if (dev->ep_rings[i]) |
| xhci_ring_free(xhci, dev->ep_rings[i]); |
| |
| if (dev->in_ctx) |
| dma_pool_free(xhci->device_pool, |
| dev->in_ctx, dev->in_ctx_dma); |
| if (dev->out_ctx) |
| dma_pool_free(xhci->device_pool, |
| dev->out_ctx, dev->out_ctx_dma); |
| kfree(xhci->devs[slot_id]); |
| xhci->devs[slot_id] = 0; |
| } |
| |
| int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, |
| struct usb_device *udev, gfp_t flags) |
| { |
| dma_addr_t dma; |
| struct xhci_virt_device *dev; |
| |
| /* Slot ID 0 is reserved */ |
| if (slot_id == 0 || xhci->devs[slot_id]) { |
| xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); |
| return 0; |
| } |
| |
| xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags); |
| if (!xhci->devs[slot_id]) |
| return 0; |
| dev = xhci->devs[slot_id]; |
| |
| /* Allocate the (output) device context that will be used in the HC */ |
| dev->out_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma); |
| if (!dev->out_ctx) |
| goto fail; |
| dev->out_ctx_dma = dma; |
| xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id, |
| (unsigned long long)dma); |
| memset(dev->out_ctx, 0, sizeof(*dev->out_ctx)); |
| |
| /* Allocate the (input) device context for address device command */ |
| dev->in_ctx = dma_pool_alloc(xhci->device_pool, flags, &dma); |
| if (!dev->in_ctx) |
| goto fail; |
| dev->in_ctx_dma = dma; |
| xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id, |
| (unsigned long long)dma); |
| memset(dev->in_ctx, 0, sizeof(*dev->in_ctx)); |
| |
| /* Allocate endpoint 0 ring */ |
| dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags); |
| if (!dev->ep_rings[0]) |
| goto fail; |
| |
| init_completion(&dev->cmd_completion); |
| |
| /* |
| * Point to output device context in dcbaa; skip the output control |
| * context, which is eight 32 bit fields (or 32 bytes long) |
| */ |
| xhci->dcbaa->dev_context_ptrs[2*slot_id] = |
| (u32) dev->out_ctx_dma + (32); |
| xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", |
| slot_id, |
| &xhci->dcbaa->dev_context_ptrs[2*slot_id], |
| (unsigned long long)dev->out_ctx_dma); |
| xhci->dcbaa->dev_context_ptrs[2*slot_id + 1] = 0; |
| |
| return 1; |
| fail: |
| xhci_free_virt_device(xhci, slot_id); |
| return 0; |
| } |
| |
| /* Setup an xHCI virtual device for a Set Address command */ |
| int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) |
| { |
| struct xhci_virt_device *dev; |
| struct xhci_ep_ctx *ep0_ctx; |
| struct usb_device *top_dev; |
| |
| dev = xhci->devs[udev->slot_id]; |
| /* Slot ID 0 is reserved */ |
| if (udev->slot_id == 0 || !dev) { |
| xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", |
| udev->slot_id); |
| return -EINVAL; |
| } |
| ep0_ctx = &dev->in_ctx->ep[0]; |
| |
| /* 2) New slot context and endpoint 0 context are valid*/ |
| dev->in_ctx->add_flags = SLOT_FLAG | EP0_FLAG; |
| |
| /* 3) Only the control endpoint is valid - one endpoint context */ |
| dev->in_ctx->slot.dev_info |= LAST_CTX(1); |
| |
| switch (udev->speed) { |
| case USB_SPEED_SUPER: |
| dev->in_ctx->slot.dev_info |= (u32) udev->route; |
| dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_SS; |
| break; |
| case USB_SPEED_HIGH: |
| dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_HS; |
| break; |
| case USB_SPEED_FULL: |
| dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_FS; |
| break; |
| case USB_SPEED_LOW: |
| dev->in_ctx->slot.dev_info |= (u32) SLOT_SPEED_LS; |
| break; |
| case USB_SPEED_VARIABLE: |
| xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); |
| return -EINVAL; |
| break; |
| default: |
| /* Speed was set earlier, this shouldn't happen. */ |
| BUG(); |
| } |
| /* Find the root hub port this device is under */ |
| for (top_dev = udev; top_dev->parent && top_dev->parent->parent; |
| top_dev = top_dev->parent) |
| /* Found device below root hub */; |
| dev->in_ctx->slot.dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum); |
| xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum); |
| |
| /* Is this a LS/FS device under a HS hub? */ |
| /* |
| * FIXME: I don't think this is right, where does the TT info for the |
| * roothub or parent hub come from? |
| */ |
| if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) && |
| udev->tt) { |
| dev->in_ctx->slot.tt_info = udev->tt->hub->slot_id; |
| dev->in_ctx->slot.tt_info |= udev->ttport << 8; |
| } |
| xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); |
| xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); |
| |
| /* Step 4 - ring already allocated */ |
| /* Step 5 */ |
| ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP); |
| /* |
| * See section 4.3 bullet 6: |
| * The default Max Packet size for ep0 is "8 bytes for a USB2 |
| * LS/FS/HS device or 512 bytes for a USB3 SS device" |
| * XXX: Not sure about wireless USB devices. |
| */ |
| if (udev->speed == USB_SPEED_SUPER) |
| ep0_ctx->ep_info2 |= MAX_PACKET(512); |
| else |
| ep0_ctx->ep_info2 |= MAX_PACKET(8); |
| /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ |
| ep0_ctx->ep_info2 |= MAX_BURST(0); |
| ep0_ctx->ep_info2 |= ERROR_COUNT(3); |
| |
| ep0_ctx->deq[0] = |
| dev->ep_rings[0]->first_seg->dma; |
| ep0_ctx->deq[0] |= dev->ep_rings[0]->cycle_state; |
| ep0_ctx->deq[1] = 0; |
| |
| /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ |
| |
| return 0; |
| } |
| |
| /* Return the polling or NAK interval. |
| * |
| * The polling interval is expressed in "microframes". If xHCI's Interval field |
| * is set to N, it will service the endpoint every 2^(Interval)*125us. |
| * |
| * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval |
| * is set to 0. |
| */ |
| static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| unsigned int interval = 0; |
| |
| switch (udev->speed) { |
| case USB_SPEED_HIGH: |
| /* Max NAK rate */ |
| if (usb_endpoint_xfer_control(&ep->desc) || |
| usb_endpoint_xfer_bulk(&ep->desc)) |
| interval = ep->desc.bInterval; |
| /* Fall through - SS and HS isoc/int have same decoding */ |
| case USB_SPEED_SUPER: |
| if (usb_endpoint_xfer_int(&ep->desc) || |
| usb_endpoint_xfer_isoc(&ep->desc)) { |
| if (ep->desc.bInterval == 0) |
| interval = 0; |
| else |
| interval = ep->desc.bInterval - 1; |
| if (interval > 15) |
| interval = 15; |
| if (interval != ep->desc.bInterval + 1) |
| dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n", |
| ep->desc.bEndpointAddress, 1 << interval); |
| } |
| break; |
| /* Convert bInterval (in 1-255 frames) to microframes and round down to |
| * nearest power of 2. |
| */ |
| case USB_SPEED_FULL: |
| case USB_SPEED_LOW: |
| if (usb_endpoint_xfer_int(&ep->desc) || |
| usb_endpoint_xfer_isoc(&ep->desc)) { |
| interval = fls(8*ep->desc.bInterval) - 1; |
| if (interval > 10) |
| interval = 10; |
| if (interval < 3) |
| interval = 3; |
| if ((1 << interval) != 8*ep->desc.bInterval) |
| dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n", |
| ep->desc.bEndpointAddress, 1 << interval); |
| } |
| break; |
| default: |
| BUG(); |
| } |
| return EP_INTERVAL(interval); |
| } |
| |
| static inline u32 xhci_get_endpoint_type(struct usb_device *udev, |
| struct usb_host_endpoint *ep) |
| { |
| int in; |
| u32 type; |
| |
| in = usb_endpoint_dir_in(&ep->desc); |
| if (usb_endpoint_xfer_control(&ep->desc)) { |
| type = EP_TYPE(CTRL_EP); |
| } else if (usb_endpoint_xfer_bulk(&ep->desc)) { |
| if (in) |
| type = EP_TYPE(BULK_IN_EP); |
| else |
| type = EP_TYPE(BULK_OUT_EP); |
| } else if (usb_endpoint_xfer_isoc(&ep->desc)) { |
| if (in) |
| type = EP_TYPE(ISOC_IN_EP); |
| else |
| type = EP_TYPE(ISOC_OUT_EP); |
| } else if (usb_endpoint_xfer_int(&ep->desc)) { |
| if (in) |
| type = EP_TYPE(INT_IN_EP); |
| else |
| type = EP_TYPE(INT_OUT_EP); |
| } else { |
| BUG(); |
| } |
| return type; |
| } |
| |
| int xhci_endpoint_init(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| struct usb_device *udev, |
| struct usb_host_endpoint *ep, |
| gfp_t mem_flags) |
| { |
| unsigned int ep_index; |
| struct xhci_ep_ctx *ep_ctx; |
| struct xhci_ring *ep_ring; |
| unsigned int max_packet; |
| unsigned int max_burst; |
| |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| ep_ctx = &virt_dev->in_ctx->ep[ep_index]; |
| |
| /* Set up the endpoint ring */ |
| virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, mem_flags); |
| if (!virt_dev->new_ep_rings[ep_index]) |
| return -ENOMEM; |
| ep_ring = virt_dev->new_ep_rings[ep_index]; |
| ep_ctx->deq[0] = ep_ring->first_seg->dma | ep_ring->cycle_state; |
| ep_ctx->deq[1] = 0; |
| |
| ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep); |
| |
| /* FIXME dig Mult and streams info out of ep companion desc */ |
| |
| /* Allow 3 retries for everything but isoc */ |
| if (!usb_endpoint_xfer_isoc(&ep->desc)) |
| ep_ctx->ep_info2 = ERROR_COUNT(3); |
| else |
| ep_ctx->ep_info2 = ERROR_COUNT(0); |
| |
| ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep); |
| |
| /* Set the max packet size and max burst */ |
| switch (udev->speed) { |
| case USB_SPEED_SUPER: |
| max_packet = ep->desc.wMaxPacketSize; |
| ep_ctx->ep_info2 |= MAX_PACKET(max_packet); |
| /* dig out max burst from ep companion desc */ |
| max_packet = ep->ss_ep_comp->desc.bMaxBurst; |
| ep_ctx->ep_info2 |= MAX_BURST(max_packet); |
| break; |
| case USB_SPEED_HIGH: |
| /* bits 11:12 specify the number of additional transaction |
| * opportunities per microframe (USB 2.0, section 9.6.6) |
| */ |
| if (usb_endpoint_xfer_isoc(&ep->desc) || |
| usb_endpoint_xfer_int(&ep->desc)) { |
| max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11; |
| ep_ctx->ep_info2 |= MAX_BURST(max_burst); |
| } |
| /* Fall through */ |
| case USB_SPEED_FULL: |
| case USB_SPEED_LOW: |
| max_packet = ep->desc.wMaxPacketSize & 0x3ff; |
| ep_ctx->ep_info2 |= MAX_PACKET(max_packet); |
| break; |
| default: |
| BUG(); |
| } |
| /* FIXME Debug endpoint context */ |
| return 0; |
| } |
| |
| void xhci_endpoint_zero(struct xhci_hcd *xhci, |
| struct xhci_virt_device *virt_dev, |
| struct usb_host_endpoint *ep) |
| { |
| unsigned int ep_index; |
| struct xhci_ep_ctx *ep_ctx; |
| |
| ep_index = xhci_get_endpoint_index(&ep->desc); |
| ep_ctx = &virt_dev->in_ctx->ep[ep_index]; |
| |
| ep_ctx->ep_info = 0; |
| ep_ctx->ep_info2 = 0; |
| ep_ctx->deq[0] = 0; |
| ep_ctx->deq[1] = 0; |
| ep_ctx->tx_info = 0; |
| /* Don't free the endpoint ring until the set interface or configuration |
| * request succeeds. |
| */ |
| } |
| |
| void xhci_mem_cleanup(struct xhci_hcd *xhci) |
| { |
| struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller); |
| int size; |
| int i; |
| |
| /* Free the Event Ring Segment Table and the actual Event Ring */ |
| xhci_writel(xhci, 0, &xhci->ir_set->erst_size); |
| xhci_writel(xhci, 0, &xhci->ir_set->erst_base[0]); |
| xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]); |
| xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[0]); |
| xhci_writel(xhci, 0, &xhci->ir_set->erst_dequeue[1]); |
| size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries); |
| if (xhci->erst.entries) |
| pci_free_consistent(pdev, size, |
| xhci->erst.entries, xhci->erst.erst_dma_addr); |
| xhci->erst.entries = NULL; |
| xhci_dbg(xhci, "Freed ERST\n"); |
| if (xhci->event_ring) |
| xhci_ring_free(xhci, xhci->event_ring); |
| xhci->event_ring = NULL; |
| xhci_dbg(xhci, "Freed event ring\n"); |
| |
| xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[0]); |
| xhci_writel(xhci, 0, &xhci->op_regs->cmd_ring[1]); |
| if (xhci->cmd_ring) |
| xhci_ring_free(xhci, xhci->cmd_ring); |
| xhci->cmd_ring = NULL; |
| xhci_dbg(xhci, "Freed command ring\n"); |
| |
| for (i = 1; i < MAX_HC_SLOTS; ++i) |
| xhci_free_virt_device(xhci, i); |
| |
| if (xhci->segment_pool) |
| dma_pool_destroy(xhci->segment_pool); |
| xhci->segment_pool = NULL; |
| xhci_dbg(xhci, "Freed segment pool\n"); |
| |
| if (xhci->device_pool) |
| dma_pool_destroy(xhci->device_pool); |
| xhci->device_pool = NULL; |
| xhci_dbg(xhci, "Freed device context pool\n"); |
| |
| xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[0]); |
| xhci_writel(xhci, 0, &xhci->op_regs->dcbaa_ptr[1]); |
| if (xhci->dcbaa) |
| pci_free_consistent(pdev, sizeof(*xhci->dcbaa), |
| xhci->dcbaa, xhci->dcbaa->dma); |
| xhci->dcbaa = NULL; |
| |
| xhci->page_size = 0; |
| xhci->page_shift = 0; |
| } |
| |
| int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) |
| { |
| dma_addr_t dma; |
| struct device *dev = xhci_to_hcd(xhci)->self.controller; |
| unsigned int val, val2; |
| struct xhci_segment *seg; |
| u32 page_size; |
| int i; |
| |
| page_size = xhci_readl(xhci, &xhci->op_regs->page_size); |
| xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size); |
| for (i = 0; i < 16; i++) { |
| if ((0x1 & page_size) != 0) |
| break; |
| page_size = page_size >> 1; |
| } |
| if (i < 16) |
| xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024); |
| else |
| xhci_warn(xhci, "WARN: no supported page size\n"); |
| /* Use 4K pages, since that's common and the minimum the HC supports */ |
| xhci->page_shift = 12; |
| xhci->page_size = 1 << xhci->page_shift; |
| xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024); |
| |
| /* |
| * Program the Number of Device Slots Enabled field in the CONFIG |
| * register with the max value of slots the HC can handle. |
| */ |
| val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1)); |
| xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n", |
| (unsigned int) val); |
| val2 = xhci_readl(xhci, &xhci->op_regs->config_reg); |
| val |= (val2 & ~HCS_SLOTS_MASK); |
| xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n", |
| (unsigned int) val); |
| xhci_writel(xhci, val, &xhci->op_regs->config_reg); |
| |
| /* |
| * Section 5.4.8 - doorbell array must be |
| * "physically contiguous and 64-byte (cache line) aligned". |
| */ |
| xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev), |
| sizeof(*xhci->dcbaa), &dma); |
| if (!xhci->dcbaa) |
| goto fail; |
| memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa)); |
| xhci->dcbaa->dma = dma; |
| xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n", |
| (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa); |
| xhci_writel(xhci, dma, &xhci->op_regs->dcbaa_ptr[0]); |
| xhci_writel(xhci, (u32) 0, &xhci->op_regs->dcbaa_ptr[1]); |
| |
| /* |
| * Initialize the ring segment pool. The ring must be a contiguous |
| * structure comprised of TRBs. The TRBs must be 16 byte aligned, |
| * however, the command ring segment needs 64-byte aligned segments, |
| * so we pick the greater alignment need. |
| */ |
| xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, |
| SEGMENT_SIZE, 64, xhci->page_size); |
| /* See Table 46 and Note on Figure 55 */ |
| /* FIXME support 64-byte contexts */ |
| xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, |
| sizeof(struct xhci_device_control), |
| 64, xhci->page_size); |
| if (!xhci->segment_pool || !xhci->device_pool) |
| goto fail; |
| |
| /* Set up the command ring to have one segments for now. */ |
| xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags); |
| if (!xhci->cmd_ring) |
| goto fail; |
| xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring); |
| xhci_dbg(xhci, "First segment DMA is 0x%llx\n", |
| (unsigned long long)xhci->cmd_ring->first_seg->dma); |
| |
| /* Set the address in the Command Ring Control register */ |
| val = xhci_readl(xhci, &xhci->op_regs->cmd_ring[0]); |
| val = (val & ~CMD_RING_ADDR_MASK) | |
| (xhci->cmd_ring->first_seg->dma & CMD_RING_ADDR_MASK) | |
| xhci->cmd_ring->cycle_state; |
| xhci_dbg(xhci, "// Setting command ring address low bits to 0x%x\n", val); |
| xhci_writel(xhci, val, &xhci->op_regs->cmd_ring[0]); |
| xhci_dbg(xhci, "// Setting command ring address high bits to 0x0\n"); |
| xhci_writel(xhci, (u32) 0, &xhci->op_regs->cmd_ring[1]); |
| xhci_dbg_cmd_ptrs(xhci); |
| |
| val = xhci_readl(xhci, &xhci->cap_regs->db_off); |
| val &= DBOFF_MASK; |
| xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x" |
| " from cap regs base addr\n", val); |
| xhci->dba = (void *) xhci->cap_regs + val; |
| xhci_dbg_regs(xhci); |
| xhci_print_run_regs(xhci); |
| /* Set ir_set to interrupt register set 0 */ |
| xhci->ir_set = (void *) xhci->run_regs->ir_set; |
| |
| /* |
| * Event ring setup: Allocate a normal ring, but also setup |
| * the event ring segment table (ERST). Section 4.9.3. |
| */ |
| xhci_dbg(xhci, "// Allocating event ring\n"); |
| xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags); |
| if (!xhci->event_ring) |
| goto fail; |
| |
| xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev), |
| sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma); |
| if (!xhci->erst.entries) |
| goto fail; |
| xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n", |
| (unsigned long long)dma); |
| |
| memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS); |
| xhci->erst.num_entries = ERST_NUM_SEGS; |
| xhci->erst.erst_dma_addr = dma; |
| xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n", |
| xhci->erst.num_entries, |
| xhci->erst.entries, |
| (unsigned long long)xhci->erst.erst_dma_addr); |
| |
| /* set ring base address and size for each segment table entry */ |
| for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { |
| struct xhci_erst_entry *entry = &xhci->erst.entries[val]; |
| entry->seg_addr[0] = seg->dma; |
| entry->seg_addr[1] = 0; |
| entry->seg_size = TRBS_PER_SEGMENT; |
| entry->rsvd = 0; |
| seg = seg->next; |
| } |
| |
| /* set ERST count with the number of entries in the segment table */ |
| val = xhci_readl(xhci, &xhci->ir_set->erst_size); |
| val &= ERST_SIZE_MASK; |
| val |= ERST_NUM_SEGS; |
| xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n", |
| val); |
| xhci_writel(xhci, val, &xhci->ir_set->erst_size); |
| |
| xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n"); |
| /* set the segment table base address */ |
| xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n", |
| (unsigned long long)xhci->erst.erst_dma_addr); |
| val = xhci_readl(xhci, &xhci->ir_set->erst_base[0]); |
| val &= ERST_PTR_MASK; |
| val |= (xhci->erst.erst_dma_addr & ~ERST_PTR_MASK); |
| xhci_writel(xhci, val, &xhci->ir_set->erst_base[0]); |
| xhci_writel(xhci, 0, &xhci->ir_set->erst_base[1]); |
| |
| /* Set the event ring dequeue address */ |
| xhci_set_hc_event_deq(xhci); |
| xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n"); |
| xhci_print_ir_set(xhci, xhci->ir_set, 0); |
| |
| /* |
| * XXX: Might need to set the Interrupter Moderation Register to |
| * something other than the default (~1ms minimum between interrupts). |
| * See section 5.5.1.2. |
| */ |
| init_completion(&xhci->addr_dev); |
| for (i = 0; i < MAX_HC_SLOTS; ++i) |
| xhci->devs[i] = 0; |
| |
| return 0; |
| fail: |
| xhci_warn(xhci, "Couldn't initialize memory\n"); |
| xhci_mem_cleanup(xhci); |
| return -ENOMEM; |
| } |