| /* |
| * toshiba_acpi.c - Toshiba Laptop ACPI Extras |
| * |
| * |
| * Copyright (C) 2002-2004 John Belmonte |
| * Copyright (C) 2008 Philip Langdale |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * |
| * The devolpment page for this driver is located at |
| * http://memebeam.org/toys/ToshibaAcpiDriver. |
| * |
| * Credits: |
| * Jonathan A. Buzzard - Toshiba HCI info, and critical tips on reverse |
| * engineering the Windows drivers |
| * Yasushi Nagato - changes for linux kernel 2.4 -> 2.5 |
| * Rob Miller - TV out and hotkeys help |
| * |
| * |
| * TODO |
| * |
| */ |
| |
| #define TOSHIBA_ACPI_VERSION "0.19" |
| #define PROC_INTERFACE_VERSION 1 |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/proc_fs.h> |
| #include <linux/backlight.h> |
| #include <linux/platform_device.h> |
| #include <linux/rfkill.h> |
| #include <linux/input-polldev.h> |
| |
| #include <asm/uaccess.h> |
| |
| #include <acpi/acpi_drivers.h> |
| |
| MODULE_AUTHOR("John Belmonte"); |
| MODULE_DESCRIPTION("Toshiba Laptop ACPI Extras Driver"); |
| MODULE_LICENSE("GPL"); |
| |
| #define MY_LOGPREFIX "toshiba_acpi: " |
| #define MY_ERR KERN_ERR MY_LOGPREFIX |
| #define MY_NOTICE KERN_NOTICE MY_LOGPREFIX |
| #define MY_INFO KERN_INFO MY_LOGPREFIX |
| |
| /* Toshiba ACPI method paths */ |
| #define METHOD_LCD_BRIGHTNESS "\\_SB_.PCI0.VGA_.LCD_._BCM" |
| #define METHOD_HCI_1 "\\_SB_.VALD.GHCI" |
| #define METHOD_HCI_2 "\\_SB_.VALZ.GHCI" |
| #define METHOD_VIDEO_OUT "\\_SB_.VALX.DSSX" |
| |
| /* Toshiba HCI interface definitions |
| * |
| * HCI is Toshiba's "Hardware Control Interface" which is supposed to |
| * be uniform across all their models. Ideally we would just call |
| * dedicated ACPI methods instead of using this primitive interface. |
| * However the ACPI methods seem to be incomplete in some areas (for |
| * example they allow setting, but not reading, the LCD brightness value), |
| * so this is still useful. |
| */ |
| |
| #define HCI_WORDS 6 |
| |
| /* operations */ |
| #define HCI_SET 0xff00 |
| #define HCI_GET 0xfe00 |
| |
| /* return codes */ |
| #define HCI_SUCCESS 0x0000 |
| #define HCI_FAILURE 0x1000 |
| #define HCI_NOT_SUPPORTED 0x8000 |
| #define HCI_EMPTY 0x8c00 |
| |
| /* registers */ |
| #define HCI_FAN 0x0004 |
| #define HCI_SYSTEM_EVENT 0x0016 |
| #define HCI_VIDEO_OUT 0x001c |
| #define HCI_HOTKEY_EVENT 0x001e |
| #define HCI_LCD_BRIGHTNESS 0x002a |
| #define HCI_WIRELESS 0x0056 |
| |
| /* field definitions */ |
| #define HCI_LCD_BRIGHTNESS_BITS 3 |
| #define HCI_LCD_BRIGHTNESS_SHIFT (16-HCI_LCD_BRIGHTNESS_BITS) |
| #define HCI_LCD_BRIGHTNESS_LEVELS (1 << HCI_LCD_BRIGHTNESS_BITS) |
| #define HCI_VIDEO_OUT_LCD 0x1 |
| #define HCI_VIDEO_OUT_CRT 0x2 |
| #define HCI_VIDEO_OUT_TV 0x4 |
| #define HCI_WIRELESS_KILL_SWITCH 0x01 |
| #define HCI_WIRELESS_BT_PRESENT 0x0f |
| #define HCI_WIRELESS_BT_ATTACH 0x40 |
| #define HCI_WIRELESS_BT_POWER 0x80 |
| |
| static const struct acpi_device_id toshiba_device_ids[] = { |
| {"TOS6200", 0}, |
| {"TOS6208", 0}, |
| {"TOS1900", 0}, |
| {"", 0}, |
| }; |
| MODULE_DEVICE_TABLE(acpi, toshiba_device_ids); |
| |
| /* utility |
| */ |
| |
| static __inline__ void _set_bit(u32 * word, u32 mask, int value) |
| { |
| *word = (*word & ~mask) | (mask * value); |
| } |
| |
| /* acpi interface wrappers |
| */ |
| |
| static int is_valid_acpi_path(const char *methodName) |
| { |
| acpi_handle handle; |
| acpi_status status; |
| |
| status = acpi_get_handle(NULL, (char *)methodName, &handle); |
| return !ACPI_FAILURE(status); |
| } |
| |
| static int write_acpi_int(const char *methodName, int val) |
| { |
| struct acpi_object_list params; |
| union acpi_object in_objs[1]; |
| acpi_status status; |
| |
| params.count = ARRAY_SIZE(in_objs); |
| params.pointer = in_objs; |
| in_objs[0].type = ACPI_TYPE_INTEGER; |
| in_objs[0].integer.value = val; |
| |
| status = acpi_evaluate_object(NULL, (char *)methodName, ¶ms, NULL); |
| return (status == AE_OK); |
| } |
| |
| #if 0 |
| static int read_acpi_int(const char *methodName, int *pVal) |
| { |
| struct acpi_buffer results; |
| union acpi_object out_objs[1]; |
| acpi_status status; |
| |
| results.length = sizeof(out_objs); |
| results.pointer = out_objs; |
| |
| status = acpi_evaluate_object(0, (char *)methodName, 0, &results); |
| *pVal = out_objs[0].integer.value; |
| |
| return (status == AE_OK) && (out_objs[0].type == ACPI_TYPE_INTEGER); |
| } |
| #endif |
| |
| static const char *method_hci /*= 0*/ ; |
| |
| /* Perform a raw HCI call. Here we don't care about input or output buffer |
| * format. |
| */ |
| static acpi_status hci_raw(const u32 in[HCI_WORDS], u32 out[HCI_WORDS]) |
| { |
| struct acpi_object_list params; |
| union acpi_object in_objs[HCI_WORDS]; |
| struct acpi_buffer results; |
| union acpi_object out_objs[HCI_WORDS + 1]; |
| acpi_status status; |
| int i; |
| |
| params.count = HCI_WORDS; |
| params.pointer = in_objs; |
| for (i = 0; i < HCI_WORDS; ++i) { |
| in_objs[i].type = ACPI_TYPE_INTEGER; |
| in_objs[i].integer.value = in[i]; |
| } |
| |
| results.length = sizeof(out_objs); |
| results.pointer = out_objs; |
| |
| status = acpi_evaluate_object(NULL, (char *)method_hci, ¶ms, |
| &results); |
| if ((status == AE_OK) && (out_objs->package.count <= HCI_WORDS)) { |
| for (i = 0; i < out_objs->package.count; ++i) { |
| out[i] = out_objs->package.elements[i].integer.value; |
| } |
| } |
| |
| return status; |
| } |
| |
| /* common hci tasks (get or set one or two value) |
| * |
| * In addition to the ACPI status, the HCI system returns a result which |
| * may be useful (such as "not supported"). |
| */ |
| |
| static acpi_status hci_write1(u32 reg, u32 in1, u32 * result) |
| { |
| u32 in[HCI_WORDS] = { HCI_SET, reg, in1, 0, 0, 0 }; |
| u32 out[HCI_WORDS]; |
| acpi_status status = hci_raw(in, out); |
| *result = (status == AE_OK) ? out[0] : HCI_FAILURE; |
| return status; |
| } |
| |
| static acpi_status hci_read1(u32 reg, u32 * out1, u32 * result) |
| { |
| u32 in[HCI_WORDS] = { HCI_GET, reg, 0, 0, 0, 0 }; |
| u32 out[HCI_WORDS]; |
| acpi_status status = hci_raw(in, out); |
| *out1 = out[2]; |
| *result = (status == AE_OK) ? out[0] : HCI_FAILURE; |
| return status; |
| } |
| |
| static acpi_status hci_write2(u32 reg, u32 in1, u32 in2, u32 *result) |
| { |
| u32 in[HCI_WORDS] = { HCI_SET, reg, in1, in2, 0, 0 }; |
| u32 out[HCI_WORDS]; |
| acpi_status status = hci_raw(in, out); |
| *result = (status == AE_OK) ? out[0] : HCI_FAILURE; |
| return status; |
| } |
| |
| static acpi_status hci_read2(u32 reg, u32 *out1, u32 *out2, u32 *result) |
| { |
| u32 in[HCI_WORDS] = { HCI_GET, reg, *out1, *out2, 0, 0 }; |
| u32 out[HCI_WORDS]; |
| acpi_status status = hci_raw(in, out); |
| *out1 = out[2]; |
| *out2 = out[3]; |
| *result = (status == AE_OK) ? out[0] : HCI_FAILURE; |
| return status; |
| } |
| |
| struct toshiba_acpi_dev { |
| struct platform_device *p_dev; |
| struct rfkill *rfk_dev; |
| struct input_polled_dev *poll_dev; |
| |
| const char *bt_name; |
| const char *rfk_name; |
| |
| bool last_rfk_state; |
| |
| struct mutex mutex; |
| }; |
| |
| static struct toshiba_acpi_dev toshiba_acpi = { |
| .bt_name = "Toshiba Bluetooth", |
| .rfk_name = "Toshiba RFKill Switch", |
| .last_rfk_state = false, |
| }; |
| |
| /* Bluetooth rfkill handlers */ |
| |
| static u32 hci_get_bt_present(bool *present) |
| { |
| u32 hci_result; |
| u32 value, value2; |
| |
| value = 0; |
| value2 = 0; |
| hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); |
| if (hci_result == HCI_SUCCESS) |
| *present = (value & HCI_WIRELESS_BT_PRESENT) ? true : false; |
| |
| return hci_result; |
| } |
| |
| static u32 hci_get_bt_on(bool *on) |
| { |
| u32 hci_result; |
| u32 value, value2; |
| |
| value = 0; |
| value2 = 0x0001; |
| hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); |
| if (hci_result == HCI_SUCCESS) |
| *on = (value & HCI_WIRELESS_BT_POWER) && |
| (value & HCI_WIRELESS_BT_ATTACH); |
| |
| return hci_result; |
| } |
| |
| static u32 hci_get_radio_state(bool *radio_state) |
| { |
| u32 hci_result; |
| u32 value, value2; |
| |
| value = 0; |
| value2 = 0x0001; |
| hci_read2(HCI_WIRELESS, &value, &value2, &hci_result); |
| |
| *radio_state = value & HCI_WIRELESS_KILL_SWITCH; |
| return hci_result; |
| } |
| |
| static int bt_rfkill_toggle_radio(void *data, enum rfkill_state state) |
| { |
| u32 result1, result2; |
| u32 value; |
| bool radio_state; |
| struct toshiba_acpi_dev *dev = data; |
| |
| value = (state == RFKILL_STATE_UNBLOCKED); |
| |
| if (hci_get_radio_state(&radio_state) != HCI_SUCCESS) |
| return -EFAULT; |
| |
| switch (state) { |
| case RFKILL_STATE_UNBLOCKED: |
| if (!radio_state) |
| return -EPERM; |
| break; |
| case RFKILL_STATE_SOFT_BLOCKED: |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| mutex_lock(&dev->mutex); |
| hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_POWER, &result1); |
| hci_write2(HCI_WIRELESS, value, HCI_WIRELESS_BT_ATTACH, &result2); |
| mutex_unlock(&dev->mutex); |
| |
| if (result1 != HCI_SUCCESS || result2 != HCI_SUCCESS) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static void bt_poll_rfkill(struct input_polled_dev *poll_dev) |
| { |
| bool state_changed; |
| bool new_rfk_state; |
| bool value; |
| u32 hci_result; |
| struct toshiba_acpi_dev *dev = poll_dev->private; |
| |
| hci_result = hci_get_radio_state(&value); |
| if (hci_result != HCI_SUCCESS) |
| return; /* Can't do anything useful */ |
| |
| new_rfk_state = value; |
| |
| mutex_lock(&dev->mutex); |
| state_changed = new_rfk_state != dev->last_rfk_state; |
| dev->last_rfk_state = new_rfk_state; |
| mutex_unlock(&dev->mutex); |
| |
| if (unlikely(state_changed)) { |
| rfkill_force_state(dev->rfk_dev, |
| new_rfk_state ? |
| RFKILL_STATE_SOFT_BLOCKED : |
| RFKILL_STATE_HARD_BLOCKED); |
| input_report_switch(poll_dev->input, SW_RFKILL_ALL, |
| new_rfk_state); |
| } |
| } |
| |
| static struct proc_dir_entry *toshiba_proc_dir /*= 0*/ ; |
| static struct backlight_device *toshiba_backlight_device; |
| static int force_fan; |
| static int last_key_event; |
| static int key_event_valid; |
| |
| typedef struct _ProcItem { |
| const char *name; |
| char *(*read_func) (char *); |
| unsigned long (*write_func) (const char *, unsigned long); |
| } ProcItem; |
| |
| /* proc file handlers |
| */ |
| |
| static int |
| dispatch_read(char *page, char **start, off_t off, int count, int *eof, |
| ProcItem * item) |
| { |
| char *p = page; |
| int len; |
| |
| if (off == 0) |
| p = item->read_func(p); |
| |
| /* ISSUE: I don't understand this code */ |
| len = (p - page); |
| if (len <= off + count) |
| *eof = 1; |
| *start = page + off; |
| len -= off; |
| if (len > count) |
| len = count; |
| if (len < 0) |
| len = 0; |
| return len; |
| } |
| |
| static int |
| dispatch_write(struct file *file, const char __user * buffer, |
| unsigned long count, ProcItem * item) |
| { |
| int result; |
| char *tmp_buffer; |
| |
| /* Arg buffer points to userspace memory, which can't be accessed |
| * directly. Since we're making a copy, zero-terminate the |
| * destination so that sscanf can be used on it safely. |
| */ |
| tmp_buffer = kmalloc(count + 1, GFP_KERNEL); |
| if (!tmp_buffer) |
| return -ENOMEM; |
| |
| if (copy_from_user(tmp_buffer, buffer, count)) { |
| result = -EFAULT; |
| } else { |
| tmp_buffer[count] = 0; |
| result = item->write_func(tmp_buffer, count); |
| } |
| kfree(tmp_buffer); |
| return result; |
| } |
| |
| static int get_lcd(struct backlight_device *bd) |
| { |
| u32 hci_result; |
| u32 value; |
| |
| hci_read1(HCI_LCD_BRIGHTNESS, &value, &hci_result); |
| if (hci_result == HCI_SUCCESS) { |
| return (value >> HCI_LCD_BRIGHTNESS_SHIFT); |
| } else |
| return -EFAULT; |
| } |
| |
| static char *read_lcd(char *p) |
| { |
| int value = get_lcd(NULL); |
| |
| if (value >= 0) { |
| p += sprintf(p, "brightness: %d\n", value); |
| p += sprintf(p, "brightness_levels: %d\n", |
| HCI_LCD_BRIGHTNESS_LEVELS); |
| } else { |
| printk(MY_ERR "Error reading LCD brightness\n"); |
| } |
| |
| return p; |
| } |
| |
| static int set_lcd(int value) |
| { |
| u32 hci_result; |
| |
| value = value << HCI_LCD_BRIGHTNESS_SHIFT; |
| hci_write1(HCI_LCD_BRIGHTNESS, value, &hci_result); |
| if (hci_result != HCI_SUCCESS) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| static int set_lcd_status(struct backlight_device *bd) |
| { |
| return set_lcd(bd->props.brightness); |
| } |
| |
| static unsigned long write_lcd(const char *buffer, unsigned long count) |
| { |
| int value; |
| int ret; |
| |
| if (sscanf(buffer, " brightness : %i", &value) == 1 && |
| value >= 0 && value < HCI_LCD_BRIGHTNESS_LEVELS) { |
| ret = set_lcd(value); |
| if (ret == 0) |
| ret = count; |
| } else { |
| ret = -EINVAL; |
| } |
| return ret; |
| } |
| |
| static char *read_video(char *p) |
| { |
| u32 hci_result; |
| u32 value; |
| |
| hci_read1(HCI_VIDEO_OUT, &value, &hci_result); |
| if (hci_result == HCI_SUCCESS) { |
| int is_lcd = (value & HCI_VIDEO_OUT_LCD) ? 1 : 0; |
| int is_crt = (value & HCI_VIDEO_OUT_CRT) ? 1 : 0; |
| int is_tv = (value & HCI_VIDEO_OUT_TV) ? 1 : 0; |
| p += sprintf(p, "lcd_out: %d\n", is_lcd); |
| p += sprintf(p, "crt_out: %d\n", is_crt); |
| p += sprintf(p, "tv_out: %d\n", is_tv); |
| } else { |
| printk(MY_ERR "Error reading video out status\n"); |
| } |
| |
| return p; |
| } |
| |
| static unsigned long write_video(const char *buffer, unsigned long count) |
| { |
| int value; |
| int remain = count; |
| int lcd_out = -1; |
| int crt_out = -1; |
| int tv_out = -1; |
| u32 hci_result; |
| u32 video_out; |
| |
| /* scan expression. Multiple expressions may be delimited with ; |
| * |
| * NOTE: to keep scanning simple, invalid fields are ignored |
| */ |
| while (remain) { |
| if (sscanf(buffer, " lcd_out : %i", &value) == 1) |
| lcd_out = value & 1; |
| else if (sscanf(buffer, " crt_out : %i", &value) == 1) |
| crt_out = value & 1; |
| else if (sscanf(buffer, " tv_out : %i", &value) == 1) |
| tv_out = value & 1; |
| /* advance to one character past the next ; */ |
| do { |
| ++buffer; |
| --remain; |
| } |
| while (remain && *(buffer - 1) != ';'); |
| } |
| |
| hci_read1(HCI_VIDEO_OUT, &video_out, &hci_result); |
| if (hci_result == HCI_SUCCESS) { |
| int new_video_out = video_out; |
| if (lcd_out != -1) |
| _set_bit(&new_video_out, HCI_VIDEO_OUT_LCD, lcd_out); |
| if (crt_out != -1) |
| _set_bit(&new_video_out, HCI_VIDEO_OUT_CRT, crt_out); |
| if (tv_out != -1) |
| _set_bit(&new_video_out, HCI_VIDEO_OUT_TV, tv_out); |
| /* To avoid unnecessary video disruption, only write the new |
| * video setting if something changed. */ |
| if (new_video_out != video_out) |
| write_acpi_int(METHOD_VIDEO_OUT, new_video_out); |
| } else { |
| return -EFAULT; |
| } |
| |
| return count; |
| } |
| |
| static char *read_fan(char *p) |
| { |
| u32 hci_result; |
| u32 value; |
| |
| hci_read1(HCI_FAN, &value, &hci_result); |
| if (hci_result == HCI_SUCCESS) { |
| p += sprintf(p, "running: %d\n", (value > 0)); |
| p += sprintf(p, "force_on: %d\n", force_fan); |
| } else { |
| printk(MY_ERR "Error reading fan status\n"); |
| } |
| |
| return p; |
| } |
| |
| static unsigned long write_fan(const char *buffer, unsigned long count) |
| { |
| int value; |
| u32 hci_result; |
| |
| if (sscanf(buffer, " force_on : %i", &value) == 1 && |
| value >= 0 && value <= 1) { |
| hci_write1(HCI_FAN, value, &hci_result); |
| if (hci_result != HCI_SUCCESS) |
| return -EFAULT; |
| else |
| force_fan = value; |
| } else { |
| return -EINVAL; |
| } |
| |
| return count; |
| } |
| |
| static char *read_keys(char *p) |
| { |
| u32 hci_result; |
| u32 value; |
| |
| if (!key_event_valid) { |
| hci_read1(HCI_SYSTEM_EVENT, &value, &hci_result); |
| if (hci_result == HCI_SUCCESS) { |
| key_event_valid = 1; |
| last_key_event = value; |
| } else if (hci_result == HCI_EMPTY) { |
| /* better luck next time */ |
| } else if (hci_result == HCI_NOT_SUPPORTED) { |
| /* This is a workaround for an unresolved issue on |
| * some machines where system events sporadically |
| * become disabled. */ |
| hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); |
| printk(MY_NOTICE "Re-enabled hotkeys\n"); |
| } else { |
| printk(MY_ERR "Error reading hotkey status\n"); |
| goto end; |
| } |
| } |
| |
| p += sprintf(p, "hotkey_ready: %d\n", key_event_valid); |
| p += sprintf(p, "hotkey: 0x%04x\n", last_key_event); |
| |
| end: |
| return p; |
| } |
| |
| static unsigned long write_keys(const char *buffer, unsigned long count) |
| { |
| int value; |
| |
| if (sscanf(buffer, " hotkey_ready : %i", &value) == 1 && value == 0) { |
| key_event_valid = 0; |
| } else { |
| return -EINVAL; |
| } |
| |
| return count; |
| } |
| |
| static char *read_version(char *p) |
| { |
| p += sprintf(p, "driver: %s\n", TOSHIBA_ACPI_VERSION); |
| p += sprintf(p, "proc_interface: %d\n", |
| PROC_INTERFACE_VERSION); |
| return p; |
| } |
| |
| /* proc and module init |
| */ |
| |
| #define PROC_TOSHIBA "toshiba" |
| |
| static ProcItem proc_items[] = { |
| {"lcd", read_lcd, write_lcd}, |
| {"video", read_video, write_video}, |
| {"fan", read_fan, write_fan}, |
| {"keys", read_keys, write_keys}, |
| {"version", read_version, NULL}, |
| {NULL} |
| }; |
| |
| static acpi_status __init add_device(void) |
| { |
| struct proc_dir_entry *proc; |
| ProcItem *item; |
| |
| for (item = proc_items; item->name; ++item) { |
| proc = create_proc_read_entry(item->name, |
| S_IFREG | S_IRUGO | S_IWUSR, |
| toshiba_proc_dir, |
| (read_proc_t *) dispatch_read, |
| item); |
| if (proc) |
| proc->owner = THIS_MODULE; |
| if (proc && item->write_func) |
| proc->write_proc = (write_proc_t *) dispatch_write; |
| } |
| |
| return AE_OK; |
| } |
| |
| static acpi_status remove_device(void) |
| { |
| ProcItem *item; |
| |
| for (item = proc_items; item->name; ++item) |
| remove_proc_entry(item->name, toshiba_proc_dir); |
| return AE_OK; |
| } |
| |
| static struct backlight_ops toshiba_backlight_data = { |
| .get_brightness = get_lcd, |
| .update_status = set_lcd_status, |
| }; |
| |
| static void toshiba_acpi_exit(void) |
| { |
| if (toshiba_acpi.poll_dev) { |
| input_unregister_polled_device(toshiba_acpi.poll_dev); |
| input_free_polled_device(toshiba_acpi.poll_dev); |
| } |
| |
| if (toshiba_acpi.rfk_dev) |
| rfkill_unregister(toshiba_acpi.rfk_dev); |
| |
| if (toshiba_backlight_device) |
| backlight_device_unregister(toshiba_backlight_device); |
| |
| remove_device(); |
| |
| if (toshiba_proc_dir) |
| remove_proc_entry(PROC_TOSHIBA, acpi_root_dir); |
| |
| platform_device_unregister(toshiba_acpi.p_dev); |
| |
| return; |
| } |
| |
| static int __init toshiba_acpi_init(void) |
| { |
| acpi_status status = AE_OK; |
| u32 hci_result; |
| bool bt_present; |
| bool bt_on; |
| bool radio_on; |
| int ret = 0; |
| |
| if (acpi_disabled) |
| return -ENODEV; |
| |
| /* simple device detection: look for HCI method */ |
| if (is_valid_acpi_path(METHOD_HCI_1)) |
| method_hci = METHOD_HCI_1; |
| else if (is_valid_acpi_path(METHOD_HCI_2)) |
| method_hci = METHOD_HCI_2; |
| else |
| return -ENODEV; |
| |
| printk(MY_INFO "Toshiba Laptop ACPI Extras version %s\n", |
| TOSHIBA_ACPI_VERSION); |
| printk(MY_INFO " HCI method: %s\n", method_hci); |
| |
| mutex_init(&toshiba_acpi.mutex); |
| |
| toshiba_acpi.p_dev = platform_device_register_simple("toshiba_acpi", |
| -1, NULL, 0); |
| if (IS_ERR(toshiba_acpi.p_dev)) { |
| ret = PTR_ERR(toshiba_acpi.p_dev); |
| printk(MY_ERR "unable to register platform device\n"); |
| toshiba_acpi.p_dev = NULL; |
| toshiba_acpi_exit(); |
| return ret; |
| } |
| |
| force_fan = 0; |
| key_event_valid = 0; |
| |
| /* enable event fifo */ |
| hci_write1(HCI_SYSTEM_EVENT, 1, &hci_result); |
| |
| toshiba_proc_dir = proc_mkdir(PROC_TOSHIBA, acpi_root_dir); |
| if (!toshiba_proc_dir) { |
| toshiba_acpi_exit(); |
| return -ENODEV; |
| } else { |
| toshiba_proc_dir->owner = THIS_MODULE; |
| status = add_device(); |
| if (ACPI_FAILURE(status)) { |
| toshiba_acpi_exit(); |
| return -ENODEV; |
| } |
| } |
| |
| toshiba_backlight_device = backlight_device_register("toshiba", |
| &toshiba_acpi.p_dev->dev, |
| NULL, |
| &toshiba_backlight_data); |
| if (IS_ERR(toshiba_backlight_device)) { |
| ret = PTR_ERR(toshiba_backlight_device); |
| |
| printk(KERN_ERR "Could not register toshiba backlight device\n"); |
| toshiba_backlight_device = NULL; |
| toshiba_acpi_exit(); |
| return ret; |
| } |
| toshiba_backlight_device->props.max_brightness = HCI_LCD_BRIGHTNESS_LEVELS - 1; |
| |
| /* Register rfkill switch for Bluetooth */ |
| if (hci_get_bt_present(&bt_present) == HCI_SUCCESS && bt_present) { |
| toshiba_acpi.rfk_dev = rfkill_allocate(&toshiba_acpi.p_dev->dev, |
| RFKILL_TYPE_BLUETOOTH); |
| if (!toshiba_acpi.rfk_dev) { |
| printk(MY_ERR "unable to allocate rfkill device\n"); |
| toshiba_acpi_exit(); |
| return -ENOMEM; |
| } |
| |
| toshiba_acpi.rfk_dev->name = toshiba_acpi.bt_name; |
| toshiba_acpi.rfk_dev->toggle_radio = bt_rfkill_toggle_radio; |
| toshiba_acpi.rfk_dev->user_claim_unsupported = 1; |
| toshiba_acpi.rfk_dev->data = &toshiba_acpi; |
| |
| if (hci_get_bt_on(&bt_on) == HCI_SUCCESS && bt_on) { |
| toshiba_acpi.rfk_dev->state = RFKILL_STATE_UNBLOCKED; |
| } else if (hci_get_radio_state(&radio_on) == HCI_SUCCESS && |
| radio_on) { |
| toshiba_acpi.rfk_dev->state = RFKILL_STATE_SOFT_BLOCKED; |
| } else { |
| toshiba_acpi.rfk_dev->state = RFKILL_STATE_HARD_BLOCKED; |
| } |
| |
| ret = rfkill_register(toshiba_acpi.rfk_dev); |
| if (ret) { |
| printk(MY_ERR "unable to register rfkill device\n"); |
| toshiba_acpi_exit(); |
| return -ENOMEM; |
| } |
| } |
| |
| /* Register input device for kill switch */ |
| toshiba_acpi.poll_dev = input_allocate_polled_device(); |
| if (!toshiba_acpi.poll_dev) { |
| printk(MY_ERR "unable to allocate kill-switch input device\n"); |
| toshiba_acpi_exit(); |
| return -ENOMEM; |
| } |
| toshiba_acpi.poll_dev->private = &toshiba_acpi; |
| toshiba_acpi.poll_dev->poll = bt_poll_rfkill; |
| toshiba_acpi.poll_dev->poll_interval = 1000; /* msecs */ |
| |
| toshiba_acpi.poll_dev->input->name = toshiba_acpi.rfk_name; |
| toshiba_acpi.poll_dev->input->id.bustype = BUS_HOST; |
| toshiba_acpi.poll_dev->input->id.vendor = 0x0930; /* Toshiba USB ID */ |
| set_bit(EV_SW, toshiba_acpi.poll_dev->input->evbit); |
| set_bit(SW_RFKILL_ALL, toshiba_acpi.poll_dev->input->swbit); |
| input_report_switch(toshiba_acpi.poll_dev->input, SW_RFKILL_ALL, TRUE); |
| |
| ret = input_register_polled_device(toshiba_acpi.poll_dev); |
| if (ret) { |
| printk(MY_ERR "unable to register kill-switch input device\n"); |
| rfkill_free(toshiba_acpi.rfk_dev); |
| toshiba_acpi.rfk_dev = NULL; |
| toshiba_acpi_exit(); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| module_init(toshiba_acpi_init); |
| module_exit(toshiba_acpi_exit); |