| /* Copyright (c) 2012, The Linux Foundation. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/kernel.h> |
| #include <linux/of.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <linux/mutex.h> |
| #include <linux/types.h> |
| #include <linux/hwmon.h> |
| #include <linux/module.h> |
| #include <linux/debugfs.h> |
| #include <linux/spmi.h> |
| #include <linux/of_irq.h> |
| #include <linux/interrupt.h> |
| #include <linux/completion.h> |
| #include <linux/qpnp/qpnp-adc.h> |
| #include <linux/platform_device.h> |
| |
| /* Min ADC code represets 0V */ |
| #define QPNP_VADC_MIN_ADC_CODE 0x6000 |
| /* Max ADC code represents full-scale range of 1.8V */ |
| #define QPNP_VADC_MAX_ADC_CODE 0xA800 |
| #define KELVINMIL_DEGMIL 273160 |
| |
| /* Units for temperature below (on x axis) is in 0.1DegC as |
| required by the battery driver. Note the resolution used |
| here to compute the table was done for DegC to milli-volts. |
| In consideration to limit the size of the table for the given |
| temperature range below, the result is linearly interpolated |
| and provided to the battery driver in the units desired for |
| their framework which is 0.1DegC. True resolution of 0.1DegC |
| will result in the below table size to increase by 10 times */ |
| static const struct qpnp_vadc_map_pt adcmap_btm_threshold[] = { |
| {-300, 1642}, |
| {-200, 1544}, |
| {-100, 1414}, |
| {0, 1260}, |
| {10, 1244}, |
| {20, 1228}, |
| {30, 1212}, |
| {40, 1195}, |
| {50, 1179}, |
| {60, 1162}, |
| {70, 1146}, |
| {80, 1129}, |
| {90, 1113}, |
| {100, 1097}, |
| {110, 1080}, |
| {120, 1064}, |
| {130, 1048}, |
| {140, 1032}, |
| {150, 1016}, |
| {160, 1000}, |
| {170, 985}, |
| {180, 969}, |
| {190, 954}, |
| {200, 939}, |
| {210, 924}, |
| {220, 909}, |
| {230, 894}, |
| {240, 880}, |
| {250, 866}, |
| {260, 852}, |
| {270, 838}, |
| {280, 824}, |
| {290, 811}, |
| {300, 798}, |
| {310, 785}, |
| {320, 773}, |
| {330, 760}, |
| {340, 748}, |
| {350, 736}, |
| {360, 725}, |
| {370, 713}, |
| {380, 702}, |
| {390, 691}, |
| {400, 681}, |
| {410, 670}, |
| {420, 660}, |
| {430, 650}, |
| {440, 640}, |
| {450, 631}, |
| {460, 622}, |
| {470, 613}, |
| {480, 604}, |
| {490, 595}, |
| {500, 587}, |
| {510, 579}, |
| {520, 571}, |
| {530, 563}, |
| {540, 556}, |
| {550, 548}, |
| {560, 541}, |
| {570, 534}, |
| {580, 527}, |
| {590, 521}, |
| {600, 514}, |
| {610, 508}, |
| {620, 502}, |
| {630, 496}, |
| {640, 490}, |
| {650, 485}, |
| {660, 281}, |
| {670, 274}, |
| {680, 267}, |
| {690, 260}, |
| {700, 254}, |
| {710, 247}, |
| {720, 241}, |
| {730, 235}, |
| {740, 229}, |
| {750, 224}, |
| {760, 218}, |
| {770, 213}, |
| {780, 208}, |
| {790, 203} |
| }; |
| |
| /* Voltage to temperature */ |
| static const struct qpnp_vadc_map_pt adcmap_100k_104ef_104fb[] = { |
| {1758, -40}, |
| {1742, -35}, |
| {1719, -30}, |
| {1691, -25}, |
| {1654, -20}, |
| {1608, -15}, |
| {1551, -10}, |
| {1483, -5}, |
| {1404, 0}, |
| {1315, 5}, |
| {1218, 10}, |
| {1114, 15}, |
| {1007, 20}, |
| {900, 25}, |
| {795, 30}, |
| {696, 35}, |
| {605, 40}, |
| {522, 45}, |
| {448, 50}, |
| {383, 55}, |
| {327, 60}, |
| {278, 65}, |
| {237, 70}, |
| {202, 75}, |
| {172, 80}, |
| {146, 85}, |
| {125, 90}, |
| {107, 95}, |
| {92, 100}, |
| {79, 105}, |
| {68, 110}, |
| {59, 115}, |
| {51, 120}, |
| {44, 125} |
| }; |
| |
| /* Voltage to temperature */ |
| static const struct qpnp_vadc_map_pt adcmap_150k_104ef_104fb[] = { |
| {1738, -40}, |
| {1714, -35}, |
| {1682, -30}, |
| {1641, -25}, |
| {1589, -20}, |
| {1526, -15}, |
| {1451, -10}, |
| {1363, -5}, |
| {1266, 0}, |
| {1159, 5}, |
| {1048, 10}, |
| {936, 15}, |
| {825, 20}, |
| {720, 25}, |
| {622, 30}, |
| {533, 35}, |
| {454, 40}, |
| {385, 45}, |
| {326, 50}, |
| {275, 55}, |
| {232, 60}, |
| {195, 65}, |
| {165, 70}, |
| {139, 75}, |
| {118, 80}, |
| {100, 85}, |
| {85, 90}, |
| {73, 95}, |
| {62, 100}, |
| {53, 105}, |
| {46, 110}, |
| {40, 115}, |
| {34, 120}, |
| {30, 125} |
| }; |
| |
| static int32_t qpnp_adc_map_voltage_temp(const struct qpnp_vadc_map_pt *pts, |
| uint32_t tablesize, int32_t input, int64_t *output) |
| { |
| bool descending = 1; |
| uint32_t i = 0; |
| |
| if ((pts == NULL) || (output == NULL)) |
| return -EINVAL; |
| |
| /* Check if table is descending or ascending */ |
| if (tablesize > 1) { |
| if (pts[0].x < pts[1].x) |
| descending = 0; |
| } |
| |
| while (i < tablesize) { |
| if ((descending == 1) && (pts[i].x < input)) { |
| /* table entry is less than measured |
| value and table is descending, stop */ |
| break; |
| } else if ((descending == 0) && |
| (pts[i].x > input)) { |
| /* table entry is greater than measured |
| value and table is ascending, stop */ |
| break; |
| } else { |
| i++; |
| } |
| } |
| |
| if (i == 0) |
| *output = pts[0].y; |
| else if (i == tablesize) |
| *output = pts[tablesize-1].y; |
| else { |
| /* result is between search_index and search_index-1 */ |
| /* interpolate linearly */ |
| *output = (((int32_t) ((pts[i].y - pts[i-1].y)* |
| (input - pts[i-1].x))/ |
| (pts[i].x - pts[i-1].x))+ |
| pts[i-1].y); |
| } |
| |
| return 0; |
| } |
| |
| static int32_t qpnp_adc_map_temp_voltage(const struct qpnp_vadc_map_pt *pts, |
| uint32_t tablesize, int32_t input, int64_t *output) |
| { |
| bool descending = 1; |
| uint32_t i = 0; |
| |
| if ((pts == NULL) || (output == NULL)) |
| return -EINVAL; |
| |
| /* Check if table is descending or ascending */ |
| if (tablesize > 1) { |
| if (pts[0].y < pts[1].y) |
| descending = 0; |
| } |
| |
| while (i < tablesize) { |
| if ((descending == 1) && (pts[i].y < input)) { |
| /* table entry is less than measured |
| value and table is descending, stop */ |
| break; |
| } else if ((descending == 0) && (pts[i].y > input)) { |
| /* table entry is greater than measured |
| value and table is ascending, stop */ |
| break; |
| } else { |
| i++; |
| } |
| } |
| |
| if (i == 0) { |
| *output = pts[0].x; |
| } else if (i == tablesize) { |
| *output = pts[tablesize-1].x; |
| } else { |
| /* result is between search_index and search_index-1 */ |
| /* interpolate linearly */ |
| *output = (((int32_t) ((pts[i].x - pts[i-1].x)* |
| (input - pts[i-1].y))/ |
| (pts[i].y - pts[i-1].y))+ |
| pts[i-1].x); |
| } |
| |
| return 0; |
| } |
| |
| static int64_t qpnp_adc_scale_ratiometric_calib(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties) |
| { |
| int64_t adc_voltage = 0; |
| bool negative_offset = 0; |
| |
| if (!chan_properties || !chan_properties->offset_gain_numerator || |
| !chan_properties->offset_gain_denominator || !adc_properties) |
| return -EINVAL; |
| |
| adc_voltage = (adc_code - |
| chan_properties->adc_graph[CALIB_RATIOMETRIC].adc_gnd) |
| * adc_properties->adc_vdd_reference; |
| if (adc_voltage < 0) { |
| negative_offset = 1; |
| adc_voltage = -adc_voltage; |
| } |
| do_div(adc_voltage, |
| chan_properties->adc_graph[CALIB_RATIOMETRIC].dy); |
| if (negative_offset) |
| adc_voltage = -adc_voltage; |
| |
| return adc_voltage; |
| } |
| |
| int32_t qpnp_adc_scale_pmic_therm(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties, |
| struct qpnp_vadc_result *adc_chan_result) |
| { |
| int64_t pmic_voltage = 0; |
| bool negative_offset = 0; |
| |
| if (!chan_properties || !chan_properties->offset_gain_numerator || |
| !chan_properties->offset_gain_denominator || !adc_properties |
| || !adc_chan_result) |
| return -EINVAL; |
| |
| pmic_voltage = (adc_code - |
| chan_properties->adc_graph[CALIB_ABSOLUTE].adc_gnd) |
| * chan_properties->adc_graph[CALIB_ABSOLUTE].dx; |
| if (pmic_voltage < 0) { |
| negative_offset = 1; |
| pmic_voltage = -pmic_voltage; |
| } |
| do_div(pmic_voltage, |
| chan_properties->adc_graph[CALIB_ABSOLUTE].dy); |
| if (negative_offset) |
| pmic_voltage = -pmic_voltage; |
| pmic_voltage += chan_properties->adc_graph[CALIB_ABSOLUTE].dx; |
| |
| if (pmic_voltage > 0) { |
| /* 2mV/K */ |
| adc_chan_result->measurement = pmic_voltage* |
| chan_properties->offset_gain_denominator; |
| |
| do_div(adc_chan_result->measurement, |
| chan_properties->offset_gain_numerator * 2); |
| } else { |
| adc_chan_result->measurement = 0; |
| } |
| /* Change to .001 deg C */ |
| adc_chan_result->measurement -= KELVINMIL_DEGMIL; |
| adc_chan_result->physical = (int32_t)adc_chan_result->measurement; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_scale_pmic_therm); |
| |
| /* Scales the ADC code to 0.001 degrees C using the map |
| * table for the XO thermistor. |
| */ |
| int32_t qpnp_adc_tdkntcg_therm(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties, |
| struct qpnp_vadc_result *adc_chan_result) |
| { |
| int64_t xo_thm = 0; |
| |
| if (!chan_properties || !chan_properties->offset_gain_numerator || |
| !chan_properties->offset_gain_denominator || !adc_properties |
| || !adc_chan_result) |
| return -EINVAL; |
| |
| xo_thm = qpnp_adc_scale_ratiometric_calib(adc_code, |
| adc_properties, chan_properties); |
| |
| qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb, |
| ARRAY_SIZE(adcmap_100k_104ef_104fb), |
| xo_thm, &adc_chan_result->physical); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_tdkntcg_therm); |
| |
| int32_t qpnp_adc_scale_batt_therm(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties, |
| struct qpnp_vadc_result *adc_chan_result) |
| { |
| int64_t bat_voltage = 0; |
| |
| bat_voltage = qpnp_adc_scale_ratiometric_calib(adc_code, |
| adc_properties, chan_properties); |
| |
| return qpnp_adc_map_temp_voltage( |
| adcmap_btm_threshold, |
| ARRAY_SIZE(adcmap_btm_threshold), |
| bat_voltage, |
| &adc_chan_result->physical); |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_scale_batt_therm); |
| |
| int32_t qpnp_adc_scale_therm_pu1(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties, |
| struct qpnp_vadc_result *adc_chan_result) |
| { |
| int64_t therm_voltage = 0; |
| |
| therm_voltage = qpnp_adc_scale_ratiometric_calib(adc_code, |
| adc_properties, chan_properties); |
| |
| qpnp_adc_map_voltage_temp(adcmap_150k_104ef_104fb, |
| ARRAY_SIZE(adcmap_150k_104ef_104fb), |
| therm_voltage, &adc_chan_result->physical); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_scale_therm_pu1); |
| |
| int32_t qpnp_adc_scale_therm_pu2(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties, |
| struct qpnp_vadc_result *adc_chan_result) |
| { |
| int64_t therm_voltage = 0; |
| |
| therm_voltage = qpnp_adc_scale_ratiometric_calib(adc_code, |
| adc_properties, chan_properties); |
| |
| qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb, |
| ARRAY_SIZE(adcmap_100k_104ef_104fb), |
| therm_voltage, &adc_chan_result->physical); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_scale_therm_pu2); |
| |
| int32_t qpnp_adc_tm_scale_voltage_therm_pu2(uint32_t reg, int64_t *result) |
| { |
| int64_t adc_voltage = 0; |
| struct qpnp_vadc_linear_graph param1; |
| int negative_offset; |
| |
| qpnp_get_vadc_gain_and_offset(¶m1, CALIB_RATIOMETRIC); |
| |
| adc_voltage = (reg - param1.adc_gnd) * param1.adc_vref; |
| if (adc_voltage < 0) { |
| negative_offset = 1; |
| adc_voltage = -adc_voltage; |
| } |
| |
| do_div(adc_voltage, param1.dy); |
| |
| qpnp_adc_map_voltage_temp(adcmap_100k_104ef_104fb, |
| ARRAY_SIZE(adcmap_100k_104ef_104fb), |
| adc_voltage, result); |
| if (negative_offset) |
| adc_voltage = -adc_voltage; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_tm_scale_voltage_therm_pu2); |
| |
| int32_t qpnp_adc_tm_scale_therm_voltage_pu2(struct qpnp_adc_tm_config *param) |
| { |
| struct qpnp_vadc_linear_graph param1; |
| int rc; |
| |
| qpnp_get_vadc_gain_and_offset(¶m1, CALIB_RATIOMETRIC); |
| |
| rc = qpnp_adc_map_temp_voltage(adcmap_100k_104ef_104fb, |
| ARRAY_SIZE(adcmap_100k_104ef_104fb), |
| param->low_thr_temp, ¶m->low_thr_voltage); |
| if (rc) |
| return rc; |
| |
| param->low_thr_voltage *= param1.dy; |
| do_div(param->low_thr_voltage, param1.adc_vref); |
| param->low_thr_voltage += param1.adc_gnd; |
| |
| rc = qpnp_adc_map_temp_voltage(adcmap_100k_104ef_104fb, |
| ARRAY_SIZE(adcmap_100k_104ef_104fb), |
| param->high_thr_temp, ¶m->high_thr_voltage); |
| if (rc) |
| return rc; |
| |
| param->high_thr_voltage *= param1.dy; |
| do_div(param->high_thr_voltage, param1.adc_vref); |
| param->high_thr_voltage += param1.adc_gnd; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_tm_scale_therm_voltage_pu2); |
| |
| int32_t qpnp_adc_scale_batt_id(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties, |
| struct qpnp_vadc_result *adc_chan_result) |
| { |
| int64_t batt_id_voltage = 0; |
| |
| batt_id_voltage = qpnp_adc_scale_ratiometric_calib(adc_code, |
| adc_properties, chan_properties); |
| adc_chan_result->physical = batt_id_voltage; |
| adc_chan_result->physical = adc_chan_result->measurement; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_scale_batt_id); |
| |
| int32_t qpnp_adc_scale_default(int32_t adc_code, |
| const struct qpnp_adc_properties *adc_properties, |
| const struct qpnp_vadc_chan_properties *chan_properties, |
| struct qpnp_vadc_result *adc_chan_result) |
| { |
| bool negative_rawfromoffset = 0, negative_offset = 0; |
| int64_t scale_voltage = 0; |
| |
| if (!chan_properties || !chan_properties->offset_gain_numerator || |
| !chan_properties->offset_gain_denominator || !adc_properties |
| || !adc_chan_result) |
| return -EINVAL; |
| |
| scale_voltage = (adc_code - |
| chan_properties->adc_graph[CALIB_ABSOLUTE].adc_gnd) |
| * chan_properties->adc_graph[CALIB_ABSOLUTE].dx; |
| if (scale_voltage < 0) { |
| negative_offset = 1; |
| scale_voltage = -scale_voltage; |
| } |
| do_div(scale_voltage, |
| chan_properties->adc_graph[CALIB_ABSOLUTE].dy); |
| if (negative_offset) |
| scale_voltage = -scale_voltage; |
| scale_voltage += chan_properties->adc_graph[CALIB_ABSOLUTE].dx; |
| |
| if (scale_voltage < 0) { |
| if (adc_properties->bipolar) { |
| scale_voltage = -scale_voltage; |
| negative_rawfromoffset = 1; |
| } else { |
| scale_voltage = 0; |
| } |
| } |
| |
| adc_chan_result->measurement = scale_voltage * |
| chan_properties->offset_gain_denominator; |
| |
| /* do_div only perform positive integer division! */ |
| do_div(adc_chan_result->measurement, |
| chan_properties->offset_gain_numerator); |
| |
| if (negative_rawfromoffset) |
| adc_chan_result->measurement = -adc_chan_result->measurement; |
| |
| /* |
| * Note: adc_chan_result->measurement is in the unit of |
| * adc_properties.adc_reference. For generic channel processing, |
| * channel measurement is a scale/ratio relative to the adc |
| * reference input |
| */ |
| adc_chan_result->physical = adc_chan_result->measurement; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_scale_default); |
| |
| int32_t qpnp_adc_usb_scaler(struct qpnp_adc_tm_usbid_param *param, |
| uint32_t *low_threshold, uint32_t *high_threshold) |
| { |
| struct qpnp_vadc_linear_graph usb_param; |
| |
| qpnp_get_vadc_gain_and_offset(&usb_param, CALIB_RATIOMETRIC); |
| |
| *low_threshold = param->low_thr * usb_param.dy; |
| do_div(*low_threshold, usb_param.adc_vref); |
| *low_threshold += usb_param.adc_gnd; |
| |
| *high_threshold = param->high_thr * usb_param.dy; |
| do_div(*high_threshold, usb_param.adc_vref); |
| *high_threshold += usb_param.adc_gnd; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_usb_scaler); |
| |
| int32_t qpnp_adc_btm_scaler(struct qpnp_adc_tm_btm_param *param, |
| uint32_t *low_threshold, uint32_t *high_threshold) |
| { |
| struct qpnp_vadc_linear_graph btm_param; |
| int64_t *low_output = 0, *high_output = 0; |
| int rc = 0; |
| |
| qpnp_get_vadc_gain_and_offset(&btm_param, CALIB_RATIOMETRIC); |
| |
| rc = qpnp_adc_map_temp_voltage( |
| adcmap_btm_threshold, |
| ARRAY_SIZE(adcmap_btm_threshold), |
| (param->low_temp), |
| low_output); |
| if (rc) |
| return rc; |
| |
| *low_output *= btm_param.dy; |
| do_div(*low_output, btm_param.adc_vref); |
| *low_output += btm_param.adc_gnd; |
| |
| rc = qpnp_adc_map_temp_voltage( |
| adcmap_btm_threshold, |
| ARRAY_SIZE(adcmap_btm_threshold), |
| (param->high_temp), |
| high_output); |
| if (rc) |
| return rc; |
| |
| *high_output *= btm_param.dy; |
| do_div(*high_output, btm_param.adc_vref); |
| *high_output += btm_param.adc_gnd; |
| |
| low_threshold = (uint32_t *) low_output; |
| high_threshold = (uint32_t *) high_output; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_adc_btm_scaler); |
| |
| int32_t qpnp_vadc_check_result(int32_t *data) |
| { |
| if (*data < QPNP_VADC_MIN_ADC_CODE) |
| *data = QPNP_VADC_MIN_ADC_CODE; |
| else if (*data > QPNP_VADC_MAX_ADC_CODE) |
| *data = QPNP_VADC_MAX_ADC_CODE; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(qpnp_vadc_check_result); |
| |
| int32_t qpnp_adc_get_devicetree_data(struct spmi_device *spmi, |
| struct qpnp_adc_drv *adc_qpnp) |
| { |
| struct device_node *node = spmi->dev.of_node; |
| struct resource *res; |
| struct device_node *child; |
| struct qpnp_adc_amux *adc_channel_list; |
| struct qpnp_adc_properties *adc_prop; |
| struct qpnp_adc_amux_properties *amux_prop; |
| int count_adc_channel_list = 0, decimation, rc = 0, i = 0; |
| |
| if (!node) |
| return -EINVAL; |
| |
| for_each_child_of_node(node, child) |
| count_adc_channel_list++; |
| |
| if (!count_adc_channel_list) { |
| pr_err("No channel listing\n"); |
| return -EINVAL; |
| } |
| |
| adc_qpnp->spmi = spmi; |
| |
| adc_prop = devm_kzalloc(&spmi->dev, sizeof(struct qpnp_adc_properties), |
| GFP_KERNEL); |
| if (!adc_prop) { |
| dev_err(&spmi->dev, "Unable to allocate memory\n"); |
| return -ENOMEM; |
| } |
| adc_channel_list = devm_kzalloc(&spmi->dev, |
| ((sizeof(struct qpnp_adc_amux)) * count_adc_channel_list), |
| GFP_KERNEL); |
| if (!adc_channel_list) { |
| dev_err(&spmi->dev, "Unable to allocate memory\n"); |
| return -ENOMEM; |
| } |
| |
| amux_prop = devm_kzalloc(&spmi->dev, |
| sizeof(struct qpnp_adc_amux_properties) + |
| sizeof(struct qpnp_vadc_chan_properties), GFP_KERNEL); |
| if (!amux_prop) { |
| dev_err(&spmi->dev, "Unable to allocate memory\n"); |
| return -ENOMEM; |
| } |
| |
| adc_qpnp->adc_channels = adc_channel_list; |
| adc_qpnp->amux_prop = amux_prop; |
| |
| for_each_child_of_node(node, child) { |
| int channel_num, scaling, post_scaling, hw_settle_time; |
| int fast_avg_setup, calib_type, rc; |
| const char *calibration_param, *channel_name; |
| |
| channel_name = of_get_property(child, |
| "label", NULL) ? : child->name; |
| if (!channel_name) { |
| pr_err("Invalid channel name\n"); |
| return -EINVAL; |
| } |
| |
| rc = of_property_read_u32(child, "reg", &channel_num); |
| if (rc) { |
| pr_err("Invalid channel num\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, "qcom,decimation", |
| &decimation); |
| if (rc) { |
| pr_err("Invalid channel decimation property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, |
| "qcom,pre-div-channel-scaling", &scaling); |
| if (rc) { |
| pr_err("Invalid channel scaling property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, |
| "qcom,scale-function", &post_scaling); |
| if (rc) { |
| pr_err("Invalid channel post scaling property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, |
| "qcom,hw-settle-time", &hw_settle_time); |
| if (rc) { |
| pr_err("Invalid channel hw settle time property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(child, |
| "qcom,fast-avg-setup", &fast_avg_setup); |
| if (rc) { |
| pr_err("Invalid channel fast average setup\n"); |
| return -EINVAL; |
| } |
| calibration_param = of_get_property(child, |
| "qcom,calibration-type", NULL); |
| if (!strncmp(calibration_param, "absolute", 8)) |
| calib_type = CALIB_ABSOLUTE; |
| else if (!strncmp(calibration_param, "ratiometric", 11)) |
| calib_type = CALIB_RATIOMETRIC; |
| else { |
| pr_err("%s: Invalid calibration property\n", __func__); |
| return -EINVAL; |
| } |
| /* Individual channel properties */ |
| adc_channel_list[i].name = (char *)channel_name; |
| adc_channel_list[i].channel_num = channel_num; |
| adc_channel_list[i].chan_path_prescaling = scaling; |
| adc_channel_list[i].adc_decimation = decimation; |
| adc_channel_list[i].adc_scale_fn = post_scaling; |
| adc_channel_list[i].hw_settle_time = hw_settle_time; |
| adc_channel_list[i].fast_avg_setup = fast_avg_setup; |
| i++; |
| } |
| |
| /* Get the ADC VDD reference voltage and ADC bit resolution */ |
| rc = of_property_read_u32(node, "qcom,adc-vdd-reference", |
| &adc_prop->adc_vdd_reference); |
| if (rc) { |
| pr_err("Invalid adc vdd reference property\n"); |
| return -EINVAL; |
| } |
| rc = of_property_read_u32(node, "qcom,adc-bit-resolution", |
| &adc_prop->bitresolution); |
| if (rc) { |
| pr_err("Invalid adc bit resolution property\n"); |
| return -EINVAL; |
| } |
| adc_qpnp->adc_prop = adc_prop; |
| |
| /* Get the peripheral address */ |
| res = spmi_get_resource(spmi, 0, IORESOURCE_MEM, 0); |
| if (!res) { |
| pr_err("No base address definition\n"); |
| return -EINVAL; |
| } |
| |
| adc_qpnp->slave = spmi->sid; |
| adc_qpnp->offset = res->start; |
| |
| /* Register the ADC peripheral interrupt */ |
| adc_qpnp->adc_irq_eoc = spmi_get_irq_byname(spmi, NULL, |
| "eoc-int-en-set"); |
| if (adc_qpnp->adc_irq_eoc < 0) { |
| pr_err("Invalid irq\n"); |
| return -ENXIO; |
| } |
| |
| init_completion(&adc_qpnp->adc_rslt_completion); |
| |
| mutex_init(&adc_qpnp->adc_lock); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(qpnp_adc_get_devicetree_data); |