blob: 6d241a020693955e21024d5ab840e7547749ff76 [file] [log] [blame]
/* Copyright (c) 2014 The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "SMB358 %s: " fmt, __func__
#include <linux/i2c.h>
#include <linux/debugfs.h>
#include <linux/gpio.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/power_supply.h>
#include <linux/regulator/of_regulator.h>
#include <linux/regulator/machine.h>
#include <linux/regulator/consumer.h>
#include <linux/regulator/driver.h>
#include <linux/of.h>
#include <linux/of_gpio.h>
#include <linux/mutex.h>
#include <linux/qpnp/qpnp-adc.h>
/* Config/Control registers */
#define CHG_CURRENT_CTRL_REG 0x0
#define CHG_OTH_CURRENT_CTRL_REG 0x1
#define VARIOUS_FUNC_REG 0x2
#define VFLOAT_REG 0x3
#define CHG_CTRL_REG 0x4
#define STAT_AND_TIMER_CTRL_REG 0x5
#define CHG_PIN_EN_CTRL_REG 0x6
#define THERM_A_CTRL_REG 0x7
#define SYSOK_AND_USB3_REG 0x8
#define FAULT_INT_REG 0xC
#define STATUS_INT_REG 0xD
/* Command registers */
#define CMD_A_REG 0x30
#define CMD_B_REG 0x31
/* IRQ status registers */
#define IRQ_A_REG 0x35
#define IRQ_B_REG 0x36
#define IRQ_C_REG 0x37
#define IRQ_D_REG 0x38
#define IRQ_E_REG 0x39
#define IRQ_F_REG 0x3A
/* Status registers */
#define STATUS_C_REG 0x3D
#define STATUS_D_REG 0x3E
#define STATUS_E_REG 0x3F
/* Config bits */
#define CHG_INHI_EN_MASK BIT(1)
#define CHG_INHI_EN_BIT BIT(1)
#define CMD_A_CHG_ENABLE_BIT BIT(1)
#define CMD_A_VOLATILE_W_PERM_BIT BIT(7)
#define CMD_A_CHG_SUSP_EN_BIT BIT(2)
#define CMD_A_CHG_SUSP_EN_MASK BIT(2)
#define CMD_A_OTG_ENABLE_BIT BIT(4)
#define CMD_A_OTG_ENABLE_MASK BIT(4)
#define CMD_B_CHG_HC_ENABLE_BIT BIT(0)
#define USB3_ENABLE_BIT BIT(5)
#define USB3_ENABLE_MASK BIT(5)
#define CMD_B_CHG_USB_500_900_ENABLE_BIT BIT(1)
#define CHG_CTRL_AUTO_RECHARGE_ENABLE_BIT 0x0
#define CHG_CTRL_CURR_TERM_END_CHG_BIT 0x0
#define CHG_CTRL_BATT_MISSING_DET_THERM_IO (BIT(5) | BIT(4))
#define CHG_CTRL_AUTO_RECHARGE_MASK BIT(7)
#define CHG_CTRL_CURR_TERM_END_MASK BIT(6)
#define CHG_CTRL_BATT_MISSING_DET_MASK (BIT(5) | BIT(4))
#define CHG_CTRL_APSD_EN_BIT BIT(2)
#define CHG_CTRL_APSD_EN_MASK BIT(2)
#define CHG_ITERM_MASK 0x07
#define CHG_PIN_CTRL_USBCS_REG_BIT 0x0
/* This is to select if use external pin EN to control CHG */
#define CHG_PIN_CTRL_CHG_EN_LOW_PIN_BIT (BIT(5) | BIT(6))
#define CHG_PIN_CTRL_CHG_EN_LOW_REG_BIT 0x0
#define CHG_PIN_CTRL_CHG_EN_MASK (BIT(5) | BIT(6))
#define CHG_PIN_CTRL_USBCS_REG_MASK BIT(4)
#define CHG_PIN_CTRL_APSD_IRQ_BIT BIT(1)
#define CHG_PIN_CTRL_APSD_IRQ_MASK BIT(1)
#define CHG_PIN_CTRL_CHG_ERR_IRQ_BIT BIT(2)
#define CHG_PIN_CTRL_CHG_ERR_IRQ_MASK BIT(2)
#define VARIOUS_FUNC_USB_SUSP_EN_REG_BIT BIT(6)
#define VARIOUS_FUNC_USB_SUSP_MASK BIT(6)
#define FAULT_INT_HOT_COLD_HARD_BIT BIT(7)
#define FAULT_INT_HOT_COLD_SOFT_BIT BIT(6)
#define FAULT_INT_INPUT_OV_BIT BIT(3)
#define FAULT_INT_INPUT_UV_BIT BIT(2)
#define FAULT_INT_AICL_COMPLETE_BIT BIT(1)
#define STATUS_INT_CHG_TIMEOUT_BIT BIT(7)
#define STATUS_INT_OTG_DETECT_BIT BIT(6)
#define STATUS_INT_BATT_OV_BIT BIT(5)
#define STATUS_INT_CHGING_BIT BIT(4)
#define STATUS_INT_CHG_INHI_BIT BIT(3)
#define STATUS_INT_INOK_BIT BIT(2)
#define STATUS_INT_MISSING_BATT_BIT BIT(1)
#define STATUS_INT_LOW_BATT_BIT BIT(0)
#define THERM_A_THERM_MONITOR_EN_BIT 0x0
#define THERM_A_THERM_MONITOR_EN_MASK BIT(4)
#define VFLOAT_MASK 0x3F
/* IRQ status bits */
#define IRQ_A_HOT_HARD_BIT BIT(6)
#define IRQ_A_COLD_HARD_BIT BIT(4)
#define IRQ_A_HOT_SOFT_BIT BIT(2)
#define IRQ_A_COLD_SOFT_BIT BIT(0)
#define IRQ_B_BATT_MISSING_BIT BIT(4)
#define IRQ_B_BATT_LOW_BIT BIT(2)
#define IRQ_B_BATT_OV_BIT BIT(6)
#define IRQ_B_PRE_FAST_CHG_BIT BIT(0)
#define IRQ_C_TAPER_CHG_BIT BIT(2)
#define IRQ_C_TERM_BIT BIT(0)
#define IRQ_C_INT_OVER_TEMP_BIT BIT(6)
#define IRQ_D_CHG_TIMEOUT_BIT (BIT(0) | BIT(2))
#define IRQ_D_AICL_DONE_BIT BIT(4)
#define IRQ_D_APSD_COMPLETE BIT(6)
#define IRQ_E_INPUT_UV_BIT BIT(0)
#define IRQ_E_INPUT_OV_BIT BIT(2)
#define IRQ_E_AFVC_ACTIVE BIT(4)
#define IRQ_F_OTG_VALID_BIT BIT(2)
#define IRQ_F_OTG_BATT_FAIL_BIT BIT(4)
#define IRQ_F_OTG_OC_BIT BIT(6)
#define IRQ_F_POWER_OK BIT(0)
/* Status bits */
#define STATUS_C_CHARGING_MASK (BIT(1) | BIT(2))
#define STATUS_C_FAST_CHARGING BIT(2)
#define STATUS_C_PRE_CHARGING BIT(1)
#define STATUS_C_TAPER_CHARGING (BIT(2) | BIT(1))
#define STATUS_C_CHG_ERR_STATUS_BIT BIT(6)
#define STATUS_C_CHG_ENABLE_STATUS_BIT BIT(0)
#define STATUS_C_CHG_HOLD_OFF_BIT BIT(3)
#define STATUS_D_PORT_OTHER BIT(0)
#define STATUS_D_PORT_SDP BIT(1)
#define STATUS_D_PORT_DCP BIT(2)
#define STATUS_D_PORT_CDP BIT(3)
#define STATUS_D_PORT_ACA_A BIT(4)
#define STATUS_D_PORT_ACA_B BIT(5)
#define STATUS_D_PORT_ACA_C BIT(6)
#define STATUS_D_PORT_ACA_DOCK BIT(7)
/* constants */
#define USB2_MIN_CURRENT_MA 100
#define USB2_MAX_CURRENT_MA 500
#define USB3_MIN_CURRENT_MA 150
#define USB3_MAX_CURRENT_MA 900
#define AC_CHG_CURRENT_MASK 0x70
#define AC_CHG_CURRENT_SHIFT 4
#define SMB358_IRQ_REG_COUNT 6
#define SMB358_FAST_CHG_MIN_MA 200
#define SMB358_FAST_CHG_MAX_MA 2000
#define SMB358_FAST_CHG_SHIFT 5
#define SMB_FAST_CHG_CURRENT_MASK 0xE0
#define SMB358_DEFAULT_BATT_CAPACITY 50
enum {
USER = BIT(0),
THERMAL = BIT(1),
CURRENT = BIT(2),
};
struct smb358_regulator {
struct regulator_desc rdesc;
struct regulator_dev *rdev;
};
struct smb358_charger {
struct i2c_client *client;
struct device *dev;
bool recharge_disabled;
int recharge_mv;
bool iterm_disabled;
int iterm_ma;
int vfloat_mv;
int chg_valid_gpio;
int chg_valid_act_low;
int chg_present;
int fake_battery_soc;
bool chg_autonomous_mode;
bool disable_apsd;
bool using_pmic_therm;
bool battery_missing;
const char *bms_psy_name;
bool resume_completed;
bool irq_waiting;
struct mutex read_write_lock;
struct mutex path_suspend_lock;
struct mutex irq_complete;
u8 irq_cfg_mask[2];
int irq_gpio;
int charging_disabled;
int fastchg_current_max_ma;
/* debugfs related */
#if defined(CONFIG_DEBUG_FS)
struct dentry *debug_root;
u32 peek_poke_address;
#endif
/* status tracking */
bool batt_full;
bool batt_hot;
bool batt_cold;
bool batt_warm;
bool batt_cool;
int charging_disabled_status;
int usb_suspended;
/* power supply */
struct power_supply *usb_psy;
struct power_supply *bms_psy;
struct power_supply batt_psy;
/* otg 5V regulator */
struct smb358_regulator otg_vreg;
/* adc_tm paramters */
struct qpnp_vadc_chip *vadc_dev;
struct qpnp_adc_tm_chip *adc_tm_dev;
struct qpnp_adc_tm_btm_param adc_param;
int cold_bat_decidegc;
int hot_bat_decidegc;
int bat_present_decidegc;
/* i2c pull up regulator */
struct regulator *vcc_i2c;
};
struct smb_irq_info {
const char *name;
int (*smb_irq)(struct smb358_charger *chip,
u8 rt_stat);
int high;
int low;
};
struct irq_handler_info {
u8 stat_reg;
u8 val;
u8 prev_val;
struct smb_irq_info irq_info[4];
};
static int chg_current[] = {
300, 500, 700, 1000, 1200, 1500, 1800, 2000,
};
static int fast_chg_current[] = {
200, 450, 600, 900, 1300, 1500, 1800, 2000,
};
/* add supplied to "bms" function */
static char *pm_batt_supplied_to[] = {
"bms",
};
static int __smb358_read_reg(struct smb358_charger *chip, u8 reg, u8 *val)
{
s32 ret;
ret = i2c_smbus_read_byte_data(chip->client, reg);
if (ret < 0) {
dev_err(chip->dev,
"i2c read fail: can't read from %02x: %d\n", reg, ret);
return ret;
} else {
*val = ret;
}
return 0;
}
static int __smb358_write_reg(struct smb358_charger *chip, int reg, u8 val)
{
s32 ret;
ret = i2c_smbus_write_byte_data(chip->client, reg, val);
if (ret < 0) {
dev_err(chip->dev,
"i2c write fail: can't write %02x to %02x: %d\n",
val, reg, ret);
return ret;
}
return 0;
}
static int smb358_read_reg(struct smb358_charger *chip, int reg,
u8 *val)
{
int rc;
mutex_lock(&chip->read_write_lock);
rc = __smb358_read_reg(chip, reg, val);
mutex_unlock(&chip->read_write_lock);
return rc;
}
static int smb358_write_reg(struct smb358_charger *chip, int reg,
u8 val)
{
int rc;
mutex_lock(&chip->read_write_lock);
rc = __smb358_write_reg(chip, reg, val);
mutex_unlock(&chip->read_write_lock);
return rc;
}
static int smb358_masked_write(struct smb358_charger *chip, int reg,
u8 mask, u8 val)
{
s32 rc;
u8 temp;
mutex_lock(&chip->read_write_lock);
rc = __smb358_read_reg(chip, reg, &temp);
if (rc) {
dev_err(chip->dev,
"smb358_read_reg Failed: reg=%03X, rc=%d\n", reg, rc);
goto out;
}
temp &= ~mask;
temp |= val & mask;
rc = __smb358_write_reg(chip, reg, temp);
if (rc) {
dev_err(chip->dev,
"smb358_write Failed: reg=%03X, rc=%d\n", reg, rc);
}
out:
mutex_unlock(&chip->read_write_lock);
return rc;
}
static int smb358_enable_volatile_writes(struct smb358_charger *chip)
{
int rc;
rc = smb358_masked_write(chip, CMD_A_REG, CMD_A_VOLATILE_W_PERM_BIT,
CMD_A_VOLATILE_W_PERM_BIT);
if (rc)
dev_err(chip->dev, "Couldn't write VOLATILE_W_PERM_BIT rc=%d\n",
rc);
return rc;
}
static int smb358_fastchg_current_set(struct smb358_charger *chip)
{
int i;
if ((chip->fastchg_current_max_ma < SMB358_FAST_CHG_MIN_MA) ||
(chip->fastchg_current_max_ma > SMB358_FAST_CHG_MAX_MA)) {
dev_dbg(chip->dev, "bad fastchg current mA=%d asked to set\n",
chip->fastchg_current_max_ma);
return -EINVAL;
}
for (i = ARRAY_SIZE(fast_chg_current) - 1; i >= 0; i--) {
if (fast_chg_current[i] <= chip->fastchg_current_max_ma)
break;
}
if (i < 0) {
dev_err(chip->dev, "Invalid current setting %dmA\n",
chip->fastchg_current_max_ma);
i = 0;
}
i = i << SMB358_FAST_CHG_SHIFT;
dev_dbg(chip->dev, "fastchg limit=%d setting %02x\n",
chip->fastchg_current_max_ma, i);
return smb358_masked_write(chip, CHG_CURRENT_CTRL_REG,
SMB_FAST_CHG_CURRENT_MASK, i);
}
#define MIN_FLOAT_MV 3500
#define MAX_FLOAT_MV 4500
#define VFLOAT_STEP_MV 20
#define VFLOAT_4350MV 4350
static int smb358_float_voltage_set(struct smb358_charger *chip, int vfloat_mv)
{
u8 temp;
if ((vfloat_mv < MIN_FLOAT_MV) || (vfloat_mv > MAX_FLOAT_MV)) {
dev_err(chip->dev, "bad float voltage mv =%d asked to set\n",
vfloat_mv);
return -EINVAL;
}
if (VFLOAT_4350MV == vfloat_mv)
temp = 0x2B;
else if (vfloat_mv > VFLOAT_4350MV)
temp = (vfloat_mv - MIN_FLOAT_MV) / VFLOAT_STEP_MV - 1;
else
temp = (vfloat_mv - MIN_FLOAT_MV) / VFLOAT_STEP_MV;
return smb358_masked_write(chip, VFLOAT_REG, VFLOAT_MASK, temp);
}
#define CHG_ITERM_30MA 0x00
#define CHG_ITERM_40MA 0x01
#define CHG_ITERM_60MA 0x02
#define CHG_ITERM_80MA 0x03
#define CHG_ITERM_100MA 0x04
#define CHG_ITERM_125MA 0x05
#define CHG_ITERM_150MA 0x06
#define CHG_ITERM_200MA 0x07
static int smb358_term_current_set(struct smb358_charger *chip)
{
u8 reg = 0;
int rc;
if (chip->iterm_ma != -EINVAL) {
if (chip->iterm_disabled)
dev_err(chip->dev, "Error: Both iterm_disabled and iterm_ma set\n");
if (chip->iterm_ma <= 30)
reg = CHG_ITERM_30MA;
else if (chip->iterm_ma <= 40)
reg = CHG_ITERM_40MA;
else if (chip->iterm_ma <= 60)
reg = CHG_ITERM_60MA;
else if (chip->iterm_ma <= 80)
reg = CHG_ITERM_80MA;
else if (chip->iterm_ma <= 100)
reg = CHG_ITERM_100MA;
else if (chip->iterm_ma <= 125)
reg = CHG_ITERM_125MA;
else if (chip->iterm_ma <= 150)
reg = CHG_ITERM_150MA;
else
reg = CHG_ITERM_200MA;
rc = smb358_masked_write(chip, CHG_CURRENT_CTRL_REG,
CHG_ITERM_MASK, reg);
if (rc) {
dev_err(chip->dev,
"Couldn't set iterm rc = %d\n", rc);
return rc;
}
}
if (chip->iterm_disabled) {
rc = smb358_masked_write(chip, CHG_CTRL_REG,
CHG_CTRL_CURR_TERM_END_MASK,
CHG_CTRL_CURR_TERM_END_MASK);
if (rc) {
dev_err(chip->dev, "Couldn't set iterm rc = %d\n",
rc);
return rc;
}
} else {
rc = smb358_masked_write(chip, CHG_CTRL_REG,
CHG_CTRL_CURR_TERM_END_MASK, 0);
if (rc) {
dev_err(chip->dev,
"Couldn't enable iterm rc = %d\n", rc);
return rc;
}
}
return 0;
}
#define VFLT_300MV 0x0C
#define VFLT_200MV 0x08
#define VFLT_100MV 0x04
#define VFLT_50MV 0x00
#define VFLT_MASK 0x0C
static int smb358_recharge_set(struct smb358_charger *chip)
{
u8 reg = 0;
int rc;
if (chip->recharge_disabled)
rc = smb358_masked_write(chip, CHG_OTH_CURRENT_CTRL_REG,
CHG_INHI_EN_MASK, 0x0);
else
rc = smb358_masked_write(chip, CHG_OTH_CURRENT_CTRL_REG,
CHG_INHI_EN_MASK, CHG_INHI_EN_BIT);
if (rc) {
dev_err(chip->dev,
"Couldn't set inhibit en reg rc = %d\n", rc);
return rc;
}
if (chip->recharge_mv != -EINVAL) {
if (chip->recharge_mv <= 50)
reg = VFLT_50MV;
else if (chip->recharge_mv <= 100)
reg = VFLT_100MV;
else if (chip->recharge_mv <= 200)
reg = VFLT_200MV;
else
reg = VFLT_300MV;
rc = smb358_masked_write(chip, CHG_OTH_CURRENT_CTRL_REG,
VFLT_MASK, reg);
if (rc) {
dev_err(chip->dev,
"Couldn't set inhibit threshold rc = %d\n", rc);
return rc;
}
}
return 0;
}
static int smb358_chg_otg_regulator_enable(struct regulator_dev *rdev)
{
int rc = 0;
struct smb358_charger *chip = rdev_get_drvdata(rdev);
rc = smb358_masked_write(chip, CMD_A_REG, CMD_A_OTG_ENABLE_BIT,
CMD_A_OTG_ENABLE_BIT);
if (rc)
dev_err(chip->dev, "Couldn't enable OTG mode rc=%d, reg=%2x\n",
rc, CMD_A_REG);
return rc;
}
static int smb358_chg_otg_regulator_disable(struct regulator_dev *rdev)
{
int rc = 0;
struct smb358_charger *chip = rdev_get_drvdata(rdev);
rc = smb358_masked_write(chip, CMD_A_REG, CMD_A_OTG_ENABLE_BIT, 0);
if (rc)
dev_err(chip->dev, "Couldn't disable OTG mode rc=%d, reg=%2x\n",
rc, CMD_A_REG);
return rc;
}
static int smb358_chg_otg_regulator_is_enable(struct regulator_dev *rdev)
{
int rc = 0;
u8 reg = 0;
struct smb358_charger *chip = rdev_get_drvdata(rdev);
rc = smb358_read_reg(chip, CMD_A_REG, &reg);
if (rc) {
dev_err(chip->dev,
"Couldn't read OTG enable bit rc=%d, reg=%2x\n",
rc, CMD_A_REG);
return rc;
}
return (reg & CMD_A_OTG_ENABLE_BIT) ? 1 : 0;
}
struct regulator_ops smb358_chg_otg_reg_ops = {
.enable = smb358_chg_otg_regulator_enable,
.disable = smb358_chg_otg_regulator_disable,
.is_enabled = smb358_chg_otg_regulator_is_enable,
};
static int smb358_regulator_init(struct smb358_charger *chip)
{
int rc = 0;
struct regulator_init_data *init_data;
struct regulator_config cfg;
init_data = of_get_regulator_init_data(chip->dev, chip->dev->of_node);
if (!init_data) {
dev_err(chip->dev, "Get regulator init data failed\n");
return -EINVAL;
}
/* Give the name, then will register */
if (init_data->constraints.name) {
chip->otg_vreg.rdesc.owner = THIS_MODULE;
chip->otg_vreg.rdesc.type = REGULATOR_VOLTAGE;
chip->otg_vreg.rdesc.ops = &smb358_chg_otg_reg_ops;
chip->otg_vreg.rdesc.name = init_data->constraints.name;
cfg.dev = chip->dev;
cfg.init_data = init_data;
cfg.driver_data = chip;
cfg.of_node = chip->dev->of_node;
init_data->constraints.valid_ops_mask
|= REGULATOR_CHANGE_STATUS;
chip->otg_vreg.rdev = regulator_register(
&chip->otg_vreg.rdesc, &cfg);
if (IS_ERR(chip->otg_vreg.rdev)) {
rc = PTR_ERR(chip->otg_vreg.rdev);
chip->otg_vreg.rdev = NULL;
if (rc != -EPROBE_DEFER)
dev_err(chip->dev,
"OTG reg failed, rc=%d\n", rc);
}
}
return rc;
}
static int __smb358_charging_disable(struct smb358_charger *chip, bool disable)
{
int rc;
rc = smb358_masked_write(chip, CMD_A_REG, CMD_A_CHG_ENABLE_BIT,
disable ? 0 : CMD_A_CHG_ENABLE_BIT);
if (rc < 0)
pr_err("Couldn't set CHG_ENABLE_BIT diable = %d, rc = %d\n",
disable, rc);
return rc;
}
static int smb358_charging_disable(struct smb358_charger *chip,
int reason, int disable)
{
int rc = 0;
int disabled;
disabled = chip->charging_disabled_status;
pr_debug("reason = %d requested_disable = %d disabled_status = %d\n",
reason, disable, disabled);
if (disable == true)
disabled |= reason;
else
disabled &= ~reason;
if (!!disabled == !!chip->charging_disabled_status)
goto skip;
rc = __smb358_charging_disable(chip, !!disabled);
if (rc) {
pr_err("Failed to disable charging rc = %d\n", rc);
return rc;
} else {
/* will not modify online status in this condition */
power_supply_changed(&chip->batt_psy);
}
skip:
chip->charging_disabled_status = disabled;
return rc;
}
static int smb358_hw_init(struct smb358_charger *chip)
{
int rc;
u8 reg = 0, mask = 0;
/*
* If the charger is pre-configured for autonomous operation,
* do not apply additonal settings
*/
if (chip->chg_autonomous_mode) {
dev_dbg(chip->dev, "Charger configured for autonomous mode\n");
return 0;
}
rc = smb358_enable_volatile_writes(chip);
if (rc) {
dev_err(chip->dev, "Couldn't configure volatile writes rc=%d\n",
rc);
return rc;
}
/* setup defaults for CHG_CNTRL_REG */
reg = CHG_CTRL_BATT_MISSING_DET_THERM_IO;
mask = CHG_CTRL_BATT_MISSING_DET_MASK;
rc = smb358_masked_write(chip, CHG_CTRL_REG, mask, reg);
if (rc) {
dev_err(chip->dev, "Couldn't set CHG_CTRL_REG rc=%d\n", rc);
return rc;
}
/* setup defaults for PIN_CTRL_REG */
reg = CHG_PIN_CTRL_USBCS_REG_BIT | CHG_PIN_CTRL_CHG_EN_LOW_REG_BIT |
CHG_PIN_CTRL_APSD_IRQ_BIT | CHG_PIN_CTRL_CHG_ERR_IRQ_BIT;
mask = CHG_PIN_CTRL_CHG_EN_MASK | CHG_PIN_CTRL_USBCS_REG_MASK |
CHG_PIN_CTRL_APSD_IRQ_MASK | CHG_PIN_CTRL_CHG_ERR_IRQ_MASK;
rc = smb358_masked_write(chip, CHG_PIN_EN_CTRL_REG, mask, reg);
if (rc) {
dev_err(chip->dev, "Couldn't set CHG_PIN_EN_CTRL_REG rc=%d\n",
rc);
return rc;
}
/* setup USB suspend and APSD */
rc = smb358_masked_write(chip, VARIOUS_FUNC_REG,
VARIOUS_FUNC_USB_SUSP_MASK, VARIOUS_FUNC_USB_SUSP_EN_REG_BIT);
if (rc) {
dev_err(chip->dev, "Couldn't set VARIOUS_FUNC_REG rc=%d\n",
rc);
return rc;
}
if (!chip->disable_apsd)
reg = CHG_CTRL_APSD_EN_BIT;
rc = smb358_masked_write(chip, CHG_CTRL_REG,
CHG_CTRL_APSD_EN_MASK, reg);
if (rc) {
dev_err(chip->dev, "Couldn't set CHG_CTRL_REG rc=%d\n",
rc);
return rc;
}
/* Fault and Status IRQ configuration */
reg = FAULT_INT_HOT_COLD_HARD_BIT | FAULT_INT_HOT_COLD_SOFT_BIT
| FAULT_INT_INPUT_UV_BIT | FAULT_INT_AICL_COMPLETE_BIT
| FAULT_INT_INPUT_OV_BIT;
rc = smb358_write_reg(chip, FAULT_INT_REG, reg);
if (rc) {
dev_err(chip->dev, "Couldn't set FAULT_INT_REG rc=%d\n", rc);
return rc;
}
reg = STATUS_INT_CHG_TIMEOUT_BIT | STATUS_INT_OTG_DETECT_BIT |
STATUS_INT_BATT_OV_BIT | STATUS_INT_CHGING_BIT |
STATUS_INT_CHG_INHI_BIT | STATUS_INT_INOK_BIT |
STATUS_INT_LOW_BATT_BIT | STATUS_INT_MISSING_BATT_BIT;
rc = smb358_write_reg(chip, STATUS_INT_REG, reg);
if (rc) {
dev_err(chip->dev, "Couldn't set STATUS_INT_REG rc=%d\n", rc);
return rc;
}
/* setup THERM Monitor */
rc = smb358_masked_write(chip, THERM_A_CTRL_REG,
THERM_A_THERM_MONITOR_EN_MASK, THERM_A_THERM_MONITOR_EN_BIT);
if (rc) {
dev_err(chip->dev, "Couldn't set THERM_A_CTRL_REG rc=%d\n",
rc);
return rc;
}
/* set the fast charge current limit */
rc = smb358_fastchg_current_set(chip);
if (rc) {
dev_err(chip->dev, "Couldn't set fastchg current rc=%d\n", rc);
return rc;
}
/* set the float voltage */
rc = smb358_float_voltage_set(chip, chip->vfloat_mv);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't set float voltage rc = %d\n", rc);
return rc;
}
/* set iterm */
rc = smb358_term_current_set(chip);
if (rc)
dev_err(chip->dev, "Couldn't set term current rc=%d\n", rc);
/* set recharge */
rc = smb358_recharge_set(chip);
if (rc)
dev_err(chip->dev, "Couldn't set recharge para rc=%d\n", rc);
/* enable/disable charging */
rc = smb358_charging_disable(chip, USER, !!chip->charging_disabled);
if (rc)
dev_err(chip->dev, "Couldn't '%s' charging rc = %d\n",
chip->charging_disabled ? "disable" : "enable", rc);
return rc;
}
static enum power_supply_property smb358_battery_properties[] = {
POWER_SUPPLY_PROP_STATUS,
POWER_SUPPLY_PROP_PRESENT,
POWER_SUPPLY_PROP_CHARGING_ENABLED,
POWER_SUPPLY_PROP_CHARGE_TYPE,
POWER_SUPPLY_PROP_CAPACITY,
POWER_SUPPLY_PROP_HEALTH,
POWER_SUPPLY_PROP_TECHNOLOGY,
POWER_SUPPLY_PROP_MODEL_NAME,
POWER_SUPPLY_PROP_TEMP,
POWER_SUPPLY_PROP_VOLTAGE_NOW,
};
static int smb358_get_prop_batt_status(struct smb358_charger *chip)
{
int rc;
u8 reg = 0;
if (chip->batt_full)
return POWER_SUPPLY_STATUS_FULL;
rc = smb358_read_reg(chip, STATUS_C_REG, &reg);
if (rc) {
dev_err(chip->dev, "Couldn't read STAT_C rc = %d\n", rc);
return POWER_SUPPLY_STATUS_UNKNOWN;
}
dev_dbg(chip->dev, "%s: STATUS_C_REG=%x\n", __func__, reg);
if (reg & STATUS_C_CHG_HOLD_OFF_BIT)
return POWER_SUPPLY_STATUS_NOT_CHARGING;
if ((reg & STATUS_C_CHARGING_MASK) &&
!(reg & STATUS_C_CHG_ERR_STATUS_BIT))
return POWER_SUPPLY_STATUS_CHARGING;
return POWER_SUPPLY_STATUS_DISCHARGING;
}
static int smb358_get_prop_batt_present(struct smb358_charger *chip)
{
return !chip->battery_missing;
}
static int smb358_get_prop_batt_capacity(struct smb358_charger *chip)
{
union power_supply_propval ret = {0, };
if (chip->fake_battery_soc >= 0)
return chip->fake_battery_soc;
if (chip->bms_psy) {
chip->bms_psy->get_property(chip->bms_psy,
POWER_SUPPLY_PROP_CAPACITY, &ret);
return ret.intval;
}
dev_dbg(chip->dev,
"Couldn't get bms_psy, return default capacity\n");
return SMB358_DEFAULT_BATT_CAPACITY;
}
static int smb358_get_prop_charge_type(struct smb358_charger *chip)
{
int rc;
u8 reg = 0;
rc = smb358_read_reg(chip, STATUS_C_REG, &reg);
if (rc) {
dev_err(chip->dev, "Couldn't read STAT_C rc = %d\n", rc);
return POWER_SUPPLY_CHARGE_TYPE_UNKNOWN;
}
dev_dbg(chip->dev, "%s: STATUS_C_REG=%x\n", __func__, reg);
reg &= STATUS_C_CHARGING_MASK;
if (reg == STATUS_C_FAST_CHARGING)
return POWER_SUPPLY_CHARGE_TYPE_FAST;
else if (reg == STATUS_C_TAPER_CHARGING)
return POWER_SUPPLY_CHARGE_TYPE_TAPER;
else if (reg == STATUS_C_PRE_CHARGING)
return POWER_SUPPLY_CHARGE_TYPE_TRICKLE;
else
return POWER_SUPPLY_CHARGE_TYPE_NONE;
}
static int smb358_get_prop_batt_health(struct smb358_charger *chip)
{
union power_supply_propval ret = {0, };
if (chip->batt_hot)
ret.intval = POWER_SUPPLY_HEALTH_OVERHEAT;
else if (chip->batt_cold)
ret.intval = POWER_SUPPLY_HEALTH_COLD;
else if (chip->batt_warm)
ret.intval = POWER_SUPPLY_HEALTH_WARM;
else if (chip->batt_cool)
ret.intval = POWER_SUPPLY_HEALTH_COOL;
else
ret.intval = POWER_SUPPLY_HEALTH_GOOD;
return ret.intval;
}
#define DEFAULT_TEMP 250
static int smb358_get_prop_batt_temp(struct smb358_charger *chip)
{
int rc = 0;
struct qpnp_vadc_result results;
if (!smb358_get_prop_batt_present(chip))
return DEFAULT_TEMP;
rc = qpnp_vadc_read(chip->vadc_dev, LR_MUX1_BATT_THERM, &results);
if (rc) {
pr_debug("Unable to read batt temperature rc=%d\n", rc);
return DEFAULT_TEMP;
}
pr_debug("get_bat_temp %d, %lld\n",
results.adc_code, results.physical);
return (int)results.physical;
}
static int
smb358_get_prop_battery_voltage_now(struct smb358_charger *chip)
{
int rc = 0;
struct qpnp_vadc_result results;
rc = qpnp_vadc_read(chip->vadc_dev, VBAT_SNS, &results);
if (rc) {
pr_err("Unable to read vbat rc=%d\n", rc);
return 0;
}
return results.physical;
}
static int __smb358_path_suspend(struct smb358_charger *chip, bool suspend)
{
int rc;
rc = smb358_masked_write(chip, CMD_A_REG,
CMD_A_CHG_SUSP_EN_MASK,
suspend ? CMD_A_CHG_SUSP_EN_BIT : 0);
if (rc < 0)
dev_err(chip->dev, "Couldn't set CMD_A reg, rc = %d\n", rc);
return rc;
}
static int smb358_path_suspend(struct smb358_charger *chip, int reason,
bool suspend)
{
int rc = 0;
int suspended;
mutex_lock(&chip->path_suspend_lock);
suspended = chip->usb_suspended;
if (suspend == false)
suspended &= ~reason;
else
suspended |= reason;
if (!chip->usb_suspended && suspended) {
rc = __smb358_path_suspend(chip, true);
chip->usb_suspended = suspended;
power_supply_set_online(chip->usb_psy, !chip->usb_suspended);
power_supply_changed(chip->usb_psy);
} else if (chip->usb_suspended && !suspended) {
rc = __smb358_path_suspend(chip, false);
chip->usb_suspended = suspended;
power_supply_set_online(chip->usb_psy, !chip->usb_suspended);
power_supply_changed(chip->usb_psy);
}
if (rc)
dev_err(chip->dev, "Couldn't set/unset suspend rc = %d\n", rc);
mutex_unlock(&chip->path_suspend_lock);
return rc;
}
static int smb358_set_usb_chg_current(struct smb358_charger *chip,
int current_ma)
{
int i, rc = 0;
u8 reg1 = 0, reg2 = 0, mask = 0;
dev_dbg(chip->dev, "%s: USB current_ma = %d\n", __func__, current_ma);
if (chip->chg_autonomous_mode) {
dev_dbg(chip->dev, "%s: Charger in autonmous mode\n", __func__);
return 0;
}
if (current_ma < USB3_MIN_CURRENT_MA && current_ma != 2)
current_ma = USB2_MIN_CURRENT_MA;
if (current_ma == USB2_MIN_CURRENT_MA) {
/* USB 2.0 - 100mA */
reg1 &= ~USB3_ENABLE_BIT;
reg2 &= ~CMD_B_CHG_USB_500_900_ENABLE_BIT;
} else if (current_ma == USB2_MAX_CURRENT_MA) {
/* USB 2.0 - 500mA */
reg1 &= ~USB3_ENABLE_BIT;
reg2 |= CMD_B_CHG_USB_500_900_ENABLE_BIT;
} else if (current_ma == USB3_MAX_CURRENT_MA) {
/* USB 3.0 - 900mA */
reg1 |= USB3_ENABLE_BIT;
reg2 |= CMD_B_CHG_USB_500_900_ENABLE_BIT;
} else if (current_ma > USB2_MAX_CURRENT_MA) {
/* HC mode - if none of the above */
reg2 |= CMD_B_CHG_HC_ENABLE_BIT;
for (i = ARRAY_SIZE(chg_current) - 1; i >= 0; i--) {
if (chg_current[i] <= current_ma)
break;
}
if (i < 0) {
dev_err(chip->dev, "Cannot find %dmA\n", current_ma);
i = 0;
}
i = i << AC_CHG_CURRENT_SHIFT;
rc = smb358_masked_write(chip, CHG_OTH_CURRENT_CTRL_REG,
AC_CHG_CURRENT_MASK, i);
if (rc)
dev_err(chip->dev, "Couldn't set input mA rc=%d\n", rc);
}
mask = CMD_B_CHG_HC_ENABLE_BIT | CMD_B_CHG_USB_500_900_ENABLE_BIT;
rc = smb358_masked_write(chip, CMD_B_REG, mask, reg2);
if (rc < 0)
dev_err(chip->dev, "Couldn't set charging mode rc = %d\n", rc);
mask = USB3_ENABLE_MASK;
rc = smb358_masked_write(chip, SYSOK_AND_USB3_REG, mask, reg1);
if (rc < 0)
dev_err(chip->dev, "Couldn't set USB3 mode rc = %d\n", rc);
/* Only set suspend bit when chg present and current_ma = 2 */
if (current_ma == 2 && chip->chg_present) {
rc = smb358_path_suspend(chip, CURRENT, true);
if (rc < 0)
dev_err(chip->dev, "Couldn't suspend rc = %d\n", rc);
} else {
rc = smb358_path_suspend(chip, CURRENT, false);
if (rc < 0)
dev_err(chip->dev, "Couldn't set susp rc = %d\n", rc);
}
return rc;
}
static int
smb358_batt_property_is_writeable(struct power_supply *psy,
enum power_supply_property psp)
{
switch (psp) {
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
case POWER_SUPPLY_PROP_CAPACITY:
return 1;
default:
break;
}
return 0;
}
static int bound_soc(int soc)
{
soc = max(0, soc);
soc = min(soc, 100);
return soc;
}
static int smb358_battery_set_property(struct power_supply *psy,
enum power_supply_property prop,
const union power_supply_propval *val)
{
struct smb358_charger *chip = container_of(psy,
struct smb358_charger, batt_psy);
switch (prop) {
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
smb358_charging_disable(chip, USER, !val->intval);
smb358_path_suspend(chip, USER, !val->intval);
break;
case POWER_SUPPLY_PROP_CAPACITY:
chip->fake_battery_soc = bound_soc(val->intval);
power_supply_changed(&chip->batt_psy);
break;
default:
return -EINVAL;
}
return 0;
}
static int smb358_battery_get_property(struct power_supply *psy,
enum power_supply_property prop,
union power_supply_propval *val)
{
struct smb358_charger *chip = container_of(psy,
struct smb358_charger, batt_psy);
switch (prop) {
case POWER_SUPPLY_PROP_STATUS:
val->intval = smb358_get_prop_batt_status(chip);
break;
case POWER_SUPPLY_PROP_PRESENT:
val->intval = smb358_get_prop_batt_present(chip);
break;
case POWER_SUPPLY_PROP_CAPACITY:
val->intval = smb358_get_prop_batt_capacity(chip);
break;
case POWER_SUPPLY_PROP_CHARGING_ENABLED:
val->intval = !(chip->charging_disabled_status & USER);
break;
case POWER_SUPPLY_PROP_CHARGE_TYPE:
val->intval = smb358_get_prop_charge_type(chip);
break;
case POWER_SUPPLY_PROP_HEALTH:
val->intval = smb358_get_prop_batt_health(chip);
break;
case POWER_SUPPLY_PROP_TECHNOLOGY:
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
break;
case POWER_SUPPLY_PROP_MODEL_NAME:
val->strval = "SMB358";
break;
case POWER_SUPPLY_PROP_TEMP:
val->intval = smb358_get_prop_batt_temp(chip);
break;
case POWER_SUPPLY_PROP_VOLTAGE_NOW:
val->intval = smb358_get_prop_battery_voltage_now(chip);
break;
default:
return -EINVAL;
}
return 0;
}
static int apsd_complete(struct smb358_charger *chip, u8 status)
{
int rc;
u8 reg = 0;
enum power_supply_type type = POWER_SUPPLY_TYPE_UNKNOWN;
/*
* If apsd is disabled, charger detection is done by
* DCIN UV irq.
* status = ZERO - indicates charger removed, handled
* by DCIN UV irq
*/
if (chip->disable_apsd || status == 0) {
dev_dbg(chip->dev, "APSD %s, status = %d\n",
chip->disable_apsd ? "disabled" : "enabled", !!status);
return 0;
}
rc = smb358_read_reg(chip, STATUS_D_REG, &reg);
if (rc) {
dev_err(chip->dev, "Couldn't read STATUS D rc = %d\n", rc);
return rc;
}
dev_dbg(chip->dev, "%s: STATUS_D_REG=%x\n", __func__, reg);
switch (reg) {
case STATUS_D_PORT_ACA_DOCK:
case STATUS_D_PORT_ACA_C:
case STATUS_D_PORT_ACA_B:
case STATUS_D_PORT_ACA_A:
type = POWER_SUPPLY_TYPE_USB_ACA;
break;
case STATUS_D_PORT_CDP:
type = POWER_SUPPLY_TYPE_USB_CDP;
break;
case STATUS_D_PORT_DCP:
type = POWER_SUPPLY_TYPE_USB_DCP;
break;
case STATUS_D_PORT_SDP:
type = POWER_SUPPLY_TYPE_USB;
break;
case STATUS_D_PORT_OTHER:
type = POWER_SUPPLY_TYPE_USB_DCP;
break;
default:
type = POWER_SUPPLY_TYPE_USB;
break;
}
chip->chg_present = !!status;
dev_dbg(chip->dev, "APSD complete. USB type detected=%d chg_present=%d",
type, chip->chg_present);
power_supply_set_charge_type(chip->usb_psy, type);
/* SMB is now done sampling the D+/D- lines, indicate USB driver */
dev_dbg(chip->dev, "%s updating usb_psy present=%d", __func__,
chip->chg_present);
power_supply_set_present(chip->usb_psy, chip->chg_present);
return 0;
}
static int chg_uv(struct smb358_charger *chip, u8 status)
{
/* use this to detect USB insertion only if !apsd */
if (chip->disable_apsd && status == 0) {
chip->chg_present = true;
dev_dbg(chip->dev, "%s updating usb_psy present=%d",
__func__, chip->chg_present);
power_supply_set_supply_type(chip->usb_psy,
POWER_SUPPLY_TYPE_USB);
power_supply_set_present(chip->usb_psy, chip->chg_present);
}
if (status != 0) {
chip->chg_present = false;
dev_dbg(chip->dev, "%s updating usb_psy present=%d",
__func__, chip->chg_present);
/* we can't set usb_psy as UNKNOWN here, will lead USERSPACE issue */
power_supply_set_present(chip->usb_psy, chip->chg_present);
}
power_supply_changed(chip->usb_psy);
dev_dbg(chip->dev, "chip->chg_present = %d\n", chip->chg_present);
return 0;
}
static int chg_ov(struct smb358_charger *chip, u8 status)
{
u8 psy_health_sts;
if (status)
psy_health_sts = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
else
psy_health_sts = POWER_SUPPLY_HEALTH_GOOD;
power_supply_set_health_state(
chip->usb_psy, psy_health_sts);
power_supply_changed(chip->usb_psy);
return 0;
}
static int fast_chg(struct smb358_charger *chip, u8 status)
{
dev_dbg(chip->dev, "%s\n", __func__);
return 0;
}
static int chg_term(struct smb358_charger *chip, u8 status)
{
dev_dbg(chip->dev, "%s\n", __func__);
chip->batt_full = !!status;
return 0;
}
static int taper_chg(struct smb358_charger *chip, u8 status)
{
dev_dbg(chip->dev, "%s\n", __func__);
return 0;
}
static int chg_recharge(struct smb358_charger *chip, u8 status)
{
dev_dbg(chip->dev, "%s, status = %d\n", __func__, !!status);
/* to check the status mean */
chip->batt_full = !status;
return 0;
}
#define HYSTERISIS_DECIDEGC 20
static void smb_chg_adc_notification(enum qpnp_tm_state state, void *ctx)
{
struct smb358_charger *chip = ctx;
bool bat_hot = 0, bat_cold = 0, bat_present = 0;
int temp;
if (state >= ADC_TM_STATE_NUM) {
pr_err("invallid state parameter %d\n", state);
return;
}
temp = smb358_get_prop_batt_temp(chip);
pr_debug("temp = %d state = %s\n", temp,
state == ADC_TM_WARM_STATE ? "hot" : "cold");
if (state == ADC_TM_WARM_STATE) {
if (temp > chip->hot_bat_decidegc) {
/* Normal to hot */
bat_hot = true;
bat_cold = false;
bat_present = true;
chip->adc_param.low_temp =
chip->hot_bat_decidegc - HYSTERISIS_DECIDEGC;
/* shall we need add high_temp here? */
chip->adc_param.state_request =
ADC_TM_COOL_THR_ENABLE;
} else if (temp >
chip->cold_bat_decidegc + HYSTERISIS_DECIDEGC) {
/* Cool to normal */
bat_hot = false;
bat_cold = false;
bat_present = true;
chip->adc_param.low_temp = chip->cold_bat_decidegc;
chip->adc_param.high_temp = chip->hot_bat_decidegc;
chip->adc_param.state_request =
ADC_TM_HIGH_LOW_THR_ENABLE;
} else if (temp > chip->bat_present_decidegc) {
/* Present to cold */
bat_hot = false;
bat_cold = true;
bat_present = true;
chip->adc_param.high_temp = chip->cold_bat_decidegc;
chip->adc_param.low_temp = chip->bat_present_decidegc;
chip->adc_param.state_request =
ADC_TM_HIGH_LOW_THR_ENABLE;
}
} else {
if (temp <= chip->bat_present_decidegc) {
/* Cold to present */
bat_cold = true;
bat_hot = false;
bat_present = false;
chip->adc_param.high_temp =
chip->bat_present_decidegc;
chip->adc_param.state_request =
ADC_TM_WARM_THR_ENABLE;
} else if (chip->bat_present_decidegc < temp &&
temp < chip->cold_bat_decidegc) {
/* Normal to cold */
bat_hot = false;
bat_cold = true;
bat_present = true;
chip->adc_param.high_temp =
chip->cold_bat_decidegc + HYSTERISIS_DECIDEGC;
/* add low_temp to enable batt present check */
chip->adc_param.low_temp =
chip->bat_present_decidegc;
chip->adc_param.state_request =
ADC_TM_HIGH_LOW_THR_ENABLE;
} else if (temp <
chip->hot_bat_decidegc - HYSTERISIS_DECIDEGC) {
/* Warm to normal */
bat_hot = false;
bat_cold = false;
bat_present = true;
chip->adc_param.low_temp = chip->cold_bat_decidegc;
chip->adc_param.high_temp = chip->hot_bat_decidegc;
chip->adc_param.state_request =
ADC_TM_HIGH_LOW_THR_ENABLE;
}
}
if (bat_present)
chip->battery_missing = false;
else
chip->battery_missing = true;
if (bat_hot ^ chip->batt_hot || bat_cold ^ chip->batt_cold) {
chip->batt_hot = bat_hot;
chip->batt_cold = bat_cold;
/* stop charging explicitly since we use PMIC thermal pin*/
if (bat_hot || bat_cold || chip->battery_missing)
smb358_charging_disable(chip, THERMAL, 1);
else
smb358_charging_disable(chip, THERMAL, 0);
}
pr_debug("hot %d, cold %d, missing %d, low = %d deciDegC, high = %d deciDegC\n",
chip->batt_hot, chip->batt_cold, chip->battery_missing,
chip->adc_param.low_temp, chip->adc_param.high_temp);
if (qpnp_adc_tm_channel_measure(chip->adc_tm_dev, &chip->adc_param))
pr_err("request ADC error\n");
}
/* only for SMB thermal */
static int hot_hard_handler(struct smb358_charger *chip, u8 status)
{
pr_debug("status = 0x%02x\n", status);
chip->batt_hot = !!status;
return 0;
}
static int cold_hard_handler(struct smb358_charger *chip, u8 status)
{
pr_debug("status = 0x%02x\n", status);
chip->batt_cold = !!status;
return 0;
}
static int hot_soft_handler(struct smb358_charger *chip, u8 status)
{
pr_debug("status = 0x%02x\n", status);
chip->batt_warm = !!status;
return 0;
}
static int cold_soft_handler(struct smb358_charger *chip, u8 status)
{
pr_debug("status = 0x%02x\n", status);
chip->batt_cool = !!status;
return 0;
}
static int battery_missing(struct smb358_charger *chip, u8 status)
{
chip->battery_missing = !!status;
return 0;
}
static struct irq_handler_info handlers[] = {
[0] = {
.stat_reg = IRQ_A_REG,
.val = 0,
.prev_val = 0,
.irq_info = {
{
.name = "cold_soft",
.smb_irq = cold_soft_handler,
},
{
.name = "hot_soft",
.smb_irq = hot_soft_handler,
},
{
.name = "cold_hard",
.smb_irq = cold_hard_handler,
},
{
.name = "hot_hard",
.smb_irq = hot_hard_handler,
},
},
},
[1] = {
.stat_reg = IRQ_B_REG,
.val = 0,
.prev_val = 0,
.irq_info = {
{
.name = "chg_hot",
},
{
.name = "vbat_low",
},
{
.name = "battery_missing",
.smb_irq = battery_missing
},
{
.name = "battery_ov",
},
},
},
[2] = {
.stat_reg = IRQ_C_REG,
.val = 0,
.prev_val = 0,
.irq_info = {
{
.name = "chg_term",
.smb_irq = chg_term,
},
{
.name = "taper",
.smb_irq = taper_chg,
},
{
.name = "recharge",
.smb_irq = chg_recharge,
},
{
.name = "fast_chg",
.smb_irq = fast_chg,
},
},
},
[3] = {
.stat_reg = IRQ_D_REG,
.val = 0,
.prev_val = 0,
.irq_info = {
{
.name = "prechg_timeout",
},
{
.name = "safety_timeout",
},
{
.name = "aicl_complete",
},
{
.name = "src_detect",
.smb_irq = apsd_complete,
},
},
},
[4] = {
.stat_reg = IRQ_E_REG,
.val = 0,
.prev_val = 0,
.irq_info = {
{
.name = "usbin_uv",
.smb_irq = chg_uv,
},
{
.name = "usbin_ov",
.smb_irq = chg_ov,
},
{
.name = "unknown",
},
{
.name = "unknown",
},
},
},
[5] = {
.stat_reg = IRQ_F_REG,
.val = 0,
.prev_val = 0,
.irq_info = {
{
.name = "power_ok",
},
{
.name = "otg_det",
},
{
.name = "otg_batt_uv",
},
{
.name = "otg_oc",
},
},
},
};
#define IRQ_LATCHED_MASK 0x02
#define IRQ_STATUS_MASK 0x01
#define BITS_PER_IRQ 2
static irqreturn_t smb358_chg_stat_handler(int irq, void *dev_id)
{
struct smb358_charger *chip = dev_id;
int i, j;
u8 triggered;
u8 changed;
u8 rt_stat, prev_rt_stat;
int rc;
int handler_count = 0;
mutex_lock(&chip->irq_complete);
chip->irq_waiting = true;
if (!chip->resume_completed) {
dev_dbg(chip->dev, "IRQ triggered before device-resume\n");
disable_irq_nosync(irq);
mutex_unlock(&chip->irq_complete);
return IRQ_HANDLED;
}
chip->irq_waiting = false;
for (i = 0; i < ARRAY_SIZE(handlers); i++) {
rc = smb358_read_reg(chip, handlers[i].stat_reg,
&handlers[i].val);
if (rc < 0) {
dev_err(chip->dev, "Couldn't read %d rc = %d\n",
handlers[i].stat_reg, rc);
continue;
}
for (j = 0; j < ARRAY_SIZE(handlers[i].irq_info); j++) {
triggered = handlers[i].val
& (IRQ_LATCHED_MASK << (j * BITS_PER_IRQ));
rt_stat = handlers[i].val
& (IRQ_STATUS_MASK << (j * BITS_PER_IRQ));
prev_rt_stat = handlers[i].prev_val
& (IRQ_STATUS_MASK << (j * BITS_PER_IRQ));
changed = prev_rt_stat ^ rt_stat;
if (triggered || changed)
rt_stat ? handlers[i].irq_info[j].high++ :
handlers[i].irq_info[j].low++;
if ((triggered || changed)
&& handlers[i].irq_info[j].smb_irq != NULL) {
handler_count++;
rc = handlers[i].irq_info[j].smb_irq(chip,
rt_stat);
if (rc < 0)
dev_err(chip->dev,
"Couldn't handle %d irq for reg 0x%02x rc = %d\n",
j, handlers[i].stat_reg, rc);
}
}
handlers[i].prev_val = handlers[i].val;
}
pr_debug("handler count = %d\n", handler_count);
if (handler_count) {
pr_debug("batt psy changed\n");
power_supply_changed(&chip->batt_psy);
}
mutex_unlock(&chip->irq_complete);
return IRQ_HANDLED;
}
static irqreturn_t smb358_chg_valid_handler(int irq, void *dev_id)
{
struct smb358_charger *chip = dev_id;
int present;
present = gpio_get_value_cansleep(chip->chg_valid_gpio);
if (present < 0) {
dev_err(chip->dev, "Couldn't read chg_valid gpio=%d\n",
chip->chg_valid_gpio);
return IRQ_HANDLED;
}
present ^= chip->chg_valid_act_low;
dev_dbg(chip->dev, "%s: chg_present = %d\n", __func__, present);
if (present != chip->chg_present) {
chip->chg_present = present;
dev_dbg(chip->dev, "%s updating usb_psy present=%d",
__func__, chip->chg_present);
power_supply_set_present(chip->usb_psy, chip->chg_present);
}
return IRQ_HANDLED;
}
static void smb358_external_power_changed(struct power_supply *psy)
{
struct smb358_charger *chip = container_of(psy,
struct smb358_charger, batt_psy);
union power_supply_propval prop = {0,};
int rc, current_limit = 0;
if (chip->bms_psy_name)
chip->bms_psy =
power_supply_get_by_name((char *)chip->bms_psy_name);
rc = chip->usb_psy->get_property(chip->usb_psy,
POWER_SUPPLY_PROP_CURRENT_MAX, &prop);
if (rc)
dev_err(chip->dev,
"Couldn't read USB current_max property, rc=%d\n", rc);
else
current_limit = prop.intval / 1000;
smb358_enable_volatile_writes(chip);
smb358_set_usb_chg_current(chip, current_limit);
dev_dbg(chip->dev, "current_limit = %d\n", current_limit);
}
#if defined(CONFIG_DEBUG_FS)
#define LAST_CNFG_REG 0x13
static int show_cnfg_regs(struct seq_file *m, void *data)
{
struct smb358_charger *chip = m->private;
int rc;
u8 reg;
u8 addr;
for (addr = 0; addr <= LAST_CNFG_REG; addr++) {
rc = smb358_read_reg(chip, addr, &reg);
if (!rc)
seq_printf(m, "0x%02x = 0x%02x\n", addr, reg);
}
return 0;
}
static int cnfg_debugfs_open(struct inode *inode, struct file *file)
{
struct smb358_charger *chip = inode->i_private;
return single_open(file, show_cnfg_regs, chip);
}
static const struct file_operations cnfg_debugfs_ops = {
.owner = THIS_MODULE,
.open = cnfg_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define FIRST_CMD_REG 0x30
#define LAST_CMD_REG 0x33
static int show_cmd_regs(struct seq_file *m, void *data)
{
struct smb358_charger *chip = m->private;
int rc;
u8 reg;
u8 addr;
for (addr = FIRST_CMD_REG; addr <= LAST_CMD_REG; addr++) {
rc = smb358_read_reg(chip, addr, &reg);
if (!rc)
seq_printf(m, "0x%02x = 0x%02x\n", addr, reg);
}
return 0;
}
static int cmd_debugfs_open(struct inode *inode, struct file *file)
{
struct smb358_charger *chip = inode->i_private;
return single_open(file, show_cmd_regs, chip);
}
static const struct file_operations cmd_debugfs_ops = {
.owner = THIS_MODULE,
.open = cmd_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
#define FIRST_STATUS_REG 0x35
#define LAST_STATUS_REG 0x3F
static int show_status_regs(struct seq_file *m, void *data)
{
struct smb358_charger *chip = m->private;
int rc;
u8 reg;
u8 addr;
for (addr = FIRST_STATUS_REG; addr <= LAST_STATUS_REG; addr++) {
rc = smb358_read_reg(chip, addr, &reg);
if (!rc)
seq_printf(m, "0x%02x = 0x%02x\n", addr, reg);
}
return 0;
}
static int status_debugfs_open(struct inode *inode, struct file *file)
{
struct smb358_charger *chip = inode->i_private;
return single_open(file, show_status_regs, chip);
}
static const struct file_operations status_debugfs_ops = {
.owner = THIS_MODULE,
.open = status_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int show_irq_count(struct seq_file *m, void *data)
{
int i, j, total = 0;
for (i = 0; i < ARRAY_SIZE(handlers); i++)
for (j = 0; j < 4; j++) {
seq_printf(m, "%s=%d\t(high=%d low=%d)\n",
handlers[i].irq_info[j].name,
handlers[i].irq_info[j].high
+ handlers[i].irq_info[j].low,
handlers[i].irq_info[j].high,
handlers[i].irq_info[j].low);
total += (handlers[i].irq_info[j].high
+ handlers[i].irq_info[j].low);
}
seq_printf(m, "\n\tTotal = %d\n", total);
return 0;
}
static int irq_count_debugfs_open(struct inode *inode, struct file *file)
{
struct smb358_charger *chip = inode->i_private;
return single_open(file, show_irq_count, chip);
}
static const struct file_operations irq_count_debugfs_ops = {
.owner = THIS_MODULE,
.open = irq_count_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int get_reg(void *data, u64 *val)
{
struct smb358_charger *chip = data;
int rc;
u8 temp;
rc = smb358_read_reg(chip, chip->peek_poke_address, &temp);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't read reg %x rc = %d\n",
chip->peek_poke_address, rc);
return -EAGAIN;
}
*val = temp;
return 0;
}
static int set_reg(void *data, u64 val)
{
struct smb358_charger *chip = data;
int rc;
u8 temp;
temp = (u8) val;
rc = smb358_write_reg(chip, chip->peek_poke_address, temp);
if (rc < 0) {
dev_err(chip->dev,
"Couldn't write 0x%02x to 0x%02x rc= %d\n",
chip->peek_poke_address, temp, rc);
return -EAGAIN;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(poke_poke_debug_ops, get_reg, set_reg, "0x%02llx\n");
static int force_irq_set(void *data, u64 val)
{
struct smb358_charger *chip = data;
smb358_chg_stat_handler(chip->client->irq, data);
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(force_irq_ops, NULL, force_irq_set, "0x%02llx\n");
#endif
#ifdef DEBUG
static void dump_regs(struct smb358_charger *chip)
{
int rc;
u8 reg;
u8 addr;
for (addr = 0; addr <= LAST_CNFG_REG; addr++) {
rc = smb358_read_reg(chip, addr, &reg);
if (rc)
dev_err(chip->dev, "Couldn't read 0x%02x rc = %d\n",
addr, rc);
else
pr_debug("0x%02x = 0x%02x\n", addr, reg);
}
for (addr = FIRST_STATUS_REG; addr <= LAST_STATUS_REG; addr++) {
rc = smb358_read_reg(chip, addr, &reg);
if (rc)
dev_err(chip->dev, "Couldn't read 0x%02x rc = %d\n",
addr, rc);
else
pr_debug("0x%02x = 0x%02x\n", addr, reg);
}
for (addr = FIRST_CMD_REG; addr <= LAST_CMD_REG; addr++) {
rc = smb358_read_reg(chip, addr, &reg);
if (rc)
dev_err(chip->dev, "Couldn't read 0x%02x rc = %d\n",
addr, rc);
else
pr_debug("0x%02x = 0x%02x\n", addr, reg);
}
}
#else
static void dump_regs(struct smb358_charger *chip)
{
}
#endif
static int smb_parse_dt(struct smb358_charger *chip)
{
int rc;
enum of_gpio_flags gpio_flags;
struct device_node *node = chip->dev->of_node;
int batt_present_degree_negative;
if (!node) {
dev_err(chip->dev, "device tree info. missing\n");
return -EINVAL;
}
chip->charging_disabled = of_property_read_bool(node,
"qcom,charger-disabled");
chip->chg_autonomous_mode = of_property_read_bool(node,
"qcom,chg-autonomous-mode");
chip->disable_apsd = of_property_read_bool(node, "qcom,disable-apsd");
chip->using_pmic_therm = of_property_read_bool(node,
"qcom,using-pmic-therm");
rc = of_property_read_string(node, "qcom,bms-psy-name",
&chip->bms_psy_name);
if (rc)
chip->bms_psy_name = NULL;
chip->chg_valid_gpio = of_get_named_gpio_flags(node,
"qcom,chg-valid-gpio", 0, &gpio_flags);
if (!gpio_is_valid(chip->chg_valid_gpio))
dev_dbg(chip->dev, "Invalid chg-valid-gpio");
else
chip->chg_valid_act_low = gpio_flags & OF_GPIO_ACTIVE_LOW;
rc = of_property_read_u32(node, "qcom,fastchg-current-max-ma",
&chip->fastchg_current_max_ma);
if (rc)
chip->fastchg_current_max_ma = SMB358_FAST_CHG_MAX_MA;
chip->ieerm_disabled = of_property_read_bool(node,
"qcom,iterm-disabled");
rc = of_property_read_u32(node, "qcom,iterm-ma", &chip->iterm_ma);
if (rc < 0)
chip->iterm_ma = -EINVAL;
rc = of_property_read_u32(node, "qcom,float-voltage-mv",
&chip->vfloat_mv);
if (rc < 0) {
chip->vfloat_mv = -EINVAL;
pr_err("float-voltage-mv property missing, exit\n");
return -EINVAL;
}
rc = of_property_read_u32(node, "qcom,recharge-mv",
&chip->recharge_mv);
if (rc < 0)
chip->recharge_mv = -EINVAL;
chip->recharge_disabled = of_property_read_bool(node,
"qcom,recharge-disabled");
rc = of_property_read_u32(node, "qcom,cold-bat-decidegc",
&chip->cold_bat_decidegc);
if (rc < 0)
chip->cold_bat_decidegc = -EINVAL;
rc = of_property_read_u32(node, "qcom,hot-bat-decidegc",
&chip->hot_bat_decidegc);
if (rc < 0)
chip->hot_bat_decidegc = -EINVAL;
rc = of_property_read_u32(node, "qcom,bat-present-decidegc",
&batt_present_degree_negative);
if (rc < 0)
chip->bat_present_decidegc = -EINVAL;
else
chip->bat_present_decidegc = -batt_present_degree_negative;
pr_debug("recharge-disabled = %d, recharge-mv = %d,",
chip->recharge_disabled, chip->recharge_mv);
pr_debug("vfloat-mv = %d, iterm-disabled = %d,",
chip->vfloat_mv, chip->iterm_ma);
pr_debug("fastchg-current = %d, charging-disabled = %d,",
chip->fastchg_current_max_ma,
chip->charging_disabled);
pr_debug("disable-apsd = %d bms = %s cold-bat-degree = %d,",
chip->disable_apsd, chip->bms_psy_name,
chip->cold_bat_decidegc);
pr_debug("hot-bat-degree = %d, bat-present-decidegc = %d\n",
chip->hot_bat_decidegc, chip->bat_present_decidegc);
return 0;
}
static int determine_initial_state(struct smb358_charger *chip)
{
int rc;
u8 reg = 0;
rc = smb358_read_reg(chip, IRQ_B_REG, &reg);
if (rc) {
dev_err(chip->dev, "Couldn't read IRQ_B rc = %d\n", rc);
goto fail_init_status;
}
rc = smb358_read_reg(chip, IRQ_C_REG, &reg);
if (rc) {
dev_err(chip->dev, "Couldn't read IRQ_C rc = %d\n", rc);
goto fail_init_status;
}
chip->batt_full = (reg & IRQ_C_TERM_BIT) ? true : false;
rc = smb358_read_reg(chip, IRQ_A_REG, &reg);
if (rc < 0) {
dev_err(chip->dev, "Couldn't read irq A rc = %d\n", rc);
return rc;
}
/* For current design, can ignore this */
if (reg & IRQ_A_HOT_HARD_BIT)
chip->batt_hot = true;
if (reg & IRQ_A_COLD_HARD_BIT)
chip->batt_cold = true;
if (reg & IRQ_A_HOT_SOFT_BIT)
chip->batt_warm = true;
if (reg & IRQ_A_COLD_SOFT_BIT)
chip->batt_cool = true;
rc = smb358_read_reg(chip, IRQ_E_REG, &reg);
if (rc) {
dev_err(chip->dev, "Couldn't read IRQ_E rc = %d\n", rc);
goto fail_init_status;
}
if (reg & IRQ_E_INPUT_UV_BIT) {
chg_uv(chip, 1);
} else {
chg_uv(chip, 0);
apsd_complete(chip, 1);
}
return 0;
fail_init_status:
dev_err(chip->dev, "Couldn't determine initial status\n");
return rc;
}
#if defined(CONFIG_DEBUG_FS)
static void smb358_debugfs_init(struct smb358_charger *chip)
{
int rc;
chip->debug_root = debugfs_create_dir("smb358", NULL);
if (!chip->debug_root)
dev_err(chip->dev, "Couldn't create debug dir\n");
if (chip->debug_root) {
struct dentry *ent;
ent = debugfs_create_file("config_registers", S_IFREG | S_IRUGO,
chip->debug_root, chip,
&cnfg_debugfs_ops);
if (!ent || IS_ERR(ent)) {
rc = PTR_ERR(ent);
dev_err(chip->dev,
"Couldn't create cnfg debug file rc = %d\n",
rc);
}
ent = debugfs_create_file("status_registers", S_IFREG | S_IRUGO,
chip->debug_root, chip,
&status_debugfs_ops);
if (!ent || IS_ERR(ent)) {
rc = PTR_ERR(ent);
dev_err(chip->dev,
"Couldn't create status debug file rc = %d\n",
rc);
}
ent = debugfs_create_file("cmd_registers", S_IFREG | S_IRUGO,
chip->debug_root, chip,
&cmd_debugfs_ops);
if (!ent || IS_ERR(ent)) {
rc = PTR_ERR(ent);
dev_err(chip->dev,
"Couldn't create cmd debug file rc = %d\n",
rc);
}
ent = debugfs_create_x32("address", S_IFREG | S_IWUSR | S_IRUGO,
chip->debug_root,
&(chip->peek_poke_address));
if (!ent || IS_ERR(ent)) {
rc = PTR_ERR(ent);
dev_err(chip->dev,
"Couldn't create address debug file rc = %d\n",
rc);
}
ent = debugfs_create_file("data", S_IFREG | S_IWUSR | S_IRUGO,
chip->debug_root, chip,
&poke_poke_debug_ops);
if (!ent || IS_ERR(ent)) {
rc = PTR_ERR(ent);
dev_err(chip->dev,
"Couldn't create data debug file rc = %d\n",
rc);
}
ent = debugfs_create_file("force_irq",
S_IFREG | S_IWUSR | S_IRUGO,
chip->debug_root, chip,
&force_irq_ops);
if (!ent || IS_ERR(ent)) {
rc = PTR_ERR(ent);
dev_err(chip->dev,
"Couldn't create force_irq debug file rc =%d\n",
rc);
}
ent = debugfs_create_file("irq_count", S_IFREG | S_IRUGO,
chip->debug_root, chip,
&irq_count_debugfs_ops);
if (!ent || IS_ERR(ent)) {
rc = PTR_ERR(ent);
dev_err(chip->dev,
"Couldn't create cnfg irq_count file rc = %d\n",
rc);
}
}
}
#else
static void smb358_debugfs_init(struct smb358_charger *chip)
{
}
#endif
#define SMB_I2C_VTG_MIN_UV 1800000
#define SMB_I2C_VTG_MAX_UV 1800000
static int smb358_charger_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int rc, irq;
struct smb358_charger *chip;
struct power_supply *usb_psy;
u8 reg = 0;
usb_psy = power_supply_get_by_name("usb");
if (!usb_psy) {
dev_dbg(&client->dev, "USB psy not found; deferring probe\n");
return -EPROBE_DEFER;
}
chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
if (!chip) {
dev_err(&client->dev, "Couldn't allocate memory\n");
return -ENOMEM;
}
chip->client = client;
chip->dev = &client->dev;
chip->usb_psy = usb_psy;
chip->fake_battery_soc = -EINVAL;
/* early for VADC get, defer probe if needed */
chip->vadc_dev = qpnp_get_vadc(chip->dev, "chg");
if (IS_ERR(chip->vadc_dev)) {
rc = PTR_ERR(chip->vadc_dev);
if (rc != -EPROBE_DEFER)
pr_err("vadc property missing\n");
return rc;
}
/* i2c pull up Regulator configuration */
chip->vcc_i2c = regulator_get(&client->dev, "vcc-i2c");
if (IS_ERR(chip->vcc_i2c)) {
dev_err(&client->dev,
"%s: Failed to get vcc_i2c regulator\n",
__func__);
rc = PTR_ERR(chip->vcc_i2c);
goto err_get_vtg_i2c;
}
if (regulator_count_voltages(chip->vcc_i2c) > 0) {
rc = regulator_set_voltage(chip->vcc_i2c,
SMB_I2C_VTG_MIN_UV, SMB_I2C_VTG_MAX_UV);
if (rc) {
dev_err(&client->dev,
"regulator vcc_i2c set failed, rc = %d\n",
rc);
goto err_set_vtg_i2c;
}
}
rc = regulator_enable(chip->vcc_i2c);
if (rc) {
dev_err(&client->dev,
"Regulator vcc_i2c enable failed "
"rc=%d\n", rc);
goto err_set_vtg_i2c;
}
mutex_init(&chip->irq_complete);
mutex_init(&chip->read_write_lock);
mutex_init(&chip->path_suspend_lock);
/* probe the device to check if its actually connected */
rc = smb358_read_reg(chip, CHG_OTH_CURRENT_CTRL_REG, &reg);
if (rc) {
pr_err("Failed to detect SMB358, device absent, rc = %d\n", rc);
goto err_set_vtg_i2c;
}
rc = smb_parse_dt(chip);
if (rc) {
dev_err(&client->dev, "Couldn't parse DT nodes rc=%d\n", rc);
goto err_set_vtg_i2c;
}
/* using adc_tm for implementing pmic therm */
if (chip->using_pmic_therm) {
chip->adc_tm_dev = qpnp_get_adc_tm(chip->dev, "chg");
if (IS_ERR(chip->adc_tm_dev)) {
rc = PTR_ERR(chip->adc_tm_dev);
if (rc != -EPROBE_DEFER)
pr_err("adc_tm property missing\n");
return rc;
}
}
i2c_set_clientdata(client, chip);
chip->batt_psy.name = "battery";
chip->batt_psy.type = POWER_SUPPLY_TYPE_BATTERY;
chip->batt_psy.get_property = smb358_battery_get_property;
chip->batt_psy.set_property = smb358_battery_set_property;
chip->batt_psy.property_is_writeable =
smb358_batt_property_is_writeable;
chip->batt_psy.properties = smb358_battery_properties;
chip->batt_psy.num_properties = ARRAY_SIZE(smb358_battery_properties);
chip->batt_psy.external_power_changed = smb358_external_power_changed;
chip->batt_psy.supplied_to = pm_batt_supplied_to;
chip->batt_psy.num_supplicants = ARRAY_SIZE(pm_batt_supplied_to);
chip->resume_completed = true;
rc = power_supply_register(chip->dev, &chip->batt_psy);
if (rc < 0) {
dev_err(&client->dev, "Couldn't register batt psy rc = %d\n",
rc);
goto err_set_vtg_i2c;
}
dump_regs(chip);
rc = smb358_regulator_init(chip);
if (rc) {
dev_err(&client->dev,
"Couldn't initialize smb358 ragulator rc=%d\n", rc);
goto err_set_vtg_i2c;
}
rc = smb358_hw_init(chip);
if (rc) {
dev_err(&client->dev,
"Couldn't intialize hardware rc=%d\n", rc);
goto fail_smb358_hw_init;
}
rc = determine_initial_state(chip);
if (rc) {
dev_err(&client->dev,
"Couldn't determine initial state rc=%d\n", rc);
goto fail_smb358_hw_init;
}
/* We will not use it by default */
if (gpio_is_valid(chip->chg_valid_gpio)) {
rc = gpio_request(chip->chg_valid_gpio, "smb358_chg_valid");
if (rc) {
dev_err(&client->dev,
"gpio_request for %d failed rc=%d\n",
chip->chg_valid_gpio, rc);
goto fail_chg_valid_irq;
}
irq = gpio_to_irq(chip->chg_valid_gpio);
if (irq < 0) {
dev_err(&client->dev,
"Invalid chg_valid irq = %d\n", irq);
goto fail_chg_valid_irq;
}
rc = devm_request_threaded_irq(&client->dev, irq,
NULL, smb358_chg_valid_handler,
IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING,
"smb358_chg_valid_irq", chip);
if (rc) {
dev_err(&client->dev,
"Failed request_irq irq=%d, gpio=%d rc=%d\n",
irq, chip->chg_valid_gpio, rc);
goto fail_chg_valid_irq;
}
smb358_chg_valid_handler(irq, chip);
enable_irq_wake(irq);
}
chip->irq_gpio = of_get_named_gpio_flags(chip->dev->of_node,
"qcom,irq-gpio", 0, NULL);
/* STAT irq configuration */
if (gpio_is_valid(chip->irq_gpio)) {
rc = gpio_request(chip->irq_gpio, "smb358_irq");
if (rc) {
dev_err(&client->dev,
"irq gpio request failed, rc=%d", rc);
goto fail_smb358_hw_init;
}
rc = gpio_direction_input(chip->irq_gpio);
if (rc) {
dev_err(&client->dev,
"set_direction for irq gpio failed\n");
goto fail_irq_gpio;
}
irq = gpio_to_irq(chip->irq_gpio);
if (irq < 0) {
dev_err(&client->dev,
"Invalid irq_gpio irq = %d\n", irq);
goto fail_irq_gpio;
}
rc = devm_request_threaded_irq(&client->dev, irq, NULL,
smb358_chg_stat_handler,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
"smb358_chg_stat_irq", chip);
if (rc) {
dev_err(&client->dev,
"Failed STAT irq=%d request rc = %d\n",
irq, rc);
goto fail_irq_gpio;
}
enable_irq_wake(irq);
} else {
goto fail_irq_gpio;
}
if (chip->using_pmic_therm) {
/* add hot/cold temperature monitor */
chip->adc_param.low_temp = chip->cold_bat_decidegc;
chip->adc_param.high_temp = chip->hot_bat_decidegc;
chip->adc_param.timer_interval = ADC_MEAS2_INTERVAL_1S;
chip->adc_param.state_request = ADC_TM_HIGH_LOW_THR_ENABLE;
chip->adc_param.btm_ctx = chip;
chip->adc_param.threshold_notification =
smb_chg_adc_notification;
chip->adc_param.channel = LR_MUX1_BATT_THERM;
/* update battery missing info in tm_channel_measure*/
rc = qpnp_adc_tm_channel_measure(chip->adc_tm_dev,
&chip->adc_param);
if (rc)
pr_err("requesting ADC error %d\n", rc);
}
smb358_debugfs_init(chip);
dump_regs(chip);
dev_info(chip->dev, "SMB358 successfully probed. charger=%d, batt=%d\n",
chip->chg_present, smb358_get_prop_batt_present(chip));
return 0;
fail_chg_valid_irq:
if (gpio_is_valid(chip->chg_valid_gpio))
gpio_free(chip->chg_valid_gpio);
fail_irq_gpio:
if (gpio_is_valid(chip->irq_gpio))
gpio_free(chip->irq_gpio);
fail_smb358_hw_init:
power_supply_unregister(&chip->batt_psy);
regulator_unregister(chip->otg_vreg.rdev);
err_set_vtg_i2c:
if (regulator_count_voltages(chip->vcc_i2c) > 0)
regulator_set_voltage(chip->vcc_i2c, 0, SMB_I2C_VTG_MAX_UV);
err_get_vtg_i2c:
regulator_put(chip->vcc_i2c);
return rc;
}
static int smb358_charger_remove(struct i2c_client *client)
{
struct smb358_charger *chip = i2c_get_clientdata(client);
power_supply_unregister(&chip->batt_psy);
if (gpio_is_valid(chip->chg_valid_gpio))
gpio_free(chip->chg_valid_gpio);
regulator_disable(chip->vcc_i2c);
regulator_put(chip->vcc_i2c);
mutex_destroy(&chip->irq_complete);
debugfs_remove_recursive(chip->debug_root);
return 0;
}
static int smb358_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct smb358_charger *chip = i2c_get_clientdata(client);
int rc;
int i;
for (i = 0; i < 2; i++) {
rc = smb358_read_reg(chip, FAULT_INT_REG + i,
&chip->irq_cfg_mask[i]);
if (rc)
dev_err(chip->dev,
"Couldn't save irq cfg regs rc = %d\n", rc);
}
/* enable wake up IRQs */
rc = smb358_write_reg(chip, FAULT_INT_REG,
FAULT_INT_HOT_COLD_HARD_BIT | FAULT_INT_INPUT_UV_BIT);
if (rc < 0)
dev_err(chip->dev, "Couldn't set fault_irq_cfg rc = %d\n", rc);
rc = smb358_write_reg(chip, STATUS_INT_REG,
STATUS_INT_LOW_BATT_BIT | STATUS_INT_MISSING_BATT_BIT |
STATUS_INT_CHGING_BIT | STATUS_INT_INOK_BIT |
STATUS_INT_OTG_DETECT_BIT | STATUS_INT_CHG_INHI_BIT);
if (rc < 0)
dev_err(chip->dev,
"Couldn't set status_irq_cfg rc = %d\n", rc);
mutex_lock(&chip->irq_complete);
rc = regulator_disable(chip->vcc_i2c);
if (rc) {
dev_err(chip->dev,
"Regulator vcc_i2c disable failed rc=%d\n", rc);
mutex_unlock(&chip->irq_complete);
return rc;
}
chip->resume_completed = false;
mutex_unlock(&chip->irq_complete);
return 0;
}
static int smb358_suspend_noirq(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct smb358_charger *chip = i2c_get_clientdata(client);
if (chip->irq_waiting) {
pr_err_ratelimited("Aborting suspend, an interrupt was detected while suspending\n");
return -EBUSY;
}
return 0;
}
static int smb358_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct smb358_charger *chip = i2c_get_clientdata(client);
int rc;
int i;
/* Restore IRQ config */
for (i = 0; i < 2; i++) {
rc = smb358_write_reg(chip, FAULT_INT_REG + i,
chip->irq_cfg_mask[i]);
if (rc)
dev_err(chip->dev,
"Couldn't restore irq cfg regs rc=%d\n", rc);
}
mutex_lock(&chip->irq_complete);
rc = regulator_enable(chip->vcc_i2c);
if (rc) {
dev_err(chip->dev,
"Regulator vcc_i2c enable failed rc=%d\n", rc);
mutex_unlock(&chip->irq_complete);
return rc;
}
chip->resume_completed = true;
mutex_unlock(&chip->irq_complete);
if (chip->irq_waiting) {
smb358_chg_stat_handler(client->irq, chip);
enable_irq(client->irq);
}
return 0;
}
static const struct dev_pm_ops smb358_pm_ops = {
.suspend = smb358_suspend,
.suspend_noirq = smb358_suspend_noirq,
.resume = smb358_resume,
};
static struct of_device_id smb358_match_table[] = {
{ .compatible = "qcom,smb358-charger",},
{ },
};
static const struct i2c_device_id smb358_charger_id[] = {
{"smb358-charger", 0},
{},
};
MODULE_DEVICE_TABLE(i2c, smb358_charger_id);
static struct i2c_driver smb358_charger_driver = {
.driver = {
.name = "smb358-charger",
.owner = THIS_MODULE,
.of_match_table = smb358_match_table,
.pm = &smb358_pm_ops,
},
.probe = smb358_charger_probe,
.remove = smb358_charger_remove,
.id_table = smb358_charger_id,
};
module_i2c_driver(smb358_charger_driver);
MODULE_DESCRIPTION("SMB358 Charger");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("i2c:smb358-charger");