| /* |
| * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved. |
| * Copyright (c) 2001 Intel Corp. |
| * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> |
| * Copyright (c) 2002 NEC Corp. |
| * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> |
| * Copyright (c) 2004 Silicon Graphics, Inc |
| * Russ Anderson <rja@sgi.com> |
| * Jesse Barnes <jbarnes@sgi.com> |
| * Jack Steiner <steiner@sgi.com> |
| */ |
| |
| /* |
| * Platform initialization for Discontig Memory |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/swap.h> |
| #include <linux/bootmem.h> |
| #include <linux/acpi.h> |
| #include <linux/efi.h> |
| #include <linux/nodemask.h> |
| #include <asm/pgalloc.h> |
| #include <asm/tlb.h> |
| #include <asm/meminit.h> |
| #include <asm/numa.h> |
| #include <asm/sections.h> |
| |
| /* |
| * Track per-node information needed to setup the boot memory allocator, the |
| * per-node areas, and the real VM. |
| */ |
| struct early_node_data { |
| struct ia64_node_data *node_data; |
| pg_data_t *pgdat; |
| unsigned long pernode_addr; |
| unsigned long pernode_size; |
| struct bootmem_data bootmem_data; |
| unsigned long num_physpages; |
| unsigned long num_dma_physpages; |
| unsigned long min_pfn; |
| unsigned long max_pfn; |
| }; |
| |
| static struct early_node_data mem_data[MAX_NUMNODES] __initdata; |
| |
| /** |
| * reassign_cpu_only_nodes - called from find_memory to move CPU-only nodes to a memory node |
| * |
| * This function will move nodes with only CPUs (no memory) |
| * to a node with memory which is at the minimum numa_slit distance. |
| * Any reassigments will result in the compression of the nodes |
| * and renumbering the nid values where appropriate. |
| * The static declarations below are to avoid large stack size which |
| * makes the code not re-entrant. |
| */ |
| static void __init reassign_cpu_only_nodes(void) |
| { |
| struct node_memblk_s *p; |
| int i, j, k, nnode, nid, cpu, cpunid, pxm; |
| u8 cslit, slit; |
| static DECLARE_BITMAP(nodes_with_mem, MAX_NUMNODES) __initdata; |
| static u8 numa_slit_fix[MAX_NUMNODES * MAX_NUMNODES] __initdata; |
| static int node_flip[MAX_NUMNODES] __initdata; |
| static int old_nid_map[NR_CPUS] __initdata; |
| |
| for (nnode = 0, p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) |
| if (!test_bit(p->nid, (void *) nodes_with_mem)) { |
| set_bit(p->nid, (void *) nodes_with_mem); |
| nnode++; |
| } |
| |
| /* |
| * All nids with memory. |
| */ |
| if (nnode == num_online_nodes()) |
| return; |
| |
| /* |
| * Change nids and attempt to migrate CPU-only nodes |
| * to the best numa_slit (closest neighbor) possible. |
| * For reassigned CPU nodes a nid can't be arrived at |
| * until after this loop because the target nid's new |
| * identity might not have been established yet. So |
| * new nid values are fabricated above num_online_nodes() and |
| * mapped back later to their true value. |
| */ |
| /* MCD - This code is a bit complicated, but may be unnecessary now. |
| * We can now handle much more interesting node-numbering. |
| * The old requirement that 0 <= nid <= numnodes <= MAX_NUMNODES |
| * and that there be no holes in the numbering 0..numnodes |
| * has become simply 0 <= nid <= MAX_NUMNODES. |
| */ |
| nid = 0; |
| for_each_online_node(i) { |
| if (test_bit(i, (void *) nodes_with_mem)) { |
| /* |
| * Save original nid value for numa_slit |
| * fixup and node_cpuid reassignments. |
| */ |
| node_flip[nid] = i; |
| |
| if (i == nid) { |
| nid++; |
| continue; |
| } |
| |
| for (p = &node_memblk[0]; p < &node_memblk[num_node_memblks]; p++) |
| if (p->nid == i) |
| p->nid = nid; |
| |
| cpunid = nid; |
| nid++; |
| } else |
| cpunid = MAX_NUMNODES; |
| |
| for (cpu = 0; cpu < NR_CPUS; cpu++) |
| if (node_cpuid[cpu].nid == i) { |
| /* |
| * For nodes not being reassigned just |
| * fix the cpu's nid and reverse pxm map |
| */ |
| if (cpunid < MAX_NUMNODES) { |
| pxm = nid_to_pxm_map[i]; |
| pxm_to_nid_map[pxm] = |
| node_cpuid[cpu].nid = cpunid; |
| continue; |
| } |
| |
| /* |
| * For nodes being reassigned, find best node by |
| * numa_slit information and then make a temporary |
| * nid value based on current nid and num_online_nodes(). |
| */ |
| slit = 0xff; |
| k = 2*num_online_nodes(); |
| for_each_online_node(j) { |
| if (i == j) |
| continue; |
| else if (test_bit(j, (void *) nodes_with_mem)) { |
| cslit = numa_slit[i * num_online_nodes() + j]; |
| if (cslit < slit) { |
| k = num_online_nodes() + j; |
| slit = cslit; |
| } |
| } |
| } |
| |
| /* save old nid map so we can update the pxm */ |
| old_nid_map[cpu] = node_cpuid[cpu].nid; |
| node_cpuid[cpu].nid = k; |
| } |
| } |
| |
| /* |
| * Fixup temporary nid values for CPU-only nodes. |
| */ |
| for (cpu = 0; cpu < NR_CPUS; cpu++) |
| if (node_cpuid[cpu].nid == (2*num_online_nodes())) { |
| pxm = nid_to_pxm_map[old_nid_map[cpu]]; |
| pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = nnode - 1; |
| } else { |
| for (i = 0; i < nnode; i++) { |
| if (node_flip[i] != (node_cpuid[cpu].nid - num_online_nodes())) |
| continue; |
| |
| pxm = nid_to_pxm_map[old_nid_map[cpu]]; |
| pxm_to_nid_map[pxm] = node_cpuid[cpu].nid = i; |
| break; |
| } |
| } |
| |
| /* |
| * Fix numa_slit by compressing from larger |
| * nid array to reduced nid array. |
| */ |
| for (i = 0; i < nnode; i++) |
| for (j = 0; j < nnode; j++) |
| numa_slit_fix[i * nnode + j] = |
| numa_slit[node_flip[i] * num_online_nodes() + node_flip[j]]; |
| |
| memcpy(numa_slit, numa_slit_fix, sizeof (numa_slit)); |
| |
| nodes_clear(node_online_map); |
| for (i = 0; i < nnode; i++) |
| node_set_online(i); |
| |
| return; |
| } |
| |
| /* |
| * To prevent cache aliasing effects, align per-node structures so that they |
| * start at addresses that are strided by node number. |
| */ |
| #define NODEDATA_ALIGN(addr, node) \ |
| ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + (node)*PERCPU_PAGE_SIZE) |
| |
| /** |
| * build_node_maps - callback to setup bootmem structs for each node |
| * @start: physical start of range |
| * @len: length of range |
| * @node: node where this range resides |
| * |
| * We allocate a struct bootmem_data for each piece of memory that we wish to |
| * treat as a virtually contiguous block (i.e. each node). Each such block |
| * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down |
| * if necessary. Any non-existent pages will simply be part of the virtual |
| * memmap. We also update min_low_pfn and max_low_pfn here as we receive |
| * memory ranges from the caller. |
| */ |
| static int __init build_node_maps(unsigned long start, unsigned long len, |
| int node) |
| { |
| unsigned long cstart, epfn, end = start + len; |
| struct bootmem_data *bdp = &mem_data[node].bootmem_data; |
| |
| epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; |
| cstart = GRANULEROUNDDOWN(start); |
| |
| if (!bdp->node_low_pfn) { |
| bdp->node_boot_start = cstart; |
| bdp->node_low_pfn = epfn; |
| } else { |
| bdp->node_boot_start = min(cstart, bdp->node_boot_start); |
| bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); |
| } |
| |
| min_low_pfn = min(min_low_pfn, bdp->node_boot_start>>PAGE_SHIFT); |
| max_low_pfn = max(max_low_pfn, bdp->node_low_pfn); |
| |
| return 0; |
| } |
| |
| /** |
| * early_nr_phys_cpus_node - return number of physical cpus on a given node |
| * @node: node to check |
| * |
| * Count the number of physical cpus on @node. These are cpus that actually |
| * exist. We can't use nr_cpus_node() yet because |
| * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been |
| * called yet. |
| */ |
| static int early_nr_phys_cpus_node(int node) |
| { |
| int cpu, n = 0; |
| |
| for (cpu = 0; cpu < NR_CPUS; cpu++) |
| if (node == node_cpuid[cpu].nid) |
| if ((cpu == 0) || node_cpuid[cpu].phys_id) |
| n++; |
| |
| return n; |
| } |
| |
| |
| /** |
| * early_nr_cpus_node - return number of cpus on a given node |
| * @node: node to check |
| * |
| * Count the number of cpus on @node. We can't use nr_cpus_node() yet because |
| * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been |
| * called yet. Note that node 0 will also count all non-existent cpus. |
| */ |
| static int early_nr_cpus_node(int node) |
| { |
| int cpu, n = 0; |
| |
| for (cpu = 0; cpu < NR_CPUS; cpu++) |
| if (node == node_cpuid[cpu].nid) |
| n++; |
| |
| return n; |
| } |
| |
| /** |
| * find_pernode_space - allocate memory for memory map and per-node structures |
| * @start: physical start of range |
| * @len: length of range |
| * @node: node where this range resides |
| * |
| * This routine reserves space for the per-cpu data struct, the list of |
| * pg_data_ts and the per-node data struct. Each node will have something like |
| * the following in the first chunk of addr. space large enough to hold it. |
| * |
| * ________________________ |
| * | | |
| * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first |
| * | PERCPU_PAGE_SIZE * | start and length big enough |
| * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus. |
| * |------------------------| |
| * | local pg_data_t * | |
| * |------------------------| |
| * | local ia64_node_data | |
| * |------------------------| |
| * | ??? | |
| * |________________________| |
| * |
| * Once this space has been set aside, the bootmem maps are initialized. We |
| * could probably move the allocation of the per-cpu and ia64_node_data space |
| * outside of this function and use alloc_bootmem_node(), but doing it here |
| * is straightforward and we get the alignments we want so... |
| */ |
| static int __init find_pernode_space(unsigned long start, unsigned long len, |
| int node) |
| { |
| unsigned long epfn, cpu, cpus, phys_cpus; |
| unsigned long pernodesize = 0, pernode, pages, mapsize; |
| void *cpu_data; |
| struct bootmem_data *bdp = &mem_data[node].bootmem_data; |
| |
| epfn = (start + len) >> PAGE_SHIFT; |
| |
| pages = bdp->node_low_pfn - (bdp->node_boot_start >> PAGE_SHIFT); |
| mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; |
| |
| /* |
| * Make sure this memory falls within this node's usable memory |
| * since we may have thrown some away in build_maps(). |
| */ |
| if (start < bdp->node_boot_start || epfn > bdp->node_low_pfn) |
| return 0; |
| |
| /* Don't setup this node's local space twice... */ |
| if (mem_data[node].pernode_addr) |
| return 0; |
| |
| /* |
| * Calculate total size needed, incl. what's necessary |
| * for good alignment and alias prevention. |
| */ |
| cpus = early_nr_cpus_node(node); |
| phys_cpus = early_nr_phys_cpus_node(node); |
| pernodesize += PERCPU_PAGE_SIZE * cpus; |
| pernodesize += node * L1_CACHE_BYTES; |
| pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); |
| pernodesize = PAGE_ALIGN(pernodesize); |
| pernode = NODEDATA_ALIGN(start, node); |
| |
| /* Is this range big enough for what we want to store here? */ |
| if (start + len > (pernode + pernodesize + mapsize)) { |
| mem_data[node].pernode_addr = pernode; |
| mem_data[node].pernode_size = pernodesize; |
| memset(__va(pernode), 0, pernodesize); |
| |
| cpu_data = (void *)pernode; |
| pernode += PERCPU_PAGE_SIZE * cpus; |
| pernode += node * L1_CACHE_BYTES; |
| |
| mem_data[node].pgdat = __va(pernode); |
| pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| |
| mem_data[node].node_data = __va(pernode); |
| pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); |
| |
| mem_data[node].pgdat->bdata = bdp; |
| pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); |
| |
| /* |
| * Copy the static per-cpu data into the region we |
| * just set aside and then setup __per_cpu_offset |
| * for each CPU on this node. |
| */ |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| if (node == node_cpuid[cpu].nid) { |
| memcpy(__va(cpu_data), __phys_per_cpu_start, |
| __per_cpu_end - __per_cpu_start); |
| __per_cpu_offset[cpu] = (char*)__va(cpu_data) - |
| __per_cpu_start; |
| cpu_data += PERCPU_PAGE_SIZE; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * free_node_bootmem - free bootmem allocator memory for use |
| * @start: physical start of range |
| * @len: length of range |
| * @node: node where this range resides |
| * |
| * Simply calls the bootmem allocator to free the specified ranged from |
| * the given pg_data_t's bdata struct. After this function has been called |
| * for all the entries in the EFI memory map, the bootmem allocator will |
| * be ready to service allocation requests. |
| */ |
| static int __init free_node_bootmem(unsigned long start, unsigned long len, |
| int node) |
| { |
| free_bootmem_node(mem_data[node].pgdat, start, len); |
| |
| return 0; |
| } |
| |
| /** |
| * reserve_pernode_space - reserve memory for per-node space |
| * |
| * Reserve the space used by the bootmem maps & per-node space in the boot |
| * allocator so that when we actually create the real mem maps we don't |
| * use their memory. |
| */ |
| static void __init reserve_pernode_space(void) |
| { |
| unsigned long base, size, pages; |
| struct bootmem_data *bdp; |
| int node; |
| |
| for_each_online_node(node) { |
| pg_data_t *pdp = mem_data[node].pgdat; |
| |
| bdp = pdp->bdata; |
| |
| /* First the bootmem_map itself */ |
| pages = bdp->node_low_pfn - (bdp->node_boot_start>>PAGE_SHIFT); |
| size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; |
| base = __pa(bdp->node_bootmem_map); |
| reserve_bootmem_node(pdp, base, size); |
| |
| /* Now the per-node space */ |
| size = mem_data[node].pernode_size; |
| base = __pa(mem_data[node].pernode_addr); |
| reserve_bootmem_node(pdp, base, size); |
| } |
| } |
| |
| /** |
| * initialize_pernode_data - fixup per-cpu & per-node pointers |
| * |
| * Each node's per-node area has a copy of the global pg_data_t list, so |
| * we copy that to each node here, as well as setting the per-cpu pointer |
| * to the local node data structure. The active_cpus field of the per-node |
| * structure gets setup by the platform_cpu_init() function later. |
| */ |
| static void __init initialize_pernode_data(void) |
| { |
| int cpu, node; |
| pg_data_t *pgdat_list[MAX_NUMNODES]; |
| |
| for_each_online_node(node) |
| pgdat_list[node] = mem_data[node].pgdat; |
| |
| /* Copy the pg_data_t list to each node and init the node field */ |
| for_each_online_node(node) { |
| memcpy(mem_data[node].node_data->pg_data_ptrs, pgdat_list, |
| sizeof(pgdat_list)); |
| } |
| |
| /* Set the node_data pointer for each per-cpu struct */ |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| node = node_cpuid[cpu].nid; |
| per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data; |
| } |
| } |
| |
| /** |
| * find_memory - walk the EFI memory map and setup the bootmem allocator |
| * |
| * Called early in boot to setup the bootmem allocator, and to |
| * allocate the per-cpu and per-node structures. |
| */ |
| void __init find_memory(void) |
| { |
| int node; |
| |
| reserve_memory(); |
| |
| if (num_online_nodes() == 0) { |
| printk(KERN_ERR "node info missing!\n"); |
| node_set_online(0); |
| } |
| |
| min_low_pfn = -1; |
| max_low_pfn = 0; |
| |
| if (num_online_nodes() > 1) |
| reassign_cpu_only_nodes(); |
| |
| /* These actually end up getting called by call_pernode_memory() */ |
| efi_memmap_walk(filter_rsvd_memory, build_node_maps); |
| efi_memmap_walk(filter_rsvd_memory, find_pernode_space); |
| |
| /* |
| * Initialize the boot memory maps in reverse order since that's |
| * what the bootmem allocator expects |
| */ |
| for (node = MAX_NUMNODES - 1; node >= 0; node--) { |
| unsigned long pernode, pernodesize, map; |
| struct bootmem_data *bdp; |
| |
| if (!node_online(node)) |
| continue; |
| |
| bdp = &mem_data[node].bootmem_data; |
| pernode = mem_data[node].pernode_addr; |
| pernodesize = mem_data[node].pernode_size; |
| map = pernode + pernodesize; |
| |
| /* Sanity check... */ |
| if (!pernode) |
| panic("pernode space for node %d " |
| "could not be allocated!", node); |
| |
| init_bootmem_node(mem_data[node].pgdat, |
| map>>PAGE_SHIFT, |
| bdp->node_boot_start>>PAGE_SHIFT, |
| bdp->node_low_pfn); |
| } |
| |
| efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); |
| |
| reserve_pernode_space(); |
| initialize_pernode_data(); |
| |
| max_pfn = max_low_pfn; |
| |
| find_initrd(); |
| } |
| |
| /** |
| * per_cpu_init - setup per-cpu variables |
| * |
| * find_pernode_space() does most of this already, we just need to set |
| * local_per_cpu_offset |
| */ |
| void *per_cpu_init(void) |
| { |
| int cpu; |
| |
| if (smp_processor_id() == 0) { |
| for (cpu = 0; cpu < NR_CPUS; cpu++) { |
| per_cpu(local_per_cpu_offset, cpu) = |
| __per_cpu_offset[cpu]; |
| } |
| } |
| |
| return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; |
| } |
| |
| /** |
| * show_mem - give short summary of memory stats |
| * |
| * Shows a simple page count of reserved and used pages in the system. |
| * For discontig machines, it does this on a per-pgdat basis. |
| */ |
| void show_mem(void) |
| { |
| int i, total_reserved = 0; |
| int total_shared = 0, total_cached = 0; |
| unsigned long total_present = 0; |
| pg_data_t *pgdat; |
| |
| printk("Mem-info:\n"); |
| show_free_areas(); |
| printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); |
| for_each_pgdat(pgdat) { |
| unsigned long present = pgdat->node_present_pages; |
| int shared = 0, cached = 0, reserved = 0; |
| printk("Node ID: %d\n", pgdat->node_id); |
| for(i = 0; i < pgdat->node_spanned_pages; i++) { |
| if (!ia64_pfn_valid(pgdat->node_start_pfn+i)) |
| continue; |
| if (PageReserved(pgdat->node_mem_map+i)) |
| reserved++; |
| else if (PageSwapCache(pgdat->node_mem_map+i)) |
| cached++; |
| else if (page_count(pgdat->node_mem_map+i)) |
| shared += page_count(pgdat->node_mem_map+i)-1; |
| } |
| total_present += present; |
| total_reserved += reserved; |
| total_cached += cached; |
| total_shared += shared; |
| printk("\t%ld pages of RAM\n", present); |
| printk("\t%d reserved pages\n", reserved); |
| printk("\t%d pages shared\n", shared); |
| printk("\t%d pages swap cached\n", cached); |
| } |
| printk("%ld pages of RAM\n", total_present); |
| printk("%d reserved pages\n", total_reserved); |
| printk("%d pages shared\n", total_shared); |
| printk("%d pages swap cached\n", total_cached); |
| printk("Total of %ld pages in page table cache\n", |
| pgtable_quicklist_total_size()); |
| printk("%d free buffer pages\n", nr_free_buffer_pages()); |
| } |
| |
| /** |
| * call_pernode_memory - use SRAT to call callback functions with node info |
| * @start: physical start of range |
| * @len: length of range |
| * @arg: function to call for each range |
| * |
| * efi_memmap_walk() knows nothing about layout of memory across nodes. Find |
| * out to which node a block of memory belongs. Ignore memory that we cannot |
| * identify, and split blocks that run across multiple nodes. |
| * |
| * Take this opportunity to round the start address up and the end address |
| * down to page boundaries. |
| */ |
| void call_pernode_memory(unsigned long start, unsigned long len, void *arg) |
| { |
| unsigned long rs, re, end = start + len; |
| void (*func)(unsigned long, unsigned long, int); |
| int i; |
| |
| start = PAGE_ALIGN(start); |
| end &= PAGE_MASK; |
| if (start >= end) |
| return; |
| |
| func = arg; |
| |
| if (!num_node_memblks) { |
| /* No SRAT table, so assume one node (node 0) */ |
| if (start < end) |
| (*func)(start, end - start, 0); |
| return; |
| } |
| |
| for (i = 0; i < num_node_memblks; i++) { |
| rs = max(start, node_memblk[i].start_paddr); |
| re = min(end, node_memblk[i].start_paddr + |
| node_memblk[i].size); |
| |
| if (rs < re) |
| (*func)(rs, re - rs, node_memblk[i].nid); |
| |
| if (re == end) |
| break; |
| } |
| } |
| |
| /** |
| * count_node_pages - callback to build per-node memory info structures |
| * @start: physical start of range |
| * @len: length of range |
| * @node: node where this range resides |
| * |
| * Each node has it's own number of physical pages, DMAable pages, start, and |
| * end page frame number. This routine will be called by call_pernode_memory() |
| * for each piece of usable memory and will setup these values for each node. |
| * Very similar to build_maps(). |
| */ |
| static __init int count_node_pages(unsigned long start, unsigned long len, int node) |
| { |
| unsigned long end = start + len; |
| |
| mem_data[node].num_physpages += len >> PAGE_SHIFT; |
| if (start <= __pa(MAX_DMA_ADDRESS)) |
| mem_data[node].num_dma_physpages += |
| (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; |
| start = GRANULEROUNDDOWN(start); |
| start = ORDERROUNDDOWN(start); |
| end = GRANULEROUNDUP(end); |
| mem_data[node].max_pfn = max(mem_data[node].max_pfn, |
| end >> PAGE_SHIFT); |
| mem_data[node].min_pfn = min(mem_data[node].min_pfn, |
| start >> PAGE_SHIFT); |
| |
| return 0; |
| } |
| |
| /** |
| * paging_init - setup page tables |
| * |
| * paging_init() sets up the page tables for each node of the system and frees |
| * the bootmem allocator memory for general use. |
| */ |
| void __init paging_init(void) |
| { |
| unsigned long max_dma; |
| unsigned long zones_size[MAX_NR_ZONES]; |
| unsigned long zholes_size[MAX_NR_ZONES]; |
| unsigned long pfn_offset = 0; |
| int node; |
| |
| max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; |
| |
| /* so min() will work in count_node_pages */ |
| for_each_online_node(node) |
| mem_data[node].min_pfn = ~0UL; |
| |
| efi_memmap_walk(filter_rsvd_memory, count_node_pages); |
| |
| for_each_online_node(node) { |
| memset(zones_size, 0, sizeof(zones_size)); |
| memset(zholes_size, 0, sizeof(zholes_size)); |
| |
| num_physpages += mem_data[node].num_physpages; |
| |
| if (mem_data[node].min_pfn >= max_dma) { |
| /* All of this node's memory is above ZONE_DMA */ |
| zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - |
| mem_data[node].min_pfn; |
| zholes_size[ZONE_NORMAL] = mem_data[node].max_pfn - |
| mem_data[node].min_pfn - |
| mem_data[node].num_physpages; |
| } else if (mem_data[node].max_pfn < max_dma) { |
| /* All of this node's memory is in ZONE_DMA */ |
| zones_size[ZONE_DMA] = mem_data[node].max_pfn - |
| mem_data[node].min_pfn; |
| zholes_size[ZONE_DMA] = mem_data[node].max_pfn - |
| mem_data[node].min_pfn - |
| mem_data[node].num_dma_physpages; |
| } else { |
| /* This node has memory in both zones */ |
| zones_size[ZONE_DMA] = max_dma - |
| mem_data[node].min_pfn; |
| zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - |
| mem_data[node].num_dma_physpages; |
| zones_size[ZONE_NORMAL] = mem_data[node].max_pfn - |
| max_dma; |
| zholes_size[ZONE_NORMAL] = zones_size[ZONE_NORMAL] - |
| (mem_data[node].num_physpages - |
| mem_data[node].num_dma_physpages); |
| } |
| |
| if (node == 0) { |
| vmalloc_end -= |
| PAGE_ALIGN(max_low_pfn * sizeof(struct page)); |
| vmem_map = (struct page *) vmalloc_end; |
| |
| efi_memmap_walk(create_mem_map_page_table, NULL); |
| printk("Virtual mem_map starts at 0x%p\n", vmem_map); |
| } |
| |
| pfn_offset = mem_data[node].min_pfn; |
| |
| NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; |
| free_area_init_node(node, NODE_DATA(node), zones_size, |
| pfn_offset, zholes_size); |
| } |
| |
| zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); |
| } |