| /* |
| * Asynchronous RAID-6 recovery calculations ASYNC_TX API. |
| * Copyright(c) 2009 Intel Corporation |
| * |
| * based on raid6recov.c: |
| * Copyright 2002 H. Peter Anvin |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the Free |
| * Software Foundation; either version 2 of the License, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., 51 |
| * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| */ |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/raid/pq.h> |
| #include <linux/async_tx.h> |
| |
| static struct dma_async_tx_descriptor * |
| async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef, |
| size_t len, struct async_submit_ctl *submit) |
| { |
| struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ, |
| &dest, 1, srcs, 2, len); |
| struct dma_device *dma = chan ? chan->device : NULL; |
| const u8 *amul, *bmul; |
| u8 ax, bx; |
| u8 *a, *b, *c; |
| |
| if (dma) { |
| dma_addr_t dma_dest[2]; |
| dma_addr_t dma_src[2]; |
| struct device *dev = dma->dev; |
| struct dma_async_tx_descriptor *tx; |
| enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P; |
| |
| if (submit->flags & ASYNC_TX_FENCE) |
| dma_flags |= DMA_PREP_FENCE; |
| dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL); |
| dma_src[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE); |
| dma_src[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE); |
| tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 2, coef, |
| len, dma_flags); |
| if (tx) { |
| async_tx_submit(chan, tx, submit); |
| return tx; |
| } |
| |
| /* could not get a descriptor, unmap and fall through to |
| * the synchronous path |
| */ |
| dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL); |
| dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE); |
| dma_unmap_page(dev, dma_src[1], len, DMA_TO_DEVICE); |
| } |
| |
| /* run the operation synchronously */ |
| async_tx_quiesce(&submit->depend_tx); |
| amul = raid6_gfmul[coef[0]]; |
| bmul = raid6_gfmul[coef[1]]; |
| a = page_address(srcs[0]); |
| b = page_address(srcs[1]); |
| c = page_address(dest); |
| |
| while (len--) { |
| ax = amul[*a++]; |
| bx = bmul[*b++]; |
| *c++ = ax ^ bx; |
| } |
| |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| async_mult(struct page *dest, struct page *src, u8 coef, size_t len, |
| struct async_submit_ctl *submit) |
| { |
| struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ, |
| &dest, 1, &src, 1, len); |
| struct dma_device *dma = chan ? chan->device : NULL; |
| const u8 *qmul; /* Q multiplier table */ |
| u8 *d, *s; |
| |
| if (dma) { |
| dma_addr_t dma_dest[2]; |
| dma_addr_t dma_src[1]; |
| struct device *dev = dma->dev; |
| struct dma_async_tx_descriptor *tx; |
| enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P; |
| |
| if (submit->flags & ASYNC_TX_FENCE) |
| dma_flags |= DMA_PREP_FENCE; |
| dma_dest[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL); |
| dma_src[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE); |
| tx = dma->device_prep_dma_pq(chan, dma_dest, dma_src, 1, &coef, |
| len, dma_flags); |
| if (tx) { |
| async_tx_submit(chan, tx, submit); |
| return tx; |
| } |
| |
| /* could not get a descriptor, unmap and fall through to |
| * the synchronous path |
| */ |
| dma_unmap_page(dev, dma_dest[1], len, DMA_BIDIRECTIONAL); |
| dma_unmap_page(dev, dma_src[0], len, DMA_TO_DEVICE); |
| } |
| |
| /* no channel available, or failed to allocate a descriptor, so |
| * perform the operation synchronously |
| */ |
| async_tx_quiesce(&submit->depend_tx); |
| qmul = raid6_gfmul[coef]; |
| d = page_address(dest); |
| s = page_address(src); |
| |
| while (len--) |
| *d++ = qmul[*s++]; |
| |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| __2data_recov_4(int disks, size_t bytes, int faila, int failb, |
| struct page **blocks, struct async_submit_ctl *submit) |
| { |
| struct dma_async_tx_descriptor *tx = NULL; |
| struct page *p, *q, *a, *b; |
| struct page *srcs[2]; |
| unsigned char coef[2]; |
| enum async_tx_flags flags = submit->flags; |
| dma_async_tx_callback cb_fn = submit->cb_fn; |
| void *cb_param = submit->cb_param; |
| void *scribble = submit->scribble; |
| |
| p = blocks[disks-2]; |
| q = blocks[disks-1]; |
| |
| a = blocks[faila]; |
| b = blocks[failb]; |
| |
| /* in the 4 disk case P + Pxy == P and Q + Qxy == Q */ |
| /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ |
| srcs[0] = p; |
| srcs[1] = q; |
| coef[0] = raid6_gfexi[failb-faila]; |
| coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); |
| tx = async_sum_product(b, srcs, coef, bytes, submit); |
| |
| /* Dy = P+Pxy+Dx */ |
| srcs[0] = p; |
| srcs[1] = b; |
| init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn, |
| cb_param, scribble); |
| tx = async_xor(a, srcs, 0, 2, bytes, submit); |
| |
| return tx; |
| |
| } |
| |
| static struct dma_async_tx_descriptor * |
| __2data_recov_5(int disks, size_t bytes, int faila, int failb, |
| struct page **blocks, struct async_submit_ctl *submit) |
| { |
| struct dma_async_tx_descriptor *tx = NULL; |
| struct page *p, *q, *g, *dp, *dq; |
| struct page *srcs[2]; |
| unsigned char coef[2]; |
| enum async_tx_flags flags = submit->flags; |
| dma_async_tx_callback cb_fn = submit->cb_fn; |
| void *cb_param = submit->cb_param; |
| void *scribble = submit->scribble; |
| int good_srcs, good, i; |
| |
| good_srcs = 0; |
| good = -1; |
| for (i = 0; i < disks-2; i++) { |
| if (blocks[i] == NULL) |
| continue; |
| if (i == faila || i == failb) |
| continue; |
| good = i; |
| good_srcs++; |
| } |
| BUG_ON(good_srcs > 1); |
| |
| p = blocks[disks-2]; |
| q = blocks[disks-1]; |
| g = blocks[good]; |
| |
| /* Compute syndrome with zero for the missing data pages |
| * Use the dead data pages as temporary storage for delta p and |
| * delta q |
| */ |
| dp = blocks[faila]; |
| dq = blocks[failb]; |
| |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); |
| tx = async_memcpy(dp, g, 0, 0, bytes, submit); |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); |
| tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit); |
| |
| /* compute P + Pxy */ |
| srcs[0] = dp; |
| srcs[1] = p; |
| init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, |
| NULL, NULL, scribble); |
| tx = async_xor(dp, srcs, 0, 2, bytes, submit); |
| |
| /* compute Q + Qxy */ |
| srcs[0] = dq; |
| srcs[1] = q; |
| init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, |
| NULL, NULL, scribble); |
| tx = async_xor(dq, srcs, 0, 2, bytes, submit); |
| |
| /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ |
| srcs[0] = dp; |
| srcs[1] = dq; |
| coef[0] = raid6_gfexi[failb-faila]; |
| coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); |
| tx = async_sum_product(dq, srcs, coef, bytes, submit); |
| |
| /* Dy = P+Pxy+Dx */ |
| srcs[0] = dp; |
| srcs[1] = dq; |
| init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, |
| cb_param, scribble); |
| tx = async_xor(dp, srcs, 0, 2, bytes, submit); |
| |
| return tx; |
| } |
| |
| static struct dma_async_tx_descriptor * |
| __2data_recov_n(int disks, size_t bytes, int faila, int failb, |
| struct page **blocks, struct async_submit_ctl *submit) |
| { |
| struct dma_async_tx_descriptor *tx = NULL; |
| struct page *p, *q, *dp, *dq; |
| struct page *srcs[2]; |
| unsigned char coef[2]; |
| enum async_tx_flags flags = submit->flags; |
| dma_async_tx_callback cb_fn = submit->cb_fn; |
| void *cb_param = submit->cb_param; |
| void *scribble = submit->scribble; |
| |
| p = blocks[disks-2]; |
| q = blocks[disks-1]; |
| |
| /* Compute syndrome with zero for the missing data pages |
| * Use the dead data pages as temporary storage for |
| * delta p and delta q |
| */ |
| dp = blocks[faila]; |
| blocks[faila] = NULL; |
| blocks[disks-2] = dp; |
| dq = blocks[failb]; |
| blocks[failb] = NULL; |
| blocks[disks-1] = dq; |
| |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); |
| tx = async_gen_syndrome(blocks, 0, disks, bytes, submit); |
| |
| /* Restore pointer table */ |
| blocks[faila] = dp; |
| blocks[failb] = dq; |
| blocks[disks-2] = p; |
| blocks[disks-1] = q; |
| |
| /* compute P + Pxy */ |
| srcs[0] = dp; |
| srcs[1] = p; |
| init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, |
| NULL, NULL, scribble); |
| tx = async_xor(dp, srcs, 0, 2, bytes, submit); |
| |
| /* compute Q + Qxy */ |
| srcs[0] = dq; |
| srcs[1] = q; |
| init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, |
| NULL, NULL, scribble); |
| tx = async_xor(dq, srcs, 0, 2, bytes, submit); |
| |
| /* Dx = A*(P+Pxy) + B*(Q+Qxy) */ |
| srcs[0] = dp; |
| srcs[1] = dq; |
| coef[0] = raid6_gfexi[failb-faila]; |
| coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]; |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); |
| tx = async_sum_product(dq, srcs, coef, bytes, submit); |
| |
| /* Dy = P+Pxy+Dx */ |
| srcs[0] = dp; |
| srcs[1] = dq; |
| init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, |
| cb_param, scribble); |
| tx = async_xor(dp, srcs, 0, 2, bytes, submit); |
| |
| return tx; |
| } |
| |
| /** |
| * async_raid6_2data_recov - asynchronously calculate two missing data blocks |
| * @disks: number of disks in the RAID-6 array |
| * @bytes: block size |
| * @faila: first failed drive index |
| * @failb: second failed drive index |
| * @blocks: array of source pointers where the last two entries are p and q |
| * @submit: submission/completion modifiers |
| */ |
| struct dma_async_tx_descriptor * |
| async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb, |
| struct page **blocks, struct async_submit_ctl *submit) |
| { |
| void *scribble = submit->scribble; |
| int non_zero_srcs, i; |
| |
| BUG_ON(faila == failb); |
| if (failb < faila) |
| swap(faila, failb); |
| |
| pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes); |
| |
| /* if a dma resource is not available or a scribble buffer is not |
| * available punt to the synchronous path. In the 'dma not |
| * available' case be sure to use the scribble buffer to |
| * preserve the content of 'blocks' as the caller intended. |
| */ |
| if (!async_dma_find_channel(DMA_PQ) || !scribble) { |
| void **ptrs = scribble ? scribble : (void **) blocks; |
| |
| async_tx_quiesce(&submit->depend_tx); |
| for (i = 0; i < disks; i++) |
| if (blocks[i] == NULL) |
| ptrs[i] = (void *) raid6_empty_zero_page; |
| else |
| ptrs[i] = page_address(blocks[i]); |
| |
| raid6_2data_recov(disks, bytes, faila, failb, ptrs); |
| |
| async_tx_sync_epilog(submit); |
| |
| return NULL; |
| } |
| |
| non_zero_srcs = 0; |
| for (i = 0; i < disks-2 && non_zero_srcs < 4; i++) |
| if (blocks[i]) |
| non_zero_srcs++; |
| switch (non_zero_srcs) { |
| case 0: |
| case 1: |
| /* There must be at least 2 sources - the failed devices. */ |
| BUG(); |
| |
| case 2: |
| /* dma devices do not uniformly understand a zero source pq |
| * operation (in contrast to the synchronous case), so |
| * explicitly handle the special case of a 4 disk array with |
| * both data disks missing. |
| */ |
| return __2data_recov_4(disks, bytes, faila, failb, blocks, submit); |
| case 3: |
| /* dma devices do not uniformly understand a single |
| * source pq operation (in contrast to the synchronous |
| * case), so explicitly handle the special case of a 5 disk |
| * array with 2 of 3 data disks missing. |
| */ |
| return __2data_recov_5(disks, bytes, faila, failb, blocks, submit); |
| default: |
| return __2data_recov_n(disks, bytes, faila, failb, blocks, submit); |
| } |
| } |
| EXPORT_SYMBOL_GPL(async_raid6_2data_recov); |
| |
| /** |
| * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block |
| * @disks: number of disks in the RAID-6 array |
| * @bytes: block size |
| * @faila: failed drive index |
| * @blocks: array of source pointers where the last two entries are p and q |
| * @submit: submission/completion modifiers |
| */ |
| struct dma_async_tx_descriptor * |
| async_raid6_datap_recov(int disks, size_t bytes, int faila, |
| struct page **blocks, struct async_submit_ctl *submit) |
| { |
| struct dma_async_tx_descriptor *tx = NULL; |
| struct page *p, *q, *dq; |
| u8 coef; |
| enum async_tx_flags flags = submit->flags; |
| dma_async_tx_callback cb_fn = submit->cb_fn; |
| void *cb_param = submit->cb_param; |
| void *scribble = submit->scribble; |
| int good_srcs, good, i; |
| struct page *srcs[2]; |
| |
| pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes); |
| |
| /* if a dma resource is not available or a scribble buffer is not |
| * available punt to the synchronous path. In the 'dma not |
| * available' case be sure to use the scribble buffer to |
| * preserve the content of 'blocks' as the caller intended. |
| */ |
| if (!async_dma_find_channel(DMA_PQ) || !scribble) { |
| void **ptrs = scribble ? scribble : (void **) blocks; |
| |
| async_tx_quiesce(&submit->depend_tx); |
| for (i = 0; i < disks; i++) |
| if (blocks[i] == NULL) |
| ptrs[i] = (void*)raid6_empty_zero_page; |
| else |
| ptrs[i] = page_address(blocks[i]); |
| |
| raid6_datap_recov(disks, bytes, faila, ptrs); |
| |
| async_tx_sync_epilog(submit); |
| |
| return NULL; |
| } |
| |
| good_srcs = 0; |
| good = -1; |
| for (i = 0; i < disks-2; i++) { |
| if (i == faila) |
| continue; |
| if (blocks[i]) { |
| good = i; |
| good_srcs++; |
| if (good_srcs > 1) |
| break; |
| } |
| } |
| BUG_ON(good_srcs == 0); |
| |
| p = blocks[disks-2]; |
| q = blocks[disks-1]; |
| |
| /* Compute syndrome with zero for the missing data page |
| * Use the dead data page as temporary storage for delta q |
| */ |
| dq = blocks[faila]; |
| blocks[faila] = NULL; |
| blocks[disks-1] = dq; |
| |
| /* in the 4-disk case we only need to perform a single source |
| * multiplication with the one good data block. |
| */ |
| if (good_srcs == 1) { |
| struct page *g = blocks[good]; |
| |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, |
| scribble); |
| tx = async_memcpy(p, g, 0, 0, bytes, submit); |
| |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, |
| scribble); |
| tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit); |
| } else { |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, |
| scribble); |
| tx = async_gen_syndrome(blocks, 0, disks, bytes, submit); |
| } |
| |
| /* Restore pointer table */ |
| blocks[faila] = dq; |
| blocks[disks-1] = q; |
| |
| /* calculate g^{-faila} */ |
| coef = raid6_gfinv[raid6_gfexp[faila]]; |
| |
| srcs[0] = dq; |
| srcs[1] = q; |
| init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx, |
| NULL, NULL, scribble); |
| tx = async_xor(dq, srcs, 0, 2, bytes, submit); |
| |
| init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble); |
| tx = async_mult(dq, dq, coef, bytes, submit); |
| |
| srcs[0] = p; |
| srcs[1] = dq; |
| init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn, |
| cb_param, scribble); |
| tx = async_xor(p, srcs, 0, 2, bytes, submit); |
| |
| return tx; |
| } |
| EXPORT_SYMBOL_GPL(async_raid6_datap_recov); |
| |
| MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>"); |
| MODULE_DESCRIPTION("asynchronous RAID-6 recovery api"); |
| MODULE_LICENSE("GPL"); |