| /* |
| * arch/arm/include/asm/io.h |
| * |
| * Copyright (C) 1996-2000 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| * |
| * Modifications: |
| * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both |
| * constant addresses and variable addresses. |
| * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture |
| * specific IO header files. |
| * 27-Mar-1999 PJB Second parameter of memcpy_toio is const.. |
| * 04-Apr-1999 PJB Added check_signature. |
| * 12-Dec-1999 RMK More cleanups |
| * 18-Jun-2000 RMK Removed virt_to_* and friends definitions |
| * 05-Oct-2004 BJD Moved memory string functions to use void __iomem |
| */ |
| #ifndef __ASM_ARM_IO_H |
| #define __ASM_ARM_IO_H |
| |
| #ifdef __KERNEL__ |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| #include <asm/memory.h> |
| #include <asm-generic/pci_iomap.h> |
| #include <mach/msm_rtb.h> |
| |
| /* |
| * ISA I/O bus memory addresses are 1:1 with the physical address. |
| */ |
| #define isa_virt_to_bus virt_to_phys |
| #define isa_page_to_bus page_to_phys |
| #define isa_bus_to_virt phys_to_virt |
| |
| /* |
| * Generic IO read/write. These perform native-endian accesses. Note |
| * that some architectures will want to re-define __raw_{read,write}w. |
| */ |
| extern void __raw_writesb(void __iomem *addr, const void *data, int bytelen); |
| extern void __raw_writesw(void __iomem *addr, const void *data, int wordlen); |
| extern void __raw_writesl(void __iomem *addr, const void *data, int longlen); |
| |
| extern void __raw_readsb(const void __iomem *addr, void *data, int bytelen); |
| extern void __raw_readsw(const void __iomem *addr, void *data, int wordlen); |
| extern void __raw_readsl(const void __iomem *addr, void *data, int longlen); |
| |
| /* |
| * There may be cases when clients don't want to support or can't support the |
| * logging. The appropriate functions can be used but clients should carefully |
| * consider why they can't support the logging. |
| */ |
| |
| #define __raw_write_logged(v, a, _t) ({ \ |
| int _ret; \ |
| void *_addr = (void *)(a); \ |
| _ret = uncached_logk(LOGK_WRITEL, _addr); \ |
| ETB_WAYPOINT; \ |
| __raw_write##_t##_no_log((v), _addr); \ |
| if (_ret) \ |
| LOG_BARRIER; \ |
| }) |
| |
| |
| #define __raw_writeb_no_log(v, a) (__chk_io_ptr(a), *(volatile unsigned char __force *)(a) = (v)) |
| #define __raw_writew_no_log(v, a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)) |
| #define __raw_writel_no_log(v, a) (__chk_io_ptr(a), *(volatile unsigned int __force *)(a) = (v)) |
| #define __raw_writell_no_log(v, a) (__chk_io_ptr(a), *(volatile unsigned long long __force *)(a) = (v)) |
| |
| |
| #define __raw_writeb(v, a) __raw_write_logged((v), (a), b) |
| #define __raw_writew(v, a) __raw_write_logged((v), (a), w) |
| #define __raw_writel(v, a) __raw_write_logged((v), (a), l) |
| #define __raw_writell(v, a) __raw_write_logged((v), (a), ll) |
| |
| #define __raw_readb_no_log(a) (__chk_io_ptr(a), *(volatile unsigned char __force *)(a)) |
| #define __raw_readw_no_log(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a)) |
| #define __raw_readl_no_log(a) (__chk_io_ptr(a), *(volatile unsigned int __force *)(a)) |
| #define __raw_readll_no_log(a) (__chk_io_ptr(a), *(volatile unsigned long long __force *)(a)) |
| |
| #define __raw_read_logged(a, _l, _t) ({ \ |
| unsigned _t __a; \ |
| void *_addr = (void *)(a); \ |
| int _ret; \ |
| _ret = uncached_logk(LOGK_READL, _addr); \ |
| ETB_WAYPOINT; \ |
| __a = __raw_read##_l##_no_log(_addr);\ |
| if (_ret) \ |
| LOG_BARRIER; \ |
| __a; \ |
| }) |
| |
| |
| #define __raw_readb(a) __raw_read_logged((a), b, char) |
| #define __raw_readw(a) __raw_read_logged((a), w, short) |
| #define __raw_readl(a) __raw_read_logged((a), l, int) |
| #define __raw_readll(a) __raw_read_logged((a), ll, long long) |
| |
| /* |
| * Architecture ioremap implementation. |
| */ |
| #define MT_DEVICE 0 |
| #define MT_DEVICE_NONSHARED 1 |
| #define MT_DEVICE_CACHED 2 |
| #define MT_DEVICE_WC 3 |
| /* |
| * types 4 onwards can be found in asm/mach/map.h and are undefined |
| * for ioremap |
| */ |
| |
| /* |
| * __arm_ioremap takes CPU physical address. |
| * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page |
| * The _caller variety takes a __builtin_return_address(0) value for |
| * /proc/vmalloc to use - and should only be used in non-inline functions. |
| */ |
| extern void __iomem *__arm_ioremap_pfn_caller(unsigned long, unsigned long, |
| size_t, unsigned int, void *); |
| extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int, |
| void *); |
| |
| extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int); |
| extern void __iomem *__arm_ioremap(phys_addr_t, size_t, unsigned int); |
| extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached); |
| extern void __iounmap(volatile void __iomem *addr); |
| extern void __arm_iounmap(volatile void __iomem *addr); |
| |
| extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, |
| unsigned int, void *); |
| extern void (*arch_iounmap)(volatile void __iomem *); |
| |
| /* |
| * Bad read/write accesses... |
| */ |
| extern void __readwrite_bug(const char *fn); |
| |
| /* |
| * A typesafe __io() helper |
| */ |
| static inline void __iomem *__typesafe_io(unsigned long addr) |
| { |
| return (void __iomem *)addr; |
| } |
| |
| #define IOMEM(x) ((void __force __iomem *)(x)) |
| |
| /* IO barriers */ |
| #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE |
| #include <asm/barrier.h> |
| #define __iormb() rmb() |
| #define __iowmb() wmb() |
| #else |
| #define __iormb() do { } while (0) |
| #define __iowmb() do { } while (0) |
| #endif |
| |
| /* |
| * Now, pick up the machine-defined IO definitions |
| */ |
| #ifdef CONFIG_NEED_MACH_IO_H |
| #include <mach/io.h> |
| #else |
| #define __io(a) __typesafe_io((a) & IO_SPACE_LIMIT) |
| #endif |
| |
| /* |
| * This is the limit of PC card/PCI/ISA IO space, which is by default |
| * 64K if we have PC card, PCI or ISA support. Otherwise, default to |
| * zero to prevent ISA/PCI drivers claiming IO space (and potentially |
| * oopsing.) |
| * |
| * Only set this larger if you really need inb() et.al. to operate over |
| * a larger address space. Note that SOC_COMMON ioremaps each sockets |
| * IO space area, and so inb() et.al. must be defined to operate as per |
| * readb() et.al. on such platforms. |
| */ |
| #ifndef IO_SPACE_LIMIT |
| #if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE) |
| #define IO_SPACE_LIMIT ((resource_size_t)0xffffffff) |
| #elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD) |
| #define IO_SPACE_LIMIT ((resource_size_t)0xffff) |
| #else |
| #define IO_SPACE_LIMIT ((resource_size_t)0) |
| #endif |
| #endif |
| |
| /* |
| * IO port access primitives |
| * ------------------------- |
| * |
| * The ARM doesn't have special IO access instructions; all IO is memory |
| * mapped. Note that these are defined to perform little endian accesses |
| * only. Their primary purpose is to access PCI and ISA peripherals. |
| * |
| * Note that for a big endian machine, this implies that the following |
| * big endian mode connectivity is in place, as described by numerous |
| * ARM documents: |
| * |
| * PCI: D0-D7 D8-D15 D16-D23 D24-D31 |
| * ARM: D24-D31 D16-D23 D8-D15 D0-D7 |
| * |
| * The machine specific io.h include defines __io to translate an "IO" |
| * address to a memory address. |
| * |
| * Note that we prevent GCC re-ordering or caching values in expressions |
| * by introducing sequence points into the in*() definitions. Note that |
| * __raw_* do not guarantee this behaviour. |
| * |
| * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. |
| */ |
| #ifdef __io |
| #define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); }) |
| #define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \ |
| cpu_to_le16(v),__io(p)); }) |
| #define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \ |
| cpu_to_le32(v),__io(p)); }) |
| |
| #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; }) |
| #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \ |
| __raw_readw(__io(p))); __iormb(); __v; }) |
| #define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \ |
| __raw_readl(__io(p))); __iormb(); __v; }) |
| |
| #define outsb(p,d,l) __raw_writesb(__io(p),d,l) |
| #define outsw(p,d,l) __raw_writesw(__io(p),d,l) |
| #define outsl(p,d,l) __raw_writesl(__io(p),d,l) |
| |
| #define insb(p,d,l) __raw_readsb(__io(p),d,l) |
| #define insw(p,d,l) __raw_readsw(__io(p),d,l) |
| #define insl(p,d,l) __raw_readsl(__io(p),d,l) |
| #endif |
| |
| #define outb_p(val,port) outb((val),(port)) |
| #define outw_p(val,port) outw((val),(port)) |
| #define outl_p(val,port) outl((val),(port)) |
| #define inb_p(port) inb((port)) |
| #define inw_p(port) inw((port)) |
| #define inl_p(port) inl((port)) |
| |
| #define outsb_p(port,from,len) outsb(port,from,len) |
| #define outsw_p(port,from,len) outsw(port,from,len) |
| #define outsl_p(port,from,len) outsl(port,from,len) |
| #define insb_p(port,to,len) insb(port,to,len) |
| #define insw_p(port,to,len) insw(port,to,len) |
| #define insl_p(port,to,len) insl(port,to,len) |
| |
| /* |
| * String version of IO memory access ops: |
| */ |
| extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t); |
| extern void _memcpy_toio(volatile void __iomem *, const void *, size_t); |
| extern void _memset_io(volatile void __iomem *, int, size_t); |
| |
| #define mmiowb() |
| |
| /* |
| * Memory access primitives |
| * ------------------------ |
| * |
| * These perform PCI memory accesses via an ioremap region. They don't |
| * take an address as such, but a cookie. |
| * |
| * Again, this are defined to perform little endian accesses. See the |
| * IO port primitives for more information. |
| */ |
| #ifndef readl |
| #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) |
| #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ |
| __raw_readw(c)); __r; }) |
| #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ |
| __raw_readl(c)); __r; }) |
| #define readll_relaxed(c) ({ u64 __r = le64_to_cpu((__force __le64) \ |
| __raw_readll(c)); __r; }) |
| #define readl_relaxed_no_log(c) ({ u32 __r = le32_to_cpu((__force __le32) \ |
| __raw_readl_no_log(c)); __r; }) |
| #define readll_relaxed_no_log(c) ({ u64 __r = le64_to_cpu((__force __le64) \ |
| __raw_readll_no_log(c)); __r; }) |
| |
| |
| #define writeb_relaxed(v,c) ((void)__raw_writeb(v,c)) |
| #define writew_relaxed(v,c) ((void)__raw_writew((__force u16) \ |
| cpu_to_le16(v),c)) |
| #define writel_relaxed(v,c) ((void)__raw_writel((__force u32) \ |
| cpu_to_le32(v),c)) |
| #define writell_relaxed(v, c) ((void)__raw_writell((__force u64) \ |
| cpu_to_le64(v), c)) |
| #define writel_relaxed_no_log(v, c) ((void)__raw_writel_no_log((__force u32) \ |
| cpu_to_le32(v), c)) |
| #define writell_relaxed_no_log(v, c) ((void)__raw_writell_no_log((__force u64) \ |
| cpu_to_le64(v), c)) |
| |
| #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) |
| #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) |
| #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) |
| #define readll(c) ({ u64 __v = readll_relaxed(c); __iormb(); __v; }) |
| |
| #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); }) |
| #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); }) |
| #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); }) |
| #define writell(v, c) ({ __iowmb(); writell_relaxed(v, c); }) |
| |
| #define readsb(p,d,l) __raw_readsb(p,d,l) |
| #define readsw(p,d,l) __raw_readsw(p,d,l) |
| #define readsl(p,d,l) __raw_readsl(p,d,l) |
| |
| #define writesb(p,d,l) __raw_writesb(p,d,l) |
| #define writesw(p,d,l) __raw_writesw(p,d,l) |
| #define writesl(p,d,l) __raw_writesl(p,d,l) |
| |
| #define memset_io(c,v,l) _memset_io(c,(v),(l)) |
| #define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l)) |
| #define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l)) |
| |
| #endif /* readl */ |
| |
| /* |
| * ioremap and friends. |
| * |
| * ioremap takes a PCI memory address, as specified in |
| * Documentation/io-mapping.txt. |
| * |
| */ |
| #define ioremap(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE) |
| #define ioremap_nocache(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE) |
| #define ioremap_cached(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE_CACHED) |
| #define ioremap_wc(cookie,size) __arm_ioremap((cookie), (size), MT_DEVICE_WC) |
| #define iounmap __arm_iounmap |
| |
| /* |
| * io{read,write}{8,16,32,64} macros |
| */ |
| #ifndef ioread8 |
| #define ioread8(p) ({ unsigned int __v = __raw_readb(p); __iormb(); __v; }) |
| #define ioread16(p) ({ unsigned int __v = le16_to_cpu((__force __le16)__raw_readw(p)); __iormb(); __v; }) |
| #define ioread32(p) ({ unsigned int __v = le32_to_cpu((__force __le32)__raw_readl(p)); __iormb(); __v; }) |
| #define ioread64(p) ({ unsigned int __v = le64_to_cpu((__force __le64)__raw_readll(p)); __iormb(); __v; }) |
| |
| #define ioread16be(p) ({ unsigned int __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; }) |
| #define ioread32be(p) ({ unsigned int __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; }) |
| #define ioread64be(p) ({ unsigned int __v = be64_to_cpu((__force __be64)__raw_readll(p)); __iormb(); __v; }) |
| |
| #define iowrite8(v,p) ({ __iowmb(); (void)__raw_writeb(v, p); }) |
| #define iowrite16(v,p) ({ __iowmb(); (void)__raw_writew((__force __u16)cpu_to_le16(v), p); }) |
| #define iowrite32(v,p) ({ __iowmb(); (void)__raw_writel((__force __u32)cpu_to_le32(v), p); }) |
| #define iowrite64(v, p) ({ __iowmb(); (void)__raw_writell((__force __u64)cpu_to_le64(v), p); }) |
| |
| #define iowrite16be(v,p) ({ __iowmb(); (void)__raw_writew((__force __u16)cpu_to_be16(v), p); }) |
| #define iowrite32be(v,p) ({ __iowmb(); (void)__raw_writel((__force __u32)cpu_to_be32(v), p); }) |
| #define iowrite64be(v, p) ({ __iowmb(); (void)__raw_writell((__force __u64)cpu_to_be64(v), p); }) |
| |
| #define ioread8_rep(p,d,c) __raw_readsb(p,d,c) |
| #define ioread16_rep(p,d,c) __raw_readsw(p,d,c) |
| #define ioread32_rep(p,d,c) __raw_readsl(p,d,c) |
| |
| #define iowrite8_rep(p,s,c) __raw_writesb(p,s,c) |
| #define iowrite16_rep(p,s,c) __raw_writesw(p,s,c) |
| #define iowrite32_rep(p,s,c) __raw_writesl(p,s,c) |
| |
| extern void __iomem *ioport_map(unsigned long port, unsigned int nr); |
| extern void ioport_unmap(void __iomem *addr); |
| #endif |
| |
| struct pci_dev; |
| |
| extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr); |
| |
| /* |
| * can the hardware map this into one segment or not, given no other |
| * constraints. |
| */ |
| #define BIOVEC_MERGEABLE(vec1, vec2) \ |
| ((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2))) |
| |
| #ifdef CONFIG_MMU |
| #define ARCH_HAS_VALID_PHYS_ADDR_RANGE |
| extern int valid_phys_addr_range(unsigned long addr, size_t size); |
| extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); |
| extern int devmem_is_allowed(unsigned long pfn); |
| #endif |
| |
| /* |
| * Convert a physical pointer to a virtual kernel pointer for /dev/mem |
| * access |
| */ |
| #define xlate_dev_mem_ptr(p) __va(p) |
| |
| /* |
| * Convert a virtual cached pointer to an uncached pointer |
| */ |
| #define xlate_dev_kmem_ptr(p) p |
| |
| /* |
| * Register ISA memory and port locations for glibc iopl/inb/outb |
| * emulation. |
| */ |
| extern void register_isa_ports(unsigned int mmio, unsigned int io, |
| unsigned int io_shift); |
| |
| #endif /* __KERNEL__ */ |
| #endif /* __ASM_ARM_IO_H */ |