| /* Copyright (c) 2009-2012, Code Aurora Forum. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 and |
| * only version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| */ |
| |
| #define pr_fmt(fmt) "%s: " fmt, __func__ |
| |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/err.h> |
| #include <linux/ctype.h> |
| #include <linux/bitops.h> |
| #include <linux/io.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/clk.h> |
| |
| #include <mach/msm_iomap.h> |
| #include <mach/clk.h> |
| #include <mach/scm-io.h> |
| |
| #include "clock.h" |
| #include "clock-local.h" |
| |
| #ifdef CONFIG_MSM_SECURE_IO |
| #undef readl_relaxed |
| #undef writel_relaxed |
| #define readl_relaxed secure_readl |
| #define writel_relaxed secure_writel |
| #endif |
| |
| /* |
| * When enabling/disabling a clock, check the halt bit up to this number |
| * number of times (with a 1 us delay in between) before continuing. |
| */ |
| #define HALT_CHECK_MAX_LOOPS 200 |
| /* For clock without halt checking, wait this long after enables/disables. */ |
| #define HALT_CHECK_DELAY_US 10 |
| |
| DEFINE_SPINLOCK(local_clock_reg_lock); |
| struct clk_freq_tbl rcg_dummy_freq = F_END; |
| |
| /* |
| * Common Set-Rate Functions |
| */ |
| |
| /* For clocks with MND dividers. */ |
| void set_rate_mnd(struct rcg_clk *clk, struct clk_freq_tbl *nf) |
| { |
| uint32_t ns_reg_val, ctl_reg_val; |
| |
| /* Assert MND reset. */ |
| ns_reg_val = readl_relaxed(clk->ns_reg); |
| ns_reg_val |= BIT(7); |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| |
| /* Program M and D values. */ |
| writel_relaxed(nf->md_val, clk->md_reg); |
| |
| /* If the clock has a separate CC register, program it. */ |
| if (clk->ns_reg != clk->b.ctl_reg) { |
| ctl_reg_val = readl_relaxed(clk->b.ctl_reg); |
| ctl_reg_val &= ~(clk->ctl_mask); |
| ctl_reg_val |= nf->ctl_val; |
| writel_relaxed(ctl_reg_val, clk->b.ctl_reg); |
| } |
| |
| /* Deassert MND reset. */ |
| ns_reg_val &= ~BIT(7); |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| } |
| |
| void set_rate_nop(struct rcg_clk *clk, struct clk_freq_tbl *nf) |
| { |
| /* |
| * Nothing to do for fixed-rate or integer-divider clocks. Any settings |
| * in NS registers are applied in the enable path, since power can be |
| * saved by leaving an un-clocked or slowly-clocked source selected |
| * until the clock is enabled. |
| */ |
| } |
| |
| void set_rate_mnd_8(struct rcg_clk *clk, struct clk_freq_tbl *nf) |
| { |
| uint32_t ctl_reg_val; |
| |
| /* Assert MND reset. */ |
| ctl_reg_val = readl_relaxed(clk->b.ctl_reg); |
| ctl_reg_val |= BIT(8); |
| writel_relaxed(ctl_reg_val, clk->b.ctl_reg); |
| |
| /* Program M and D values. */ |
| writel_relaxed(nf->md_val, clk->md_reg); |
| |
| /* Program MN counter Enable and Mode. */ |
| ctl_reg_val &= ~(clk->ctl_mask); |
| ctl_reg_val |= nf->ctl_val; |
| writel_relaxed(ctl_reg_val, clk->b.ctl_reg); |
| |
| /* Deassert MND reset. */ |
| ctl_reg_val &= ~BIT(8); |
| writel_relaxed(ctl_reg_val, clk->b.ctl_reg); |
| } |
| |
| void set_rate_mnd_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf) |
| { |
| struct bank_masks *banks = clk->bank_info; |
| const struct bank_mask_info *new_bank_masks; |
| const struct bank_mask_info *old_bank_masks; |
| uint32_t ns_reg_val, ctl_reg_val; |
| uint32_t bank_sel; |
| |
| /* |
| * Determine active bank and program the other one. If the clock is |
| * off, program the active bank since bank switching won't work if |
| * both banks aren't running. |
| */ |
| ctl_reg_val = readl_relaxed(clk->b.ctl_reg); |
| bank_sel = !!(ctl_reg_val & banks->bank_sel_mask); |
| /* If clock isn't running, don't switch banks. */ |
| bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0); |
| if (bank_sel == 0) { |
| new_bank_masks = &banks->bank1_mask; |
| old_bank_masks = &banks->bank0_mask; |
| } else { |
| new_bank_masks = &banks->bank0_mask; |
| old_bank_masks = &banks->bank1_mask; |
| } |
| |
| ns_reg_val = readl_relaxed(clk->ns_reg); |
| |
| /* Assert bank MND reset. */ |
| ns_reg_val |= new_bank_masks->rst_mask; |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| |
| /* |
| * Program NS only if the clock is enabled, since the NS will be set |
| * as part of the enable procedure and should remain with a low-power |
| * MUX input selected until then. |
| */ |
| if (clk->enabled) { |
| ns_reg_val &= ~(new_bank_masks->ns_mask); |
| ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| } |
| |
| writel_relaxed(nf->md_val, new_bank_masks->md_reg); |
| |
| /* Enable counter only if clock is enabled. */ |
| if (clk->enabled) |
| ctl_reg_val |= new_bank_masks->mnd_en_mask; |
| else |
| ctl_reg_val &= ~(new_bank_masks->mnd_en_mask); |
| |
| ctl_reg_val &= ~(new_bank_masks->mode_mask); |
| ctl_reg_val |= (nf->ctl_val & new_bank_masks->mode_mask); |
| writel_relaxed(ctl_reg_val, clk->b.ctl_reg); |
| |
| /* Deassert bank MND reset. */ |
| ns_reg_val &= ~(new_bank_masks->rst_mask); |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| |
| /* |
| * Switch to the new bank if clock is running. If it isn't, then |
| * no switch is necessary since we programmed the active bank. |
| */ |
| if (clk->enabled && clk->current_freq->freq_hz) { |
| ctl_reg_val ^= banks->bank_sel_mask; |
| writel_relaxed(ctl_reg_val, clk->b.ctl_reg); |
| /* |
| * Wait at least 6 cycles of slowest bank's clock |
| * for the glitch-free MUX to fully switch sources. |
| */ |
| mb(); |
| udelay(1); |
| |
| /* Disable old bank's MN counter. */ |
| ctl_reg_val &= ~(old_bank_masks->mnd_en_mask); |
| writel_relaxed(ctl_reg_val, clk->b.ctl_reg); |
| |
| /* Program old bank to a low-power source and divider. */ |
| ns_reg_val &= ~(old_bank_masks->ns_mask); |
| ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask); |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| } |
| |
| /* |
| * If this freq requires the MN counter to be enabled, |
| * update the enable mask to match the current bank. |
| */ |
| if (nf->mnd_en_mask) |
| nf->mnd_en_mask = new_bank_masks->mnd_en_mask; |
| /* Update the NS mask to match the current bank. */ |
| clk->ns_mask = new_bank_masks->ns_mask; |
| } |
| |
| void set_rate_div_banked(struct rcg_clk *clk, struct clk_freq_tbl *nf) |
| { |
| struct bank_masks *banks = clk->bank_info; |
| const struct bank_mask_info *new_bank_masks; |
| const struct bank_mask_info *old_bank_masks; |
| uint32_t ns_reg_val, bank_sel; |
| |
| /* |
| * Determine active bank and program the other one. If the clock is |
| * off, program the active bank since bank switching won't work if |
| * both banks aren't running. |
| */ |
| ns_reg_val = readl_relaxed(clk->ns_reg); |
| bank_sel = !!(ns_reg_val & banks->bank_sel_mask); |
| /* If clock isn't running, don't switch banks. */ |
| bank_sel ^= (!clk->enabled || clk->current_freq->freq_hz == 0); |
| if (bank_sel == 0) { |
| new_bank_masks = &banks->bank1_mask; |
| old_bank_masks = &banks->bank0_mask; |
| } else { |
| new_bank_masks = &banks->bank0_mask; |
| old_bank_masks = &banks->bank1_mask; |
| } |
| |
| /* |
| * Program NS only if the clock is enabled, since the NS will be set |
| * as part of the enable procedure and should remain with a low-power |
| * MUX input selected until then. |
| */ |
| if (clk->enabled) { |
| ns_reg_val &= ~(new_bank_masks->ns_mask); |
| ns_reg_val |= (nf->ns_val & new_bank_masks->ns_mask); |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| } |
| |
| /* |
| * Switch to the new bank if clock is running. If it isn't, then |
| * no switch is necessary since we programmed the active bank. |
| */ |
| if (clk->enabled && clk->current_freq->freq_hz) { |
| ns_reg_val ^= banks->bank_sel_mask; |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| /* |
| * Wait at least 6 cycles of slowest bank's clock |
| * for the glitch-free MUX to fully switch sources. |
| */ |
| mb(); |
| udelay(1); |
| |
| /* Program old bank to a low-power source and divider. */ |
| ns_reg_val &= ~(old_bank_masks->ns_mask); |
| ns_reg_val |= (clk->freq_tbl->ns_val & old_bank_masks->ns_mask); |
| writel_relaxed(ns_reg_val, clk->ns_reg); |
| } |
| |
| /* Update the NS mask to match the current bank. */ |
| clk->ns_mask = new_bank_masks->ns_mask; |
| } |
| |
| /* |
| * Clock enable/disable functions |
| */ |
| |
| /* Return non-zero if a clock status registers shows the clock is halted. */ |
| static int branch_clk_is_halted(const struct branch *clk) |
| { |
| int invert = (clk->halt_check == ENABLE); |
| int status_bit = readl_relaxed(clk->halt_reg) & BIT(clk->halt_bit); |
| return invert ? !status_bit : status_bit; |
| } |
| |
| int branch_in_hwcg_mode(const struct branch *b) |
| { |
| if (!b->hwcg_mask) |
| return 0; |
| |
| return !!(readl_relaxed(b->hwcg_reg) & b->hwcg_mask); |
| } |
| |
| void __branch_clk_enable_reg(const struct branch *clk, const char *name) |
| { |
| u32 reg_val; |
| |
| if (clk->en_mask) { |
| reg_val = readl_relaxed(clk->ctl_reg); |
| reg_val |= clk->en_mask; |
| writel_relaxed(reg_val, clk->ctl_reg); |
| } |
| |
| /* |
| * Use a memory barrier since some halt status registers are |
| * not within the same 1K segment as the branch/root enable |
| * registers. It's also needed in the udelay() case to ensure |
| * the delay starts after the branch enable. |
| */ |
| mb(); |
| |
| /* Skip checking halt bit if the clock is in hardware gated mode */ |
| if (branch_in_hwcg_mode(clk)) |
| return; |
| |
| /* Wait for clock to enable before returning. */ |
| if (clk->halt_check == DELAY) |
| udelay(HALT_CHECK_DELAY_US); |
| else if (clk->halt_check == ENABLE || clk->halt_check == HALT |
| || clk->halt_check == ENABLE_VOTED |
| || clk->halt_check == HALT_VOTED) { |
| int count; |
| |
| /* Wait up to HALT_CHECK_MAX_LOOPS for clock to enable. */ |
| for (count = HALT_CHECK_MAX_LOOPS; branch_clk_is_halted(clk) |
| && count > 0; count--) |
| udelay(1); |
| WARN(count == 0, "%s status stuck at 'off'", name); |
| } |
| } |
| |
| /* Perform any register operations required to enable the clock. */ |
| static void __rcg_clk_enable_reg(struct rcg_clk *clk) |
| { |
| u32 reg_val; |
| void __iomem *const reg = clk->b.ctl_reg; |
| |
| WARN(clk->current_freq == &rcg_dummy_freq, |
| "Attempting to enable %s before setting its rate. " |
| "Set the rate first!\n", clk->c.dbg_name); |
| |
| /* |
| * Program the NS register, if applicable. NS registers are not |
| * set in the set_rate path because power can be saved by deferring |
| * the selection of a clocked source until the clock is enabled. |
| */ |
| if (clk->ns_mask) { |
| reg_val = readl_relaxed(clk->ns_reg); |
| reg_val &= ~(clk->ns_mask); |
| reg_val |= (clk->current_freq->ns_val & clk->ns_mask); |
| writel_relaxed(reg_val, clk->ns_reg); |
| } |
| |
| /* Enable MN counter, if applicable. */ |
| reg_val = readl_relaxed(reg); |
| if (clk->current_freq->mnd_en_mask) { |
| reg_val |= clk->current_freq->mnd_en_mask; |
| writel_relaxed(reg_val, reg); |
| } |
| /* Enable root. */ |
| if (clk->root_en_mask) { |
| reg_val |= clk->root_en_mask; |
| writel_relaxed(reg_val, reg); |
| } |
| __branch_clk_enable_reg(&clk->b, clk->c.dbg_name); |
| } |
| |
| /* Perform any register operations required to disable the branch. */ |
| u32 __branch_clk_disable_reg(const struct branch *clk, const char *name) |
| { |
| u32 reg_val; |
| |
| reg_val = readl_relaxed(clk->ctl_reg); |
| if (clk->en_mask) { |
| reg_val &= ~(clk->en_mask); |
| writel_relaxed(reg_val, clk->ctl_reg); |
| } |
| |
| /* |
| * Use a memory barrier since some halt status registers are |
| * not within the same K segment as the branch/root enable |
| * registers. It's also needed in the udelay() case to ensure |
| * the delay starts after the branch disable. |
| */ |
| mb(); |
| |
| /* Skip checking halt bit if the clock is in hardware gated mode */ |
| if (branch_in_hwcg_mode(clk)) |
| return reg_val; |
| |
| /* Wait for clock to disable before continuing. */ |
| if (clk->halt_check == DELAY || clk->halt_check == ENABLE_VOTED |
| || clk->halt_check == HALT_VOTED) |
| udelay(HALT_CHECK_DELAY_US); |
| else if (clk->halt_check == ENABLE || clk->halt_check == HALT) { |
| int count; |
| |
| /* Wait up to HALT_CHECK_MAX_LOOPS for clock to disable. */ |
| for (count = HALT_CHECK_MAX_LOOPS; !branch_clk_is_halted(clk) |
| && count > 0; count--) |
| udelay(1); |
| WARN(count == 0, "%s status stuck at 'on'", name); |
| } |
| |
| return reg_val; |
| } |
| |
| /* Perform any register operations required to disable the generator. */ |
| static void __rcg_clk_disable_reg(struct rcg_clk *clk) |
| { |
| void __iomem *const reg = clk->b.ctl_reg; |
| uint32_t reg_val; |
| |
| reg_val = __branch_clk_disable_reg(&clk->b, clk->c.dbg_name); |
| /* Disable root. */ |
| if (clk->root_en_mask) { |
| reg_val &= ~(clk->root_en_mask); |
| writel_relaxed(reg_val, reg); |
| } |
| /* Disable MN counter, if applicable. */ |
| if (clk->current_freq->mnd_en_mask) { |
| reg_val &= ~(clk->current_freq->mnd_en_mask); |
| writel_relaxed(reg_val, reg); |
| } |
| /* |
| * Program NS register to low-power value with an un-clocked or |
| * slowly-clocked source selected. |
| */ |
| if (clk->ns_mask) { |
| reg_val = readl_relaxed(clk->ns_reg); |
| reg_val &= ~(clk->ns_mask); |
| reg_val |= (clk->freq_tbl->ns_val & clk->ns_mask); |
| writel_relaxed(reg_val, clk->ns_reg); |
| } |
| } |
| |
| /* Enable a rate-settable clock. */ |
| int rcg_clk_enable(struct clk *c) |
| { |
| unsigned long flags; |
| struct rcg_clk *clk = to_rcg_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __rcg_clk_enable_reg(clk); |
| clk->enabled = true; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| return 0; |
| } |
| |
| /* Disable a rate-settable clock. */ |
| void rcg_clk_disable(struct clk *c) |
| { |
| unsigned long flags; |
| struct rcg_clk *clk = to_rcg_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __rcg_clk_disable_reg(clk); |
| clk->enabled = false; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| /* |
| * Frequency-related functions |
| */ |
| |
| /* Set a clock to an exact rate. */ |
| int rcg_clk_set_rate(struct clk *c, unsigned long rate) |
| { |
| struct rcg_clk *clk = to_rcg_clk(c); |
| struct clk_freq_tbl *nf, *cf; |
| struct clk *chld; |
| int rc = 0; |
| |
| for (nf = clk->freq_tbl; nf->freq_hz != FREQ_END |
| && nf->freq_hz != rate; nf++) |
| ; |
| |
| if (nf->freq_hz == FREQ_END) |
| return -EINVAL; |
| |
| /* Check if frequency is actually changed. */ |
| cf = clk->current_freq; |
| if (nf == cf) |
| return 0; |
| |
| if (clk->enabled) { |
| /* Enable source clock dependency for the new freq. */ |
| rc = clk_enable(nf->src_clk); |
| if (rc) |
| return rc; |
| } |
| |
| spin_lock(&local_clock_reg_lock); |
| |
| /* Disable branch if clock isn't dual-banked with a glitch-free MUX. */ |
| if (!clk->bank_info) { |
| /* Disable all branches to prevent glitches. */ |
| list_for_each_entry(chld, &clk->c.children, siblings) { |
| struct branch_clk *x = to_branch_clk(chld); |
| /* |
| * We don't need to grab the child's lock because |
| * we hold the local_clock_reg_lock and 'enabled' is |
| * only modified within lock. |
| */ |
| if (x->enabled) |
| __branch_clk_disable_reg(&x->b, x->c.dbg_name); |
| } |
| if (clk->enabled) |
| __rcg_clk_disable_reg(clk); |
| } |
| |
| /* Perform clock-specific frequency switch operations. */ |
| BUG_ON(!clk->set_rate); |
| clk->set_rate(clk, nf); |
| |
| /* |
| * Current freq must be updated before __rcg_clk_enable_reg() |
| * is called to make sure the MNCNTR_EN bit is set correctly. |
| */ |
| clk->current_freq = nf; |
| |
| /* Enable any clocks that were disabled. */ |
| if (!clk->bank_info) { |
| if (clk->enabled) |
| __rcg_clk_enable_reg(clk); |
| /* Enable only branches that were ON before. */ |
| list_for_each_entry(chld, &clk->c.children, siblings) { |
| struct branch_clk *x = to_branch_clk(chld); |
| if (x->enabled) |
| __branch_clk_enable_reg(&x->b, x->c.dbg_name); |
| } |
| } |
| |
| spin_unlock(&local_clock_reg_lock); |
| |
| /* Release source requirements of the old freq. */ |
| if (clk->enabled) |
| clk_disable(cf->src_clk); |
| |
| return rc; |
| } |
| |
| /* Get the currently-set rate of a clock in Hz. */ |
| unsigned long rcg_clk_get_rate(struct clk *c) |
| { |
| struct rcg_clk *clk = to_rcg_clk(c); |
| unsigned long flags; |
| unsigned ret = 0; |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| ret = clk->current_freq->freq_hz; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| /* |
| * Return 0 if the rate has never been set. Might not be correct, |
| * but it's good enough. |
| */ |
| if (ret == FREQ_END) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| /* Check if a clock is currently enabled. */ |
| int rcg_clk_is_enabled(struct clk *clk) |
| { |
| return to_rcg_clk(clk)->enabled; |
| } |
| |
| /* Return a supported rate that's at least the specified rate. */ |
| long rcg_clk_round_rate(struct clk *c, unsigned long rate) |
| { |
| struct rcg_clk *clk = to_rcg_clk(c); |
| struct clk_freq_tbl *f; |
| |
| for (f = clk->freq_tbl; f->freq_hz != FREQ_END; f++) |
| if (f->freq_hz >= rate) |
| return f->freq_hz; |
| |
| return -EPERM; |
| } |
| |
| bool local_clk_is_local(struct clk *clk) |
| { |
| return true; |
| } |
| |
| /* Return the nth supported frequency for a given clock. */ |
| int rcg_clk_list_rate(struct clk *c, unsigned n) |
| { |
| struct rcg_clk *clk = to_rcg_clk(c); |
| |
| if (!clk->freq_tbl || clk->freq_tbl->freq_hz == FREQ_END) |
| return -ENXIO; |
| |
| return (clk->freq_tbl + n)->freq_hz; |
| } |
| |
| struct clk *rcg_clk_get_parent(struct clk *clk) |
| { |
| return to_rcg_clk(clk)->current_freq->src_clk; |
| } |
| |
| /* Disable hw clock gating if not set at boot */ |
| static void branch_handoff(struct branch *clk, struct clk *c) |
| { |
| if (!branch_in_hwcg_mode(clk)) { |
| clk->hwcg_mask = 0; |
| c->flags &= ~CLKFLAG_HWCG; |
| } else { |
| c->flags |= CLKFLAG_HWCG; |
| } |
| } |
| |
| int branch_clk_handoff(struct clk *c) |
| { |
| struct branch_clk *clk = to_branch_clk(c); |
| branch_handoff(&clk->b, &clk->c); |
| return 0; |
| } |
| |
| int rcg_clk_handoff(struct clk *c) |
| { |
| struct rcg_clk *clk = to_rcg_clk(c); |
| uint32_t ctl_val, ns_val, md_val, ns_mask; |
| struct clk_freq_tbl *freq; |
| |
| branch_handoff(&clk->b, &clk->c); |
| |
| ctl_val = readl_relaxed(clk->b.ctl_reg); |
| if (!(ctl_val & clk->root_en_mask)) |
| return 0; |
| |
| if (clk->bank_info) { |
| const struct bank_masks *bank_masks = clk->bank_info; |
| const struct bank_mask_info *bank_info; |
| if (!(ctl_val & bank_masks->bank_sel_mask)) |
| bank_info = &bank_masks->bank0_mask; |
| else |
| bank_info = &bank_masks->bank1_mask; |
| |
| ns_mask = bank_info->ns_mask; |
| md_val = readl_relaxed(bank_info->md_reg); |
| } else { |
| ns_mask = clk->ns_mask; |
| md_val = clk->md_reg ? readl_relaxed(clk->md_reg) : 0; |
| } |
| |
| ns_val = readl_relaxed(clk->ns_reg) & ns_mask; |
| for (freq = clk->freq_tbl; freq->freq_hz != FREQ_END; freq++) { |
| if ((freq->ns_val & ns_mask) == ns_val && |
| (!freq->mnd_en_mask || freq->md_val == md_val)) { |
| pr_info("%s rate=%d\n", clk->c.dbg_name, freq->freq_hz); |
| break; |
| } |
| } |
| if (freq->freq_hz == FREQ_END) |
| return 0; |
| |
| clk->current_freq = freq; |
| |
| return 1; |
| } |
| |
| int pll_vote_clk_enable(struct clk *clk) |
| { |
| u32 ena; |
| unsigned long flags; |
| struct pll_vote_clk *pll = to_pll_vote_clk(clk); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| ena = readl_relaxed(pll->en_reg); |
| ena |= pll->en_mask; |
| writel_relaxed(ena, pll->en_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| /* Wait until PLL is enabled */ |
| while ((readl_relaxed(pll->status_reg) & BIT(16)) == 0) |
| cpu_relax(); |
| |
| return 0; |
| } |
| |
| void pll_vote_clk_disable(struct clk *clk) |
| { |
| u32 ena; |
| unsigned long flags; |
| struct pll_vote_clk *pll = to_pll_vote_clk(clk); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| ena = readl_relaxed(pll->en_reg); |
| ena &= ~(pll->en_mask); |
| writel_relaxed(ena, pll->en_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| unsigned long pll_vote_clk_get_rate(struct clk *clk) |
| { |
| struct pll_vote_clk *pll = to_pll_vote_clk(clk); |
| return pll->rate; |
| } |
| |
| struct clk *pll_vote_clk_get_parent(struct clk *clk) |
| { |
| struct pll_vote_clk *pll = to_pll_vote_clk(clk); |
| return pll->parent; |
| } |
| |
| int pll_vote_clk_is_enabled(struct clk *clk) |
| { |
| struct pll_vote_clk *pll = to_pll_vote_clk(clk); |
| return !!(readl_relaxed(pll->status_reg) & BIT(16)); |
| } |
| |
| struct clk_ops clk_ops_pll_vote = { |
| .enable = pll_vote_clk_enable, |
| .disable = pll_vote_clk_disable, |
| .auto_off = pll_vote_clk_disable, |
| .is_enabled = pll_vote_clk_is_enabled, |
| .get_rate = pll_vote_clk_get_rate, |
| .get_parent = pll_vote_clk_get_parent, |
| .is_local = local_clk_is_local, |
| }; |
| |
| static int pll_clk_enable(struct clk *clk) |
| { |
| u32 mode; |
| unsigned long flags; |
| struct pll_clk *pll = to_pll_clk(clk); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| mode = readl_relaxed(pll->mode_reg); |
| /* Disable PLL bypass mode. */ |
| mode |= BIT(1); |
| writel_relaxed(mode, pll->mode_reg); |
| |
| /* |
| * H/W requires a 5us delay between disabling the bypass and |
| * de-asserting the reset. Delay 10us just to be safe. |
| */ |
| mb(); |
| udelay(10); |
| |
| /* De-assert active-low PLL reset. */ |
| mode |= BIT(2); |
| writel_relaxed(mode, pll->mode_reg); |
| |
| /* Wait until PLL is locked. */ |
| mb(); |
| udelay(50); |
| |
| /* Enable PLL output. */ |
| mode |= BIT(0); |
| writel_relaxed(mode, pll->mode_reg); |
| |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| return 0; |
| } |
| |
| static void pll_clk_disable(struct clk *clk) |
| { |
| u32 mode; |
| unsigned long flags; |
| struct pll_clk *pll = to_pll_clk(clk); |
| |
| /* |
| * Disable the PLL output, disable test mode, enable |
| * the bypass mode, and assert the reset. |
| */ |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| mode = readl_relaxed(pll->mode_reg); |
| mode &= ~BM(3, 0); |
| writel_relaxed(mode, pll->mode_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| static unsigned long pll_clk_get_rate(struct clk *clk) |
| { |
| struct pll_clk *pll = to_pll_clk(clk); |
| return pll->rate; |
| } |
| |
| static struct clk *pll_clk_get_parent(struct clk *clk) |
| { |
| struct pll_clk *pll = to_pll_clk(clk); |
| return pll->parent; |
| } |
| |
| int sr_pll_clk_enable(struct clk *clk) |
| { |
| u32 mode; |
| unsigned long flags; |
| struct pll_clk *pll = to_pll_clk(clk); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| mode = readl_relaxed(pll->mode_reg); |
| /* De-assert active-low PLL reset. */ |
| mode |= BIT(2); |
| writel_relaxed(mode, pll->mode_reg); |
| |
| /* |
| * H/W requires a 5us delay between disabling the bypass and |
| * de-asserting the reset. Delay 10us just to be safe. |
| */ |
| mb(); |
| udelay(10); |
| |
| /* Disable PLL bypass mode. */ |
| mode |= BIT(1); |
| writel_relaxed(mode, pll->mode_reg); |
| |
| /* Wait until PLL is locked. */ |
| mb(); |
| udelay(60); |
| |
| /* Enable PLL output. */ |
| mode |= BIT(0); |
| writel_relaxed(mode, pll->mode_reg); |
| |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| return 0; |
| } |
| |
| struct clk_ops clk_ops_pll = { |
| .enable = pll_clk_enable, |
| .disable = pll_clk_disable, |
| .auto_off = pll_clk_disable, |
| .get_rate = pll_clk_get_rate, |
| .get_parent = pll_clk_get_parent, |
| .is_local = local_clk_is_local, |
| }; |
| |
| struct clk_ops clk_ops_gnd = { |
| .get_rate = fixed_clk_get_rate, |
| .is_local = local_clk_is_local, |
| }; |
| |
| struct fixed_clk gnd_clk = { |
| .c = { |
| .dbg_name = "ground_clk", |
| .ops = &clk_ops_gnd, |
| CLK_INIT(gnd_clk.c), |
| }, |
| }; |
| |
| struct clk_ops clk_ops_measure = { |
| .is_local = local_clk_is_local, |
| }; |
| |
| int branch_clk_enable(struct clk *clk) |
| { |
| unsigned long flags; |
| struct branch_clk *branch = to_branch_clk(clk); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __branch_clk_enable_reg(&branch->b, branch->c.dbg_name); |
| branch->enabled = true; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| return 0; |
| } |
| |
| void branch_clk_disable(struct clk *clk) |
| { |
| unsigned long flags; |
| struct branch_clk *branch = to_branch_clk(clk); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __branch_clk_disable_reg(&branch->b, branch->c.dbg_name); |
| branch->enabled = false; |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| struct clk *branch_clk_get_parent(struct clk *clk) |
| { |
| struct branch_clk *branch = to_branch_clk(clk); |
| return branch->parent; |
| } |
| |
| int branch_clk_set_parent(struct clk *clk, struct clk *parent) |
| { |
| /* |
| * We setup the parent pointer at init time in msm_clock_init(). |
| * This check is to make sure drivers can't change the parent. |
| */ |
| if (parent && list_empty(&clk->siblings)) { |
| list_add(&clk->siblings, &parent->children); |
| return 0; |
| } |
| return -EINVAL; |
| } |
| |
| int branch_clk_is_enabled(struct clk *clk) |
| { |
| struct branch_clk *branch = to_branch_clk(clk); |
| return branch->enabled; |
| } |
| |
| static void branch_enable_hwcg(struct branch *b) |
| { |
| unsigned long flags; |
| u32 reg_val; |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| reg_val = readl_relaxed(b->hwcg_reg); |
| reg_val |= b->hwcg_mask; |
| writel_relaxed(reg_val, b->hwcg_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| static void branch_disable_hwcg(struct branch *b) |
| { |
| unsigned long flags; |
| u32 reg_val; |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| reg_val = readl_relaxed(b->hwcg_reg); |
| reg_val &= ~b->hwcg_mask; |
| writel_relaxed(reg_val, b->hwcg_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| void branch_clk_enable_hwcg(struct clk *clk) |
| { |
| struct branch_clk *branch = to_branch_clk(clk); |
| branch_enable_hwcg(&branch->b); |
| } |
| |
| void branch_clk_disable_hwcg(struct clk *clk) |
| { |
| struct branch_clk *branch = to_branch_clk(clk); |
| branch_disable_hwcg(&branch->b); |
| } |
| |
| int branch_clk_in_hwcg_mode(struct clk *c) |
| { |
| struct branch_clk *clk = to_branch_clk(c); |
| return branch_in_hwcg_mode(&clk->b); |
| } |
| |
| void rcg_clk_enable_hwcg(struct clk *clk) |
| { |
| struct rcg_clk *rcg = to_rcg_clk(clk); |
| branch_enable_hwcg(&rcg->b); |
| } |
| |
| void rcg_clk_disable_hwcg(struct clk *clk) |
| { |
| struct rcg_clk *rcg = to_rcg_clk(clk); |
| branch_disable_hwcg(&rcg->b); |
| } |
| |
| int rcg_clk_in_hwcg_mode(struct clk *c) |
| { |
| struct rcg_clk *clk = to_rcg_clk(c); |
| return branch_in_hwcg_mode(&clk->b); |
| } |
| |
| int branch_reset(struct branch *b, enum clk_reset_action action) |
| { |
| int ret = 0; |
| u32 reg_val; |
| unsigned long flags; |
| |
| if (!b->reset_reg) |
| return -EPERM; |
| |
| /* Disable hw gating when asserting a reset */ |
| if (b->hwcg_mask && action == CLK_RESET_ASSERT) |
| branch_disable_hwcg(b); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| /* Assert/Deassert reset */ |
| reg_val = readl_relaxed(b->reset_reg); |
| switch (action) { |
| case CLK_RESET_ASSERT: |
| reg_val |= b->reset_mask; |
| break; |
| case CLK_RESET_DEASSERT: |
| reg_val &= ~b->reset_mask; |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| writel_relaxed(reg_val, b->reset_reg); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| /* Enable hw gating when deasserting a reset */ |
| if (b->hwcg_mask && action == CLK_RESET_DEASSERT) |
| branch_enable_hwcg(b); |
| /* Make sure write is issued before returning. */ |
| mb(); |
| return ret; |
| } |
| |
| int branch_clk_reset(struct clk *clk, enum clk_reset_action action) |
| { |
| return branch_reset(&to_branch_clk(clk)->b, action); |
| } |
| |
| int rcg_clk_reset(struct clk *clk, enum clk_reset_action action) |
| { |
| return branch_reset(&to_rcg_clk(clk)->b, action); |
| } |
| |
| static int cdiv_clk_enable(struct clk *c) |
| { |
| unsigned long flags; |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __branch_clk_enable_reg(&clk->b, clk->c.dbg_name); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| |
| return 0; |
| } |
| |
| static void cdiv_clk_disable(struct clk *c) |
| { |
| unsigned long flags; |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| |
| spin_lock_irqsave(&local_clock_reg_lock, flags); |
| __branch_clk_disable_reg(&clk->b, clk->c.dbg_name); |
| spin_unlock_irqrestore(&local_clock_reg_lock, flags); |
| } |
| |
| static int cdiv_clk_set_rate(struct clk *c, unsigned long rate) |
| { |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| u32 reg_val; |
| |
| if (rate > clk->max_div) |
| return -EINVAL; |
| /* Check if frequency is actually changed. */ |
| if (rate == clk->cur_div) |
| return 0; |
| |
| spin_lock(&local_clock_reg_lock); |
| reg_val = readl_relaxed(clk->ns_reg); |
| reg_val &= ~(clk->ext_mask | (clk->max_div - 1) << clk->div_offset); |
| /* Non-zero rates mean set a divider, zero means use external input */ |
| if (rate) |
| reg_val |= (rate - 1) << clk->div_offset; |
| else |
| reg_val |= clk->ext_mask; |
| writel_relaxed(reg_val, clk->ns_reg); |
| spin_unlock(&local_clock_reg_lock); |
| |
| clk->cur_div = rate; |
| return 0; |
| } |
| |
| static unsigned long cdiv_clk_get_rate(struct clk *c) |
| { |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| return clk->cur_div; |
| } |
| |
| static long cdiv_clk_round_rate(struct clk *c, unsigned long rate) |
| { |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| return rate > clk->max_div ? -EPERM : rate; |
| } |
| |
| static int cdiv_clk_list_rate(struct clk *c, unsigned n) |
| { |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| return n > clk->max_div ? -ENXIO : n; |
| } |
| |
| static int cdiv_clk_handoff(struct clk *c) |
| { |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| u32 reg_val; |
| |
| branch_handoff(&clk->b, &clk->c); |
| |
| reg_val = readl_relaxed(clk->ns_reg); |
| if (reg_val & clk->ext_mask) { |
| clk->cur_div = 0; |
| } else { |
| reg_val >>= clk->div_offset; |
| clk->cur_div = (reg_val & (clk->max_div - 1)) + 1; |
| } |
| |
| return 0; |
| } |
| |
| static void cdiv_clk_enable_hwcg(struct clk *c) |
| { |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| branch_enable_hwcg(&clk->b); |
| } |
| |
| static void cdiv_clk_disable_hwcg(struct clk *c) |
| { |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| branch_disable_hwcg(&clk->b); |
| } |
| |
| static int cdiv_clk_in_hwcg_mode(struct clk *c) |
| { |
| struct cdiv_clk *clk = to_cdiv_clk(c); |
| return branch_in_hwcg_mode(&clk->b); |
| } |
| |
| struct clk_ops clk_ops_cdiv = { |
| .enable = cdiv_clk_enable, |
| .disable = cdiv_clk_disable, |
| .in_hwcg_mode = cdiv_clk_in_hwcg_mode, |
| .enable_hwcg = cdiv_clk_enable_hwcg, |
| .disable_hwcg = cdiv_clk_disable_hwcg, |
| .auto_off = cdiv_clk_disable, |
| .handoff = cdiv_clk_handoff, |
| .set_rate = cdiv_clk_set_rate, |
| .get_rate = cdiv_clk_get_rate, |
| .list_rate = cdiv_clk_list_rate, |
| .round_rate = cdiv_clk_round_rate, |
| .is_local = local_clk_is_local, |
| }; |