Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* $Id: viking.h,v 1.19 1997/04/20 14:11:48 ecd Exp $ |
| 2 | * viking.h: Defines specific to the GNU/Viking MBUS module. |
| 3 | * This is SRMMU stuff. |
| 4 | * |
| 5 | * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) |
| 6 | */ |
| 7 | #ifndef _SPARC_VIKING_H |
| 8 | #define _SPARC_VIKING_H |
| 9 | |
| 10 | #include <asm/asi.h> |
| 11 | #include <asm/mxcc.h> |
| 12 | #include <asm/pgtsrmmu.h> |
| 13 | |
| 14 | /* Bits in the SRMMU control register for GNU/Viking modules. |
| 15 | * |
| 16 | * ----------------------------------------------------------- |
| 17 | * |impl-vers| RSV |TC|AC|SP|BM|PC|MBM|SB|IC|DC|PSO|RSV|NF|ME| |
| 18 | * ----------------------------------------------------------- |
| 19 | * 31 24 23-17 16 15 14 13 12 11 10 9 8 7 6-2 1 0 |
| 20 | * |
| 21 | * TC: Tablewalk Cacheable -- 0 = Twalks are not cacheable in E-cache |
| 22 | * 1 = Twalks are cacheable in E-cache |
| 23 | * |
| 24 | * GNU/Viking will only cache tablewalks in the E-cache (mxcc) if present |
| 25 | * and never caches them internally (or so states the docs). Therefore |
| 26 | * for machines lacking an E-cache (ie. in MBUS mode) this bit must |
| 27 | * remain cleared. |
| 28 | * |
| 29 | * AC: Alternate Cacheable -- 0 = Passthru physical accesses not cacheable |
| 30 | * 1 = Passthru physical accesses cacheable |
| 31 | * |
| 32 | * This indicates whether accesses are cacheable when no cachable bit |
| 33 | * is present in the pte when the processor is in boot-mode or the |
| 34 | * access does not need pte's for translation (ie. pass-thru ASI's). |
| 35 | * "Cachable" is only referring to E-cache (if present) and not the |
| 36 | * on chip split I/D caches of the GNU/Viking. |
| 37 | * |
| 38 | * SP: SnooP Enable -- 0 = bus snooping off, 1 = bus snooping on |
| 39 | * |
| 40 | * This enables snooping on the GNU/Viking bus. This must be on |
| 41 | * for the hardware cache consistency mechanisms of the GNU/Viking |
| 42 | * to work at all. On non-mxcc GNU/Viking modules the split I/D |
| 43 | * caches will snoop regardless of whether they are enabled, this |
| 44 | * takes care of the case where the I or D or both caches are turned |
| 45 | * off yet still contain valid data. Note also that this bit does |
| 46 | * not affect GNU/Viking store-buffer snoops, those happen if the |
| 47 | * store-buffer is enabled no matter what. |
| 48 | * |
| 49 | * BM: Boot Mode -- 0 = not in boot mode, 1 = in boot mode |
| 50 | * |
| 51 | * This indicates whether the GNU/Viking is in boot-mode or not, |
| 52 | * if it is then all instruction fetch physical addresses are |
| 53 | * computed as 0xff0000000 + low 28 bits of requested address. |
| 54 | * GNU/Viking boot-mode does not affect data accesses. Also, |
| 55 | * in boot mode instruction accesses bypass the split on chip I/D |
| 56 | * caches, they may be cached by the GNU/MXCC if present and enabled. |
| 57 | * |
| 58 | * MBM: MBus Mode -- 0 = not in MBus mode, 1 = in MBus mode |
| 59 | * |
| 60 | * This indicated the GNU/Viking configuration present. If in |
| 61 | * MBUS mode, the GNU/Viking lacks a GNU/MXCC E-cache. If it is |
| 62 | * not then the GNU/Viking is on a module VBUS connected directly |
| 63 | * to a GNU/MXCC cache controller. The GNU/MXCC can be thus connected |
| 64 | * to either an GNU/MBUS (sun4m) or the packet-switched GNU/XBus (sun4d). |
| 65 | * |
| 66 | * SB: StoreBuffer enable -- 0 = store buffer off, 1 = store buffer on |
| 67 | * |
| 68 | * The GNU/Viking store buffer allows the chip to continue execution |
| 69 | * after a store even if the data cannot be placed in one of the |
| 70 | * caches during that cycle. If disabled, all stores operations |
| 71 | * occur synchronously. |
| 72 | * |
| 73 | * IC: Instruction Cache -- 0 = off, 1 = on |
| 74 | * DC: Data Cache -- 0 = off, 1 = 0n |
| 75 | * |
| 76 | * These bits enable the on-cpu GNU/Viking split I/D caches. Note, |
| 77 | * as mentioned above, these caches will snoop the bus in GNU/MBUS |
| 78 | * configurations even when disabled to avoid data corruption. |
| 79 | * |
| 80 | * NF: No Fault -- 0 = faults generate traps, 1 = faults don't trap |
| 81 | * ME: MMU enable -- 0 = mmu not translating, 1 = mmu translating |
| 82 | * |
| 83 | */ |
| 84 | |
| 85 | #define VIKING_MMUENABLE 0x00000001 |
| 86 | #define VIKING_NOFAULT 0x00000002 |
| 87 | #define VIKING_PSO 0x00000080 |
| 88 | #define VIKING_DCENABLE 0x00000100 /* Enable data cache */ |
| 89 | #define VIKING_ICENABLE 0x00000200 /* Enable instruction cache */ |
| 90 | #define VIKING_SBENABLE 0x00000400 /* Enable store buffer */ |
| 91 | #define VIKING_MMODE 0x00000800 /* MBUS mode */ |
| 92 | #define VIKING_PCENABLE 0x00001000 /* Enable parity checking */ |
| 93 | #define VIKING_BMODE 0x00002000 |
| 94 | #define VIKING_SPENABLE 0x00004000 /* Enable bus cache snooping */ |
| 95 | #define VIKING_ACENABLE 0x00008000 /* Enable alternate caching */ |
| 96 | #define VIKING_TCENABLE 0x00010000 /* Enable table-walks to be cached */ |
| 97 | #define VIKING_DPENABLE 0x00040000 /* Enable the data prefetcher */ |
| 98 | |
| 99 | /* |
| 100 | * GNU/Viking Breakpoint Action Register fields. |
| 101 | */ |
| 102 | #define VIKING_ACTION_MIX 0x00001000 /* Enable multiple instructions */ |
| 103 | |
| 104 | /* |
| 105 | * GNU/Viking Cache Tags. |
| 106 | */ |
| 107 | #define VIKING_PTAG_VALID 0x01000000 /* Cache block is valid */ |
| 108 | #define VIKING_PTAG_DIRTY 0x00010000 /* Block has been modified */ |
| 109 | #define VIKING_PTAG_SHARED 0x00000100 /* Shared with some other cache */ |
| 110 | |
| 111 | #ifndef __ASSEMBLY__ |
| 112 | |
| 113 | static inline void viking_flush_icache(void) |
| 114 | { |
| 115 | __asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" |
| 116 | : /* no outputs */ |
| 117 | : "i" (ASI_M_IC_FLCLEAR) |
| 118 | : "memory"); |
| 119 | } |
| 120 | |
| 121 | static inline void viking_flush_dcache(void) |
| 122 | { |
| 123 | __asm__ __volatile__("sta %%g0, [%%g0] %0\n\t" |
| 124 | : /* no outputs */ |
| 125 | : "i" (ASI_M_DC_FLCLEAR) |
| 126 | : "memory"); |
| 127 | } |
| 128 | |
| 129 | static inline void viking_unlock_icache(void) |
| 130 | { |
| 131 | __asm__ __volatile__("sta %%g0, [%0] %1\n\t" |
| 132 | : /* no outputs */ |
| 133 | : "r" (0x80000000), "i" (ASI_M_IC_FLCLEAR) |
| 134 | : "memory"); |
| 135 | } |
| 136 | |
| 137 | static inline void viking_unlock_dcache(void) |
| 138 | { |
| 139 | __asm__ __volatile__("sta %%g0, [%0] %1\n\t" |
| 140 | : /* no outputs */ |
| 141 | : "r" (0x80000000), "i" (ASI_M_DC_FLCLEAR) |
| 142 | : "memory"); |
| 143 | } |
| 144 | |
| 145 | static inline void viking_set_bpreg(unsigned long regval) |
| 146 | { |
| 147 | __asm__ __volatile__("sta %0, [%%g0] %1\n\t" |
| 148 | : /* no outputs */ |
| 149 | : "r" (regval), "i" (ASI_M_ACTION) |
| 150 | : "memory"); |
| 151 | } |
| 152 | |
| 153 | static inline unsigned long viking_get_bpreg(void) |
| 154 | { |
| 155 | unsigned long regval; |
| 156 | |
| 157 | __asm__ __volatile__("lda [%%g0] %1, %0\n\t" |
| 158 | : "=r" (regval) |
| 159 | : "i" (ASI_M_ACTION)); |
| 160 | return regval; |
| 161 | } |
| 162 | |
| 163 | static inline void viking_get_dcache_ptag(int set, int block, |
| 164 | unsigned long *data) |
| 165 | { |
| 166 | unsigned long ptag = ((set & 0x7f) << 5) | ((block & 0x3) << 26) | |
| 167 | 0x80000000; |
| 168 | unsigned long info, page; |
| 169 | |
| 170 | __asm__ __volatile__ ("ldda [%2] %3, %%g2\n\t" |
| 171 | "or %%g0, %%g2, %0\n\t" |
| 172 | "or %%g0, %%g3, %1\n\t" |
| 173 | : "=r" (info), "=r" (page) |
| 174 | : "r" (ptag), "i" (ASI_M_DATAC_TAG) |
| 175 | : "g2", "g3"); |
| 176 | data[0] = info; |
| 177 | data[1] = page; |
| 178 | } |
| 179 | |
| 180 | static inline void viking_mxcc_turn_off_parity(unsigned long *mregp, |
| 181 | unsigned long *mxcc_cregp) |
| 182 | { |
| 183 | unsigned long mreg = *mregp; |
| 184 | unsigned long mxcc_creg = *mxcc_cregp; |
| 185 | |
| 186 | mreg &= ~(VIKING_PCENABLE); |
| 187 | mxcc_creg &= ~(MXCC_CTL_PARE); |
| 188 | |
| 189 | __asm__ __volatile__ ("set 1f, %%g2\n\t" |
| 190 | "andcc %%g2, 4, %%g0\n\t" |
| 191 | "bne 2f\n\t" |
| 192 | " nop\n" |
| 193 | "1:\n\t" |
| 194 | "sta %0, [%%g0] %3\n\t" |
| 195 | "sta %1, [%2] %4\n\t" |
| 196 | "b 1f\n\t" |
| 197 | " nop\n\t" |
| 198 | "nop\n" |
| 199 | "2:\n\t" |
| 200 | "sta %0, [%%g0] %3\n\t" |
| 201 | "sta %1, [%2] %4\n" |
| 202 | "1:\n\t" |
| 203 | : /* no output */ |
| 204 | : "r" (mreg), "r" (mxcc_creg), |
| 205 | "r" (MXCC_CREG), "i" (ASI_M_MMUREGS), |
| 206 | "i" (ASI_M_MXCC) |
| 207 | : "g2", "memory", "cc"); |
| 208 | *mregp = mreg; |
| 209 | *mxcc_cregp = mxcc_creg; |
| 210 | } |
| 211 | |
| 212 | static inline unsigned long viking_hwprobe(unsigned long vaddr) |
| 213 | { |
| 214 | unsigned long val; |
| 215 | |
| 216 | vaddr &= PAGE_MASK; |
| 217 | /* Probe all MMU entries. */ |
| 218 | __asm__ __volatile__("lda [%1] %2, %0\n\t" |
| 219 | : "=r" (val) |
| 220 | : "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE)); |
| 221 | if (!val) |
| 222 | return 0; |
| 223 | |
| 224 | /* Probe region. */ |
| 225 | __asm__ __volatile__("lda [%1] %2, %0\n\t" |
| 226 | : "=r" (val) |
| 227 | : "r" (vaddr | 0x200), "i" (ASI_M_FLUSH_PROBE)); |
| 228 | if ((val & SRMMU_ET_MASK) == SRMMU_ET_PTE) { |
| 229 | vaddr &= ~SRMMU_PGDIR_MASK; |
| 230 | vaddr >>= PAGE_SHIFT; |
| 231 | return val | (vaddr << 8); |
| 232 | } |
| 233 | |
| 234 | /* Probe segment. */ |
| 235 | __asm__ __volatile__("lda [%1] %2, %0\n\t" |
| 236 | : "=r" (val) |
| 237 | : "r" (vaddr | 0x100), "i" (ASI_M_FLUSH_PROBE)); |
| 238 | if ((val & SRMMU_ET_MASK) == SRMMU_ET_PTE) { |
| 239 | vaddr &= ~SRMMU_REAL_PMD_MASK; |
| 240 | vaddr >>= PAGE_SHIFT; |
| 241 | return val | (vaddr << 8); |
| 242 | } |
| 243 | |
| 244 | /* Probe page. */ |
| 245 | __asm__ __volatile__("lda [%1] %2, %0\n\t" |
| 246 | : "=r" (val) |
| 247 | : "r" (vaddr), "i" (ASI_M_FLUSH_PROBE)); |
| 248 | return val; |
| 249 | } |
| 250 | |
| 251 | #endif /* !__ASSEMBLY__ */ |
| 252 | |
| 253 | #endif /* !(_SPARC_VIKING_H) */ |