Martin Schwidefsky | 6684af1 | 2006-09-20 15:58:32 +0200 | [diff] [blame] | 1 | /* |
| 2 | * linux/drivers/s390/crypto/zcrypt_cca_key.h |
| 3 | * |
Ralph Wuerthner | 5432114 | 2006-09-20 15:58:36 +0200 | [diff] [blame] | 4 | * zcrypt 2.1.0 |
Martin Schwidefsky | 6684af1 | 2006-09-20 15:58:32 +0200 | [diff] [blame] | 5 | * |
| 6 | * Copyright (C) 2001, 2006 IBM Corporation |
| 7 | * Author(s): Robert Burroughs |
| 8 | * Eric Rossman (edrossma@us.ibm.com) |
| 9 | * |
| 10 | * Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com) |
| 11 | * Major cleanup & driver split: Martin Schwidefsky <schwidefsky@de.ibm.com> |
| 12 | * |
| 13 | * This program is free software; you can redistribute it and/or modify |
| 14 | * it under the terms of the GNU General Public License as published by |
| 15 | * the Free Software Foundation; either version 2, or (at your option) |
| 16 | * any later version. |
| 17 | * |
| 18 | * This program is distributed in the hope that it will be useful, |
| 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 21 | * GNU General Public License for more details. |
| 22 | * |
| 23 | * You should have received a copy of the GNU General Public License |
| 24 | * along with this program; if not, write to the Free Software |
| 25 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| 26 | */ |
| 27 | |
| 28 | #ifndef _ZCRYPT_CCA_KEY_H_ |
| 29 | #define _ZCRYPT_CCA_KEY_H_ |
| 30 | |
| 31 | struct T6_keyBlock_hdr { |
| 32 | unsigned short blen; |
| 33 | unsigned short ulen; |
| 34 | unsigned short flags; |
| 35 | }; |
| 36 | |
| 37 | /** |
| 38 | * mapping for the cca private ME key token. |
| 39 | * Three parts of interest here: the header, the private section and |
| 40 | * the public section. |
| 41 | * |
| 42 | * mapping for the cca key token header |
| 43 | */ |
| 44 | struct cca_token_hdr { |
| 45 | unsigned char token_identifier; |
| 46 | unsigned char version; |
| 47 | unsigned short token_length; |
| 48 | unsigned char reserved[4]; |
| 49 | } __attribute__((packed)); |
| 50 | |
| 51 | #define CCA_TKN_HDR_ID_EXT 0x1E |
| 52 | |
| 53 | /** |
| 54 | * mapping for the cca private ME section |
| 55 | */ |
| 56 | struct cca_private_ext_ME_sec { |
| 57 | unsigned char section_identifier; |
| 58 | unsigned char version; |
| 59 | unsigned short section_length; |
| 60 | unsigned char private_key_hash[20]; |
| 61 | unsigned char reserved1[4]; |
| 62 | unsigned char key_format; |
| 63 | unsigned char reserved2; |
| 64 | unsigned char key_name_hash[20]; |
| 65 | unsigned char key_use_flags[4]; |
| 66 | unsigned char reserved3[6]; |
| 67 | unsigned char reserved4[24]; |
| 68 | unsigned char confounder[24]; |
| 69 | unsigned char exponent[128]; |
| 70 | unsigned char modulus[128]; |
| 71 | } __attribute__((packed)); |
| 72 | |
| 73 | #define CCA_PVT_USAGE_ALL 0x80 |
| 74 | |
| 75 | /** |
| 76 | * mapping for the cca public section |
| 77 | * In a private key, the modulus doesn't appear in the public |
| 78 | * section. So, an arbitrary public exponent of 0x010001 will be |
| 79 | * used, for a section length of 0x0F always. |
| 80 | */ |
| 81 | struct cca_public_sec { |
| 82 | unsigned char section_identifier; |
| 83 | unsigned char version; |
| 84 | unsigned short section_length; |
| 85 | unsigned char reserved[2]; |
| 86 | unsigned short exponent_len; |
| 87 | unsigned short modulus_bit_len; |
| 88 | unsigned short modulus_byte_len; /* In a private key, this is 0 */ |
| 89 | } __attribute__((packed)); |
| 90 | |
| 91 | /** |
| 92 | * mapping for the cca private CRT key 'token' |
| 93 | * The first three parts (the only parts considered in this release) |
| 94 | * are: the header, the private section and the public section. |
| 95 | * The header and public section are the same as for the |
| 96 | * struct cca_private_ext_ME |
| 97 | * |
| 98 | * Following the structure are the quantities p, q, dp, dq, u, pad, |
| 99 | * and modulus, in that order, where pad_len is the modulo 8 |
| 100 | * complement of the residue modulo 8 of the sum of |
| 101 | * (p_len + q_len + dp_len + dq_len + u_len). |
| 102 | */ |
| 103 | struct cca_pvt_ext_CRT_sec { |
| 104 | unsigned char section_identifier; |
| 105 | unsigned char version; |
| 106 | unsigned short section_length; |
| 107 | unsigned char private_key_hash[20]; |
| 108 | unsigned char reserved1[4]; |
| 109 | unsigned char key_format; |
| 110 | unsigned char reserved2; |
| 111 | unsigned char key_name_hash[20]; |
| 112 | unsigned char key_use_flags[4]; |
| 113 | unsigned short p_len; |
| 114 | unsigned short q_len; |
| 115 | unsigned short dp_len; |
| 116 | unsigned short dq_len; |
| 117 | unsigned short u_len; |
| 118 | unsigned short mod_len; |
| 119 | unsigned char reserved3[4]; |
| 120 | unsigned short pad_len; |
| 121 | unsigned char reserved4[52]; |
| 122 | unsigned char confounder[8]; |
| 123 | } __attribute__((packed)); |
| 124 | |
| 125 | #define CCA_PVT_EXT_CRT_SEC_ID_PVT 0x08 |
| 126 | #define CCA_PVT_EXT_CRT_SEC_FMT_CL 0x40 |
| 127 | |
| 128 | /** |
| 129 | * Set up private key fields of a type6 MEX message. |
| 130 | * Note that all numerics in the key token are big-endian, |
| 131 | * while the entries in the key block header are little-endian. |
| 132 | * |
| 133 | * @mex: pointer to user input data |
| 134 | * @p: pointer to memory area for the key |
| 135 | * |
| 136 | * Returns the size of the key area or -EFAULT |
| 137 | */ |
| 138 | static inline int zcrypt_type6_mex_key_de(struct ica_rsa_modexpo *mex, |
| 139 | void *p, int big_endian) |
| 140 | { |
| 141 | static struct cca_token_hdr static_pvt_me_hdr = { |
| 142 | .token_identifier = 0x1E, |
| 143 | .token_length = 0x0183, |
| 144 | }; |
| 145 | static struct cca_private_ext_ME_sec static_pvt_me_sec = { |
| 146 | .section_identifier = 0x02, |
| 147 | .section_length = 0x016C, |
| 148 | .key_use_flags = {0x80,0x00,0x00,0x00}, |
| 149 | }; |
| 150 | static struct cca_public_sec static_pub_me_sec = { |
| 151 | .section_identifier = 0x04, |
| 152 | .section_length = 0x000F, |
| 153 | .exponent_len = 0x0003, |
| 154 | }; |
| 155 | static char pk_exponent[3] = { 0x01, 0x00, 0x01 }; |
| 156 | struct { |
| 157 | struct T6_keyBlock_hdr t6_hdr; |
| 158 | struct cca_token_hdr pvtMeHdr; |
| 159 | struct cca_private_ext_ME_sec pvtMeSec; |
| 160 | struct cca_public_sec pubMeSec; |
| 161 | char exponent[3]; |
| 162 | } __attribute__((packed)) *key = p; |
| 163 | unsigned char *temp; |
| 164 | |
| 165 | memset(key, 0, sizeof(*key)); |
| 166 | |
| 167 | if (big_endian) { |
| 168 | key->t6_hdr.blen = cpu_to_be16(0x189); |
| 169 | key->t6_hdr.ulen = cpu_to_be16(0x189 - 2); |
| 170 | } else { |
| 171 | key->t6_hdr.blen = cpu_to_le16(0x189); |
| 172 | key->t6_hdr.ulen = cpu_to_le16(0x189 - 2); |
| 173 | } |
| 174 | key->pvtMeHdr = static_pvt_me_hdr; |
| 175 | key->pvtMeSec = static_pvt_me_sec; |
| 176 | key->pubMeSec = static_pub_me_sec; |
Felix Beck | 1749a81 | 2008-04-17 07:46:28 +0200 | [diff] [blame] | 177 | /* |
Martin Schwidefsky | 6684af1 | 2006-09-20 15:58:32 +0200 | [diff] [blame] | 178 | * In a private key, the modulus doesn't appear in the public |
| 179 | * section. So, an arbitrary public exponent of 0x010001 will be |
| 180 | * used. |
| 181 | */ |
| 182 | memcpy(key->exponent, pk_exponent, 3); |
| 183 | |
| 184 | /* key parameter block */ |
| 185 | temp = key->pvtMeSec.exponent + |
| 186 | sizeof(key->pvtMeSec.exponent) - mex->inputdatalength; |
| 187 | if (copy_from_user(temp, mex->b_key, mex->inputdatalength)) |
| 188 | return -EFAULT; |
| 189 | |
| 190 | /* modulus */ |
| 191 | temp = key->pvtMeSec.modulus + |
| 192 | sizeof(key->pvtMeSec.modulus) - mex->inputdatalength; |
| 193 | if (copy_from_user(temp, mex->n_modulus, mex->inputdatalength)) |
| 194 | return -EFAULT; |
| 195 | key->pubMeSec.modulus_bit_len = 8 * mex->inputdatalength; |
| 196 | return sizeof(*key); |
| 197 | } |
| 198 | |
| 199 | /** |
| 200 | * Set up private key fields of a type6 MEX message. The _pad variant |
| 201 | * strips leading zeroes from the b_key. |
| 202 | * Note that all numerics in the key token are big-endian, |
| 203 | * while the entries in the key block header are little-endian. |
| 204 | * |
| 205 | * @mex: pointer to user input data |
| 206 | * @p: pointer to memory area for the key |
| 207 | * |
| 208 | * Returns the size of the key area or -EFAULT |
| 209 | */ |
| 210 | static inline int zcrypt_type6_mex_key_en(struct ica_rsa_modexpo *mex, |
| 211 | void *p, int big_endian) |
| 212 | { |
| 213 | static struct cca_token_hdr static_pub_hdr = { |
| 214 | .token_identifier = 0x1E, |
| 215 | }; |
| 216 | static struct cca_public_sec static_pub_sec = { |
| 217 | .section_identifier = 0x04, |
| 218 | }; |
| 219 | struct { |
| 220 | struct T6_keyBlock_hdr t6_hdr; |
| 221 | struct cca_token_hdr pubHdr; |
| 222 | struct cca_public_sec pubSec; |
| 223 | char exponent[0]; |
| 224 | } __attribute__((packed)) *key = p; |
| 225 | unsigned char *temp; |
| 226 | int i; |
| 227 | |
| 228 | memset(key, 0, sizeof(*key)); |
| 229 | |
| 230 | key->pubHdr = static_pub_hdr; |
| 231 | key->pubSec = static_pub_sec; |
| 232 | |
| 233 | /* key parameter block */ |
| 234 | temp = key->exponent; |
| 235 | if (copy_from_user(temp, mex->b_key, mex->inputdatalength)) |
| 236 | return -EFAULT; |
| 237 | /* Strip leading zeroes from b_key. */ |
| 238 | for (i = 0; i < mex->inputdatalength; i++) |
| 239 | if (temp[i]) |
| 240 | break; |
| 241 | if (i >= mex->inputdatalength) |
| 242 | return -EINVAL; |
| 243 | memmove(temp, temp + i, mex->inputdatalength - i); |
| 244 | temp += mex->inputdatalength - i; |
| 245 | /* modulus */ |
| 246 | if (copy_from_user(temp, mex->n_modulus, mex->inputdatalength)) |
| 247 | return -EFAULT; |
| 248 | |
| 249 | key->pubSec.modulus_bit_len = 8 * mex->inputdatalength; |
| 250 | key->pubSec.modulus_byte_len = mex->inputdatalength; |
| 251 | key->pubSec.exponent_len = mex->inputdatalength - i; |
| 252 | key->pubSec.section_length = sizeof(key->pubSec) + |
| 253 | 2*mex->inputdatalength - i; |
| 254 | key->pubHdr.token_length = |
| 255 | key->pubSec.section_length + sizeof(key->pubHdr); |
| 256 | if (big_endian) { |
| 257 | key->t6_hdr.ulen = cpu_to_be16(key->pubHdr.token_length + 4); |
| 258 | key->t6_hdr.blen = cpu_to_be16(key->pubHdr.token_length + 6); |
| 259 | } else { |
| 260 | key->t6_hdr.ulen = cpu_to_le16(key->pubHdr.token_length + 4); |
| 261 | key->t6_hdr.blen = cpu_to_le16(key->pubHdr.token_length + 6); |
| 262 | } |
| 263 | return sizeof(*key) + 2*mex->inputdatalength - i; |
| 264 | } |
| 265 | |
| 266 | /** |
| 267 | * Set up private key fields of a type6 CRT message. |
| 268 | * Note that all numerics in the key token are big-endian, |
| 269 | * while the entries in the key block header are little-endian. |
| 270 | * |
| 271 | * @mex: pointer to user input data |
| 272 | * @p: pointer to memory area for the key |
| 273 | * |
| 274 | * Returns the size of the key area or -EFAULT |
| 275 | */ |
| 276 | static inline int zcrypt_type6_crt_key(struct ica_rsa_modexpo_crt *crt, |
| 277 | void *p, int big_endian) |
| 278 | { |
| 279 | static struct cca_public_sec static_cca_pub_sec = { |
| 280 | .section_identifier = 4, |
| 281 | .section_length = 0x000f, |
| 282 | .exponent_len = 0x0003, |
| 283 | }; |
| 284 | static char pk_exponent[3] = { 0x01, 0x00, 0x01 }; |
| 285 | struct { |
| 286 | struct T6_keyBlock_hdr t6_hdr; |
| 287 | struct cca_token_hdr token; |
| 288 | struct cca_pvt_ext_CRT_sec pvt; |
| 289 | char key_parts[0]; |
| 290 | } __attribute__((packed)) *key = p; |
| 291 | struct cca_public_sec *pub; |
| 292 | int short_len, long_len, pad_len, key_len, size; |
| 293 | |
| 294 | memset(key, 0, sizeof(*key)); |
| 295 | |
| 296 | short_len = crt->inputdatalength / 2; |
| 297 | long_len = short_len + 8; |
| 298 | pad_len = -(3*long_len + 2*short_len) & 7; |
| 299 | key_len = 3*long_len + 2*short_len + pad_len + crt->inputdatalength; |
| 300 | size = sizeof(*key) + key_len + sizeof(*pub) + 3; |
| 301 | |
| 302 | /* parameter block.key block */ |
| 303 | if (big_endian) { |
| 304 | key->t6_hdr.blen = cpu_to_be16(size); |
| 305 | key->t6_hdr.ulen = cpu_to_be16(size - 2); |
| 306 | } else { |
| 307 | key->t6_hdr.blen = cpu_to_le16(size); |
| 308 | key->t6_hdr.ulen = cpu_to_le16(size - 2); |
| 309 | } |
| 310 | |
| 311 | /* key token header */ |
| 312 | key->token.token_identifier = CCA_TKN_HDR_ID_EXT; |
| 313 | key->token.token_length = size - 6; |
| 314 | |
| 315 | /* private section */ |
| 316 | key->pvt.section_identifier = CCA_PVT_EXT_CRT_SEC_ID_PVT; |
| 317 | key->pvt.section_length = sizeof(key->pvt) + key_len; |
| 318 | key->pvt.key_format = CCA_PVT_EXT_CRT_SEC_FMT_CL; |
| 319 | key->pvt.key_use_flags[0] = CCA_PVT_USAGE_ALL; |
| 320 | key->pvt.p_len = key->pvt.dp_len = key->pvt.u_len = long_len; |
| 321 | key->pvt.q_len = key->pvt.dq_len = short_len; |
| 322 | key->pvt.mod_len = crt->inputdatalength; |
| 323 | key->pvt.pad_len = pad_len; |
| 324 | |
| 325 | /* key parts */ |
| 326 | if (copy_from_user(key->key_parts, crt->np_prime, long_len) || |
| 327 | copy_from_user(key->key_parts + long_len, |
| 328 | crt->nq_prime, short_len) || |
| 329 | copy_from_user(key->key_parts + long_len + short_len, |
| 330 | crt->bp_key, long_len) || |
| 331 | copy_from_user(key->key_parts + 2*long_len + short_len, |
| 332 | crt->bq_key, short_len) || |
| 333 | copy_from_user(key->key_parts + 2*long_len + 2*short_len, |
| 334 | crt->u_mult_inv, long_len)) |
| 335 | return -EFAULT; |
| 336 | memset(key->key_parts + 3*long_len + 2*short_len + pad_len, |
| 337 | 0xff, crt->inputdatalength); |
| 338 | pub = (struct cca_public_sec *)(key->key_parts + key_len); |
| 339 | *pub = static_cca_pub_sec; |
| 340 | pub->modulus_bit_len = 8 * crt->inputdatalength; |
Felix Beck | 1749a81 | 2008-04-17 07:46:28 +0200 | [diff] [blame] | 341 | /* |
Martin Schwidefsky | 6684af1 | 2006-09-20 15:58:32 +0200 | [diff] [blame] | 342 | * In a private key, the modulus doesn't appear in the public |
| 343 | * section. So, an arbitrary public exponent of 0x010001 will be |
| 344 | * used. |
| 345 | */ |
| 346 | memcpy((char *) (pub + 1), pk_exponent, 3); |
| 347 | return size; |
| 348 | } |
| 349 | |
| 350 | #endif /* _ZCRYPT_CCA_KEY_H_ */ |