Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /** |
| 2 | * @file arch/alpha/oprofile/op_model_ev5.c |
| 3 | * |
| 4 | * @remark Copyright 2002 OProfile authors |
| 5 | * @remark Read the file COPYING |
| 6 | * |
| 7 | * @author Richard Henderson <rth@twiddle.net> |
| 8 | */ |
| 9 | |
| 10 | #include <linux/oprofile.h> |
| 11 | #include <linux/init.h> |
| 12 | #include <linux/smp.h> |
| 13 | #include <asm/ptrace.h> |
| 14 | #include <asm/system.h> |
| 15 | |
| 16 | #include "op_impl.h" |
| 17 | |
| 18 | |
| 19 | /* Compute all of the registers in preparation for enabling profiling. |
| 20 | |
| 21 | The 21164 (EV5) and 21164PC (PCA65) vary in the bit placement and |
| 22 | meaning of the "CBOX" events. Given that we don't care about meaning |
| 23 | at this point, arrange for the difference in bit placement to be |
| 24 | handled by common code. */ |
| 25 | |
| 26 | static void |
| 27 | common_reg_setup(struct op_register_config *reg, |
| 28 | struct op_counter_config *ctr, |
| 29 | struct op_system_config *sys, |
| 30 | int cbox1_ofs, int cbox2_ofs) |
| 31 | { |
| 32 | int i, ctl, reset, need_reset; |
| 33 | |
| 34 | /* Select desired events. The event numbers are selected such |
| 35 | that they map directly into the event selection fields: |
| 36 | |
| 37 | PCSEL0: 0, 1 |
| 38 | PCSEL1: 24-39 |
| 39 | CBOX1: 40-47 |
| 40 | PCSEL2: 48-63 |
| 41 | CBOX2: 64-71 |
| 42 | |
| 43 | There are two special cases, in that CYCLES can be measured |
| 44 | on PCSEL[02], and SCACHE_WRITE can be measured on CBOX[12]. |
| 45 | These event numbers are canonicalizes to their first appearance. */ |
| 46 | |
| 47 | ctl = 0; |
| 48 | for (i = 0; i < 3; ++i) { |
| 49 | unsigned long event = ctr[i].event; |
| 50 | if (!ctr[i].enabled) |
| 51 | continue; |
| 52 | |
| 53 | /* Remap the duplicate events, as described above. */ |
| 54 | if (i == 2) { |
| 55 | if (event == 0) |
| 56 | event = 12+48; |
| 57 | else if (event == 2+41) |
| 58 | event = 4+65; |
| 59 | } |
| 60 | |
| 61 | /* Convert the event numbers onto mux_select bit mask. */ |
| 62 | if (event < 2) |
| 63 | ctl |= event << 31; |
| 64 | else if (event < 24) |
| 65 | /* error */; |
| 66 | else if (event < 40) |
| 67 | ctl |= (event - 24) << 4; |
| 68 | else if (event < 48) |
| 69 | ctl |= (event - 40) << cbox1_ofs | 15 << 4; |
| 70 | else if (event < 64) |
| 71 | ctl |= event - 48; |
| 72 | else if (event < 72) |
| 73 | ctl |= (event - 64) << cbox2_ofs | 15; |
| 74 | } |
| 75 | reg->mux_select = ctl; |
| 76 | |
| 77 | /* Select processor mode. */ |
| 78 | /* ??? Need to come up with some mechanism to trace only selected |
| 79 | processes. For now select from pal, kernel and user mode. */ |
| 80 | ctl = 0; |
| 81 | ctl |= !sys->enable_pal << 9; |
| 82 | ctl |= !sys->enable_kernel << 8; |
| 83 | ctl |= !sys->enable_user << 30; |
| 84 | reg->proc_mode = ctl; |
| 85 | |
| 86 | /* Select interrupt frequencies. Take the interrupt count selected |
| 87 | by the user, and map it onto one of the possible counter widths. |
| 88 | If the user value is in between, compute a value to which the |
| 89 | counter is reset at each interrupt. */ |
| 90 | |
| 91 | ctl = reset = need_reset = 0; |
| 92 | for (i = 0; i < 3; ++i) { |
| 93 | unsigned long max, hilo, count = ctr[i].count; |
| 94 | if (!ctr[i].enabled) |
| 95 | continue; |
| 96 | |
| 97 | if (count <= 256) |
| 98 | count = 256, hilo = 3, max = 256; |
| 99 | else { |
| 100 | max = (i == 2 ? 16384 : 65536); |
| 101 | hilo = 2; |
| 102 | if (count > max) |
| 103 | count = max; |
| 104 | } |
| 105 | ctr[i].count = count; |
| 106 | |
| 107 | ctl |= hilo << (8 - i*2); |
| 108 | reset |= (max - count) << (48 - 16*i); |
| 109 | if (count != max) |
| 110 | need_reset |= 1 << i; |
| 111 | } |
| 112 | reg->freq = ctl; |
| 113 | reg->reset_values = reset; |
| 114 | reg->need_reset = need_reset; |
| 115 | } |
| 116 | |
| 117 | static void |
| 118 | ev5_reg_setup(struct op_register_config *reg, |
| 119 | struct op_counter_config *ctr, |
| 120 | struct op_system_config *sys) |
| 121 | { |
| 122 | common_reg_setup(reg, ctr, sys, 19, 22); |
| 123 | } |
| 124 | |
| 125 | static void |
| 126 | pca56_reg_setup(struct op_register_config *reg, |
| 127 | struct op_counter_config *ctr, |
| 128 | struct op_system_config *sys) |
| 129 | { |
| 130 | common_reg_setup(reg, ctr, sys, 8, 11); |
| 131 | } |
| 132 | |
| 133 | /* Program all of the registers in preparation for enabling profiling. */ |
| 134 | |
| 135 | static void |
| 136 | ev5_cpu_setup (void *x) |
| 137 | { |
| 138 | struct op_register_config *reg = x; |
| 139 | |
| 140 | wrperfmon(2, reg->mux_select); |
| 141 | wrperfmon(3, reg->proc_mode); |
| 142 | wrperfmon(4, reg->freq); |
| 143 | wrperfmon(6, reg->reset_values); |
| 144 | } |
| 145 | |
| 146 | /* CTR is a counter for which the user has requested an interrupt count |
| 147 | in between one of the widths selectable in hardware. Reset the count |
| 148 | for CTR to the value stored in REG->RESET_VALUES. |
| 149 | |
| 150 | For EV5, this means disabling profiling, reading the current values, |
| 151 | masking in the value for the desired register, writing, then turning |
| 152 | profiling back on. |
| 153 | |
| 154 | This can be streamlined if profiling is only enabled for user mode. |
| 155 | In that case we know that the counters are not currently incrementing |
| 156 | (due to being in kernel mode). */ |
| 157 | |
| 158 | static void |
| 159 | ev5_reset_ctr(struct op_register_config *reg, unsigned long ctr) |
| 160 | { |
| 161 | unsigned long values, mask, not_pk, reset_values; |
| 162 | |
| 163 | mask = (ctr == 0 ? 0xfffful << 48 |
| 164 | : ctr == 1 ? 0xfffful << 32 |
| 165 | : 0x3fff << 16); |
| 166 | |
| 167 | not_pk = 1 << 9 | 1 << 8; |
| 168 | |
| 169 | reset_values = reg->reset_values; |
| 170 | |
| 171 | if ((reg->proc_mode & not_pk) == not_pk) { |
| 172 | values = wrperfmon(5, 0); |
| 173 | values = (reset_values & mask) | (values & ~mask & -2); |
| 174 | wrperfmon(6, values); |
| 175 | } else { |
| 176 | wrperfmon(0, -1); |
| 177 | values = wrperfmon(5, 0); |
| 178 | values = (reset_values & mask) | (values & ~mask & -2); |
| 179 | wrperfmon(6, values); |
| 180 | wrperfmon(1, reg->enable); |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | static void |
| 185 | ev5_handle_interrupt(unsigned long which, struct pt_regs *regs, |
| 186 | struct op_counter_config *ctr) |
| 187 | { |
| 188 | /* Record the sample. */ |
| 189 | oprofile_add_sample(regs, which); |
| 190 | } |
| 191 | |
| 192 | |
| 193 | struct op_axp_model op_model_ev5 = { |
| 194 | .reg_setup = ev5_reg_setup, |
| 195 | .cpu_setup = ev5_cpu_setup, |
| 196 | .reset_ctr = ev5_reset_ctr, |
| 197 | .handle_interrupt = ev5_handle_interrupt, |
| 198 | .cpu_type = "alpha/ev5", |
| 199 | .num_counters = 3, |
| 200 | .can_set_proc_mode = 1, |
| 201 | }; |
| 202 | |
| 203 | struct op_axp_model op_model_pca56 = { |
| 204 | .reg_setup = pca56_reg_setup, |
| 205 | .cpu_setup = ev5_cpu_setup, |
| 206 | .reset_ctr = ev5_reset_ctr, |
| 207 | .handle_interrupt = ev5_handle_interrupt, |
| 208 | .cpu_type = "alpha/pca56", |
| 209 | .num_counters = 3, |
| 210 | .can_set_proc_mode = 1, |
| 211 | }; |