Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* |
| 2 | * NFTL mount code with extensive checks |
| 3 | * |
| 4 | * Author: Fabrice Bellard (fabrice.bellard@netgem.com) |
| 5 | * Copyright (C) 2000 Netgem S.A. |
| 6 | * |
| 7 | * $Id: nftlmount.c,v 1.40 2004/11/22 14:38:29 kalev Exp $ |
| 8 | * |
| 9 | * This program is free software; you can redistribute it and/or modify |
| 10 | * it under the terms of the GNU General Public License as published by |
| 11 | * the Free Software Foundation; either version 2 of the License, or |
| 12 | * (at your option) any later version. |
| 13 | * |
| 14 | * This program is distributed in the hope that it will be useful, |
| 15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 17 | * GNU General Public License for more details. |
| 18 | * |
| 19 | * You should have received a copy of the GNU General Public License |
| 20 | * along with this program; if not, write to the Free Software |
| 21 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 22 | */ |
| 23 | |
| 24 | #include <linux/kernel.h> |
| 25 | #include <asm/errno.h> |
| 26 | #include <linux/delay.h> |
| 27 | #include <linux/slab.h> |
| 28 | #include <linux/mtd/mtd.h> |
| 29 | #include <linux/mtd/nand.h> |
| 30 | #include <linux/mtd/nftl.h> |
| 31 | |
| 32 | #define SECTORSIZE 512 |
| 33 | |
| 34 | char nftlmountrev[]="$Revision: 1.40 $"; |
| 35 | |
| 36 | /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the |
| 37 | * various device information of the NFTL partition and Bad Unit Table. Update |
| 38 | * the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] |
| 39 | * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c |
| 40 | */ |
| 41 | static int find_boot_record(struct NFTLrecord *nftl) |
| 42 | { |
| 43 | struct nftl_uci1 h1; |
| 44 | unsigned int block, boot_record_count = 0; |
| 45 | size_t retlen; |
| 46 | u8 buf[SECTORSIZE]; |
| 47 | struct NFTLMediaHeader *mh = &nftl->MediaHdr; |
| 48 | unsigned int i; |
| 49 | |
| 50 | /* Assume logical EraseSize == physical erasesize for starting the scan. |
| 51 | We'll sort it out later if we find a MediaHeader which says otherwise */ |
| 52 | /* Actually, we won't. The new DiskOnChip driver has already scanned |
| 53 | the MediaHeader and adjusted the virtual erasesize it presents in |
| 54 | the mtd device accordingly. We could even get rid of |
| 55 | nftl->EraseSize if there were any point in doing so. */ |
| 56 | nftl->EraseSize = nftl->mbd.mtd->erasesize; |
| 57 | nftl->nb_blocks = nftl->mbd.mtd->size / nftl->EraseSize; |
| 58 | |
| 59 | nftl->MediaUnit = BLOCK_NIL; |
| 60 | nftl->SpareMediaUnit = BLOCK_NIL; |
| 61 | |
| 62 | /* search for a valid boot record */ |
| 63 | for (block = 0; block < nftl->nb_blocks; block++) { |
| 64 | int ret; |
| 65 | |
| 66 | /* Check for ANAND header first. Then can whinge if it's found but later |
| 67 | checks fail */ |
| 68 | ret = MTD_READ(nftl->mbd.mtd, block * nftl->EraseSize, SECTORSIZE, &retlen, buf); |
| 69 | /* We ignore ret in case the ECC of the MediaHeader is invalid |
| 70 | (which is apparently acceptable) */ |
| 71 | if (retlen != SECTORSIZE) { |
| 72 | static int warncount = 5; |
| 73 | |
| 74 | if (warncount) { |
| 75 | printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n", |
| 76 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); |
| 77 | if (!--warncount) |
| 78 | printk(KERN_WARNING "Further failures for this block will not be printed\n"); |
| 79 | } |
| 80 | continue; |
| 81 | } |
| 82 | |
| 83 | if (retlen < 6 || memcmp(buf, "ANAND", 6)) { |
| 84 | /* ANAND\0 not found. Continue */ |
| 85 | #if 0 |
| 86 | printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n", |
| 87 | block * nftl->EraseSize, nftl->mbd.mtd->index); |
| 88 | #endif |
| 89 | continue; |
| 90 | } |
| 91 | |
| 92 | /* To be safer with BIOS, also use erase mark as discriminant */ |
| 93 | if ((ret = MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, |
| 94 | 8, &retlen, (char *)&h1) < 0)) { |
| 95 | printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n", |
| 96 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); |
| 97 | continue; |
| 98 | } |
| 99 | |
| 100 | #if 0 /* Some people seem to have devices without ECC or erase marks |
| 101 | on the Media Header blocks. There are enough other sanity |
| 102 | checks in here that we can probably do without it. |
| 103 | */ |
| 104 | if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) { |
| 105 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n", |
| 106 | block * nftl->EraseSize, nftl->mbd.mtd->index, |
| 107 | le16_to_cpu(h1.EraseMark), le16_to_cpu(h1.EraseMark1)); |
| 108 | continue; |
| 109 | } |
| 110 | |
| 111 | /* Finally reread to check ECC */ |
| 112 | if ((ret = MTD_READECC(nftl->mbd.mtd, block * nftl->EraseSize, SECTORSIZE, |
| 113 | &retlen, buf, (char *)&oob, NULL) < 0)) { |
| 114 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n", |
| 115 | block * nftl->EraseSize, nftl->mbd.mtd->index, ret); |
| 116 | continue; |
| 117 | } |
| 118 | |
| 119 | /* Paranoia. Check the ANAND header is still there after the ECC read */ |
| 120 | if (memcmp(buf, "ANAND", 6)) { |
| 121 | printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n", |
| 122 | block * nftl->EraseSize, nftl->mbd.mtd->index); |
| 123 | printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n", |
| 124 | buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); |
| 125 | continue; |
| 126 | } |
| 127 | #endif |
| 128 | /* OK, we like it. */ |
| 129 | |
| 130 | if (boot_record_count) { |
| 131 | /* We've already processed one. So we just check if |
| 132 | this one is the same as the first one we found */ |
| 133 | if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { |
| 134 | printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n", |
| 135 | nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); |
| 136 | /* if (debug) Print both side by side */ |
| 137 | if (boot_record_count < 2) { |
| 138 | /* We haven't yet seen two real ones */ |
| 139 | return -1; |
| 140 | } |
| 141 | continue; |
| 142 | } |
| 143 | if (boot_record_count == 1) |
| 144 | nftl->SpareMediaUnit = block; |
| 145 | |
| 146 | /* Mark this boot record (NFTL MediaHeader) block as reserved */ |
| 147 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; |
| 148 | |
| 149 | |
| 150 | boot_record_count++; |
| 151 | continue; |
| 152 | } |
| 153 | |
| 154 | /* This is the first we've seen. Copy the media header structure into place */ |
| 155 | memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); |
| 156 | |
| 157 | /* Do some sanity checks on it */ |
| 158 | #if 0 |
| 159 | The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual |
| 160 | erasesize based on UnitSizeFactor. So the erasesize we read from the mtd |
| 161 | device is already correct. |
| 162 | if (mh->UnitSizeFactor == 0) { |
| 163 | printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n"); |
| 164 | } else if (mh->UnitSizeFactor < 0xfc) { |
| 165 | printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n", |
| 166 | mh->UnitSizeFactor); |
| 167 | return -1; |
| 168 | } else if (mh->UnitSizeFactor != 0xff) { |
| 169 | printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n", |
| 170 | mh->UnitSizeFactor); |
| 171 | nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor); |
| 172 | nftl->nb_blocks = nftl->mbd.mtd->size / nftl->EraseSize; |
| 173 | } |
| 174 | #endif |
| 175 | nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); |
| 176 | if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { |
| 177 | printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); |
| 178 | printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", |
| 179 | nftl->nb_boot_blocks, nftl->nb_blocks); |
| 180 | return -1; |
| 181 | } |
| 182 | |
| 183 | nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; |
| 184 | if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { |
| 185 | printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n"); |
| 186 | printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", |
| 187 | nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks); |
| 188 | return -1; |
| 189 | } |
| 190 | |
| 191 | nftl->mbd.size = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); |
| 192 | |
| 193 | /* If we're not using the last sectors in the device for some reason, |
| 194 | reduce nb_blocks accordingly so we forget they're there */ |
| 195 | nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); |
| 196 | |
| 197 | /* XXX: will be suppressed */ |
| 198 | nftl->lastEUN = nftl->nb_blocks - 1; |
| 199 | |
| 200 | /* memory alloc */ |
| 201 | nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL); |
| 202 | if (!nftl->EUNtable) { |
| 203 | printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n"); |
| 204 | return -ENOMEM; |
| 205 | } |
| 206 | |
| 207 | nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL); |
| 208 | if (!nftl->ReplUnitTable) { |
| 209 | kfree(nftl->EUNtable); |
| 210 | printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n"); |
| 211 | return -ENOMEM; |
| 212 | } |
| 213 | |
| 214 | /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */ |
| 215 | for (i = 0; i < nftl->nb_boot_blocks; i++) |
| 216 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; |
| 217 | /* mark all remaining blocks as potentially containing data */ |
| 218 | for (; i < nftl->nb_blocks; i++) { |
| 219 | nftl->ReplUnitTable[i] = BLOCK_NOTEXPLORED; |
| 220 | } |
| 221 | |
| 222 | /* Mark this boot record (NFTL MediaHeader) block as reserved */ |
| 223 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; |
| 224 | |
| 225 | /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ |
| 226 | for (i = 0; i < nftl->nb_blocks; i++) { |
| 227 | #if 0 |
| 228 | The new DiskOnChip driver already scanned the bad block table. Just query it. |
| 229 | if ((i & (SECTORSIZE - 1)) == 0) { |
| 230 | /* read one sector for every SECTORSIZE of blocks */ |
| 231 | if ((ret = MTD_READECC(nftl->mbd.mtd, block * nftl->EraseSize + |
| 232 | i + SECTORSIZE, SECTORSIZE, &retlen, buf, |
| 233 | (char *)&oob, NULL)) < 0) { |
| 234 | printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n", |
| 235 | ret); |
| 236 | kfree(nftl->ReplUnitTable); |
| 237 | kfree(nftl->EUNtable); |
| 238 | return -1; |
| 239 | } |
| 240 | } |
| 241 | /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ |
| 242 | if (buf[i & (SECTORSIZE - 1)] != 0xff) |
| 243 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; |
| 244 | #endif |
| 245 | if (nftl->mbd.mtd->block_isbad(nftl->mbd.mtd, i * nftl->EraseSize)) |
| 246 | nftl->ReplUnitTable[i] = BLOCK_RESERVED; |
| 247 | } |
| 248 | |
| 249 | nftl->MediaUnit = block; |
| 250 | boot_record_count++; |
| 251 | |
| 252 | } /* foreach (block) */ |
| 253 | |
| 254 | return boot_record_count?0:-1; |
| 255 | } |
| 256 | |
| 257 | static int memcmpb(void *a, int c, int n) |
| 258 | { |
| 259 | int i; |
| 260 | for (i = 0; i < n; i++) { |
| 261 | if (c != ((unsigned char *)a)[i]) |
| 262 | return 1; |
| 263 | } |
| 264 | return 0; |
| 265 | } |
| 266 | |
| 267 | /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */ |
| 268 | static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len, |
| 269 | int check_oob) |
| 270 | { |
| 271 | int i; |
| 272 | size_t retlen; |
| 273 | u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize]; |
| 274 | |
| 275 | for (i = 0; i < len; i += SECTORSIZE) { |
| 276 | if (MTD_READECC(nftl->mbd.mtd, address, SECTORSIZE, &retlen, buf, &buf[SECTORSIZE], &nftl->oobinfo) < 0) |
| 277 | return -1; |
| 278 | if (memcmpb(buf, 0xff, SECTORSIZE) != 0) |
| 279 | return -1; |
| 280 | |
| 281 | if (check_oob) { |
| 282 | if (memcmpb(buf + SECTORSIZE, 0xff, nftl->mbd.mtd->oobsize) != 0) |
| 283 | return -1; |
| 284 | } |
| 285 | address += SECTORSIZE; |
| 286 | } |
| 287 | |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and |
| 292 | * Update NFTL metadata. Each erase operation is checked with check_free_sectors |
| 293 | * |
| 294 | * Return: 0 when succeed, -1 on error. |
| 295 | * |
| 296 | * ToDo: 1. Is it neceressary to check_free_sector after erasing ?? |
| 297 | */ |
| 298 | int NFTL_formatblock(struct NFTLrecord *nftl, int block) |
| 299 | { |
| 300 | size_t retlen; |
| 301 | unsigned int nb_erases, erase_mark; |
| 302 | struct nftl_uci1 uci; |
| 303 | struct erase_info *instr = &nftl->instr; |
| 304 | |
| 305 | /* Read the Unit Control Information #1 for Wear-Leveling */ |
| 306 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, |
| 307 | 8, &retlen, (char *)&uci) < 0) |
| 308 | goto default_uci1; |
| 309 | |
| 310 | erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1)); |
| 311 | if (erase_mark != ERASE_MARK) { |
| 312 | default_uci1: |
| 313 | uci.EraseMark = cpu_to_le16(ERASE_MARK); |
| 314 | uci.EraseMark1 = cpu_to_le16(ERASE_MARK); |
| 315 | uci.WearInfo = cpu_to_le32(0); |
| 316 | } |
| 317 | |
| 318 | memset(instr, 0, sizeof(struct erase_info)); |
| 319 | |
| 320 | /* XXX: use async erase interface, XXX: test return code */ |
| 321 | instr->mtd = nftl->mbd.mtd; |
| 322 | instr->addr = block * nftl->EraseSize; |
| 323 | instr->len = nftl->EraseSize; |
| 324 | MTD_ERASE(nftl->mbd.mtd, instr); |
| 325 | |
| 326 | if (instr->state == MTD_ERASE_FAILED) { |
| 327 | printk("Error while formatting block %d\n", block); |
| 328 | goto fail; |
| 329 | } |
| 330 | |
| 331 | /* increase and write Wear-Leveling info */ |
| 332 | nb_erases = le32_to_cpu(uci.WearInfo); |
| 333 | nb_erases++; |
| 334 | |
| 335 | /* wrap (almost impossible with current flashs) or free block */ |
| 336 | if (nb_erases == 0) |
| 337 | nb_erases = 1; |
| 338 | |
| 339 | /* check the "freeness" of Erase Unit before updating metadata |
| 340 | * FixMe: is this check really necessary ? since we have check the |
| 341 | * return code after the erase operation. */ |
| 342 | if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0) |
| 343 | goto fail; |
| 344 | |
| 345 | uci.WearInfo = le32_to_cpu(nb_erases); |
| 346 | if (MTD_WRITEOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, |
| 347 | &retlen, (char *)&uci) < 0) |
| 348 | goto fail; |
| 349 | return 0; |
| 350 | fail: |
| 351 | /* could not format, update the bad block table (caller is responsible |
| 352 | for setting the ReplUnitTable to BLOCK_RESERVED on failure) */ |
| 353 | nftl->mbd.mtd->block_markbad(nftl->mbd.mtd, instr->addr); |
| 354 | return -1; |
| 355 | } |
| 356 | |
| 357 | /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct. |
| 358 | * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain |
| 359 | * was being folded when NFTL was interrupted. |
| 360 | * |
| 361 | * The check_free_sectors in this function is neceressary. There is a possible |
| 362 | * situation that after writing the Data area, the Block Control Information is |
| 363 | * not updated according (due to power failure or something) which leaves the block |
| 364 | * in an umconsistent state. So we have to check if a block is really FREE in this |
| 365 | * case. */ |
| 366 | static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block) |
| 367 | { |
| 368 | unsigned int block, i, status; |
| 369 | struct nftl_bci bci; |
| 370 | int sectors_per_block; |
| 371 | size_t retlen; |
| 372 | |
| 373 | sectors_per_block = nftl->EraseSize / SECTORSIZE; |
| 374 | block = first_block; |
| 375 | for (;;) { |
| 376 | for (i = 0; i < sectors_per_block; i++) { |
| 377 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + i * SECTORSIZE, |
| 378 | 8, &retlen, (char *)&bci) < 0) |
| 379 | status = SECTOR_IGNORE; |
| 380 | else |
| 381 | status = bci.Status | bci.Status1; |
| 382 | |
| 383 | switch(status) { |
| 384 | case SECTOR_FREE: |
| 385 | /* verify that the sector is really free. If not, mark |
| 386 | as ignore */ |
| 387 | if (memcmpb(&bci, 0xff, 8) != 0 || |
| 388 | check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE, |
| 389 | SECTORSIZE, 0) != 0) { |
| 390 | printk("Incorrect free sector %d in block %d: " |
| 391 | "marking it as ignored\n", |
| 392 | i, block); |
| 393 | |
| 394 | /* sector not free actually : mark it as SECTOR_IGNORE */ |
| 395 | bci.Status = SECTOR_IGNORE; |
| 396 | bci.Status1 = SECTOR_IGNORE; |
| 397 | MTD_WRITEOOB(nftl->mbd.mtd, |
| 398 | block * nftl->EraseSize + i * SECTORSIZE, |
| 399 | 8, &retlen, (char *)&bci); |
| 400 | } |
| 401 | break; |
| 402 | default: |
| 403 | break; |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | /* proceed to next Erase Unit on the chain */ |
| 408 | block = nftl->ReplUnitTable[block]; |
| 409 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) |
| 410 | printk("incorrect ReplUnitTable[] : %d\n", block); |
| 411 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) |
| 412 | break; |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | /* calc_chain_lenght: Walk through a Virtual Unit Chain and estimate chain length */ |
| 417 | static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block) |
| 418 | { |
| 419 | unsigned int length = 0, block = first_block; |
| 420 | |
| 421 | for (;;) { |
| 422 | length++; |
| 423 | /* avoid infinite loops, although this is guaranted not to |
| 424 | happen because of the previous checks */ |
| 425 | if (length >= nftl->nb_blocks) { |
| 426 | printk("nftl: length too long %d !\n", length); |
| 427 | break; |
| 428 | } |
| 429 | |
| 430 | block = nftl->ReplUnitTable[block]; |
| 431 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) |
| 432 | printk("incorrect ReplUnitTable[] : %d\n", block); |
| 433 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) |
| 434 | break; |
| 435 | } |
| 436 | return length; |
| 437 | } |
| 438 | |
| 439 | /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a |
| 440 | * Virtual Unit Chain, i.e. all the units are disconnected. |
| 441 | * |
| 442 | * It is not stricly correct to begin from the first block of the chain because |
| 443 | * if we stop the code, we may see again a valid chain if there was a first_block |
| 444 | * flag in a block inside it. But is it really a problem ? |
| 445 | * |
| 446 | * FixMe: Figure out what the last statesment means. What if power failure when we are |
| 447 | * in the for (;;) loop formatting blocks ?? |
| 448 | */ |
| 449 | static void format_chain(struct NFTLrecord *nftl, unsigned int first_block) |
| 450 | { |
| 451 | unsigned int block = first_block, block1; |
| 452 | |
| 453 | printk("Formatting chain at block %d\n", first_block); |
| 454 | |
| 455 | for (;;) { |
| 456 | block1 = nftl->ReplUnitTable[block]; |
| 457 | |
| 458 | printk("Formatting block %d\n", block); |
| 459 | if (NFTL_formatblock(nftl, block) < 0) { |
| 460 | /* cannot format !!!! Mark it as Bad Unit */ |
| 461 | nftl->ReplUnitTable[block] = BLOCK_RESERVED; |
| 462 | } else { |
| 463 | nftl->ReplUnitTable[block] = BLOCK_FREE; |
| 464 | } |
| 465 | |
| 466 | /* goto next block on the chain */ |
| 467 | block = block1; |
| 468 | |
| 469 | if (!(block == BLOCK_NIL || block < nftl->nb_blocks)) |
| 470 | printk("incorrect ReplUnitTable[] : %d\n", block); |
| 471 | if (block == BLOCK_NIL || block >= nftl->nb_blocks) |
| 472 | break; |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or |
| 477 | * totally free (only 0xff). |
| 478 | * |
| 479 | * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the |
| 480 | * following critia: |
| 481 | * 1. */ |
| 482 | static int check_and_mark_free_block(struct NFTLrecord *nftl, int block) |
| 483 | { |
| 484 | struct nftl_uci1 h1; |
| 485 | unsigned int erase_mark; |
| 486 | size_t retlen; |
| 487 | |
| 488 | /* check erase mark. */ |
| 489 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, |
| 490 | &retlen, (char *)&h1) < 0) |
| 491 | return -1; |
| 492 | |
| 493 | erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); |
| 494 | if (erase_mark != ERASE_MARK) { |
| 495 | /* if no erase mark, the block must be totally free. This is |
| 496 | possible in two cases : empty filsystem or interrupted erase (very unlikely) */ |
| 497 | if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0) |
| 498 | return -1; |
| 499 | |
| 500 | /* free block : write erase mark */ |
| 501 | h1.EraseMark = cpu_to_le16(ERASE_MARK); |
| 502 | h1.EraseMark1 = cpu_to_le16(ERASE_MARK); |
| 503 | h1.WearInfo = cpu_to_le32(0); |
| 504 | if (MTD_WRITEOOB(nftl->mbd.mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8, |
| 505 | &retlen, (char *)&h1) < 0) |
| 506 | return -1; |
| 507 | } else { |
| 508 | #if 0 |
| 509 | /* if erase mark present, need to skip it when doing check */ |
| 510 | for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) { |
| 511 | /* check free sector */ |
| 512 | if (check_free_sectors (nftl, block * nftl->EraseSize + i, |
| 513 | SECTORSIZE, 0) != 0) |
| 514 | return -1; |
| 515 | |
| 516 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + i, |
| 517 | 16, &retlen, buf) < 0) |
| 518 | return -1; |
| 519 | if (i == SECTORSIZE) { |
| 520 | /* skip erase mark */ |
| 521 | if (memcmpb(buf, 0xff, 8)) |
| 522 | return -1; |
| 523 | } else { |
| 524 | if (memcmpb(buf, 0xff, 16)) |
| 525 | return -1; |
| 526 | } |
| 527 | } |
| 528 | #endif |
| 529 | } |
| 530 | |
| 531 | return 0; |
| 532 | } |
| 533 | |
| 534 | /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS |
| 535 | * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2 |
| 536 | * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted |
| 537 | * for some reason. A clean up/check of the VUC is neceressary in this case. |
| 538 | * |
| 539 | * WARNING: return 0 if read error |
| 540 | */ |
| 541 | static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block) |
| 542 | { |
| 543 | struct nftl_uci2 uci; |
| 544 | size_t retlen; |
| 545 | |
| 546 | if (MTD_READOOB(nftl->mbd.mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8, |
| 547 | 8, &retlen, (char *)&uci) < 0) |
| 548 | return 0; |
| 549 | |
| 550 | return le16_to_cpu((uci.FoldMark | uci.FoldMark1)); |
| 551 | } |
| 552 | |
| 553 | int NFTL_mount(struct NFTLrecord *s) |
| 554 | { |
| 555 | int i; |
| 556 | unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark; |
| 557 | unsigned int block, first_block, is_first_block; |
| 558 | int chain_length, do_format_chain; |
| 559 | struct nftl_uci0 h0; |
| 560 | struct nftl_uci1 h1; |
| 561 | size_t retlen; |
| 562 | |
| 563 | /* search for NFTL MediaHeader and Spare NFTL Media Header */ |
| 564 | if (find_boot_record(s) < 0) { |
| 565 | printk("Could not find valid boot record\n"); |
| 566 | return -1; |
| 567 | } |
| 568 | |
| 569 | /* init the logical to physical table */ |
| 570 | for (i = 0; i < s->nb_blocks; i++) { |
| 571 | s->EUNtable[i] = BLOCK_NIL; |
| 572 | } |
| 573 | |
| 574 | /* first pass : explore each block chain */ |
| 575 | first_logical_block = 0; |
| 576 | for (first_block = 0; first_block < s->nb_blocks; first_block++) { |
| 577 | /* if the block was not already explored, we can look at it */ |
| 578 | if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) { |
| 579 | block = first_block; |
| 580 | chain_length = 0; |
| 581 | do_format_chain = 0; |
| 582 | |
| 583 | for (;;) { |
| 584 | /* read the block header. If error, we format the chain */ |
| 585 | if (MTD_READOOB(s->mbd.mtd, block * s->EraseSize + 8, 8, |
| 586 | &retlen, (char *)&h0) < 0 || |
| 587 | MTD_READOOB(s->mbd.mtd, block * s->EraseSize + SECTORSIZE + 8, 8, |
| 588 | &retlen, (char *)&h1) < 0) { |
| 589 | s->ReplUnitTable[block] = BLOCK_NIL; |
| 590 | do_format_chain = 1; |
| 591 | break; |
| 592 | } |
| 593 | |
| 594 | logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum)); |
| 595 | rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum)); |
| 596 | nb_erases = le32_to_cpu (h1.WearInfo); |
| 597 | erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1)); |
| 598 | |
| 599 | is_first_block = !(logical_block >> 15); |
| 600 | logical_block = logical_block & 0x7fff; |
| 601 | |
| 602 | /* invalid/free block test */ |
| 603 | if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) { |
| 604 | if (chain_length == 0) { |
| 605 | /* if not currently in a chain, we can handle it safely */ |
| 606 | if (check_and_mark_free_block(s, block) < 0) { |
| 607 | /* not really free: format it */ |
| 608 | printk("Formatting block %d\n", block); |
| 609 | if (NFTL_formatblock(s, block) < 0) { |
| 610 | /* could not format: reserve the block */ |
| 611 | s->ReplUnitTable[block] = BLOCK_RESERVED; |
| 612 | } else { |
| 613 | s->ReplUnitTable[block] = BLOCK_FREE; |
| 614 | } |
| 615 | } else { |
| 616 | /* free block: mark it */ |
| 617 | s->ReplUnitTable[block] = BLOCK_FREE; |
| 618 | } |
| 619 | /* directly examine the next block. */ |
| 620 | goto examine_ReplUnitTable; |
| 621 | } else { |
| 622 | /* the block was in a chain : this is bad. We |
| 623 | must format all the chain */ |
| 624 | printk("Block %d: free but referenced in chain %d\n", |
| 625 | block, first_block); |
| 626 | s->ReplUnitTable[block] = BLOCK_NIL; |
| 627 | do_format_chain = 1; |
| 628 | break; |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | /* we accept only first blocks here */ |
| 633 | if (chain_length == 0) { |
| 634 | /* this block is not the first block in chain : |
| 635 | ignore it, it will be included in a chain |
| 636 | later, or marked as not explored */ |
| 637 | if (!is_first_block) |
| 638 | goto examine_ReplUnitTable; |
| 639 | first_logical_block = logical_block; |
| 640 | } else { |
| 641 | if (logical_block != first_logical_block) { |
| 642 | printk("Block %d: incorrect logical block: %d expected: %d\n", |
| 643 | block, logical_block, first_logical_block); |
| 644 | /* the chain is incorrect : we must format it, |
| 645 | but we need to read it completly */ |
| 646 | do_format_chain = 1; |
| 647 | } |
| 648 | if (is_first_block) { |
| 649 | /* we accept that a block is marked as first |
| 650 | block while being last block in a chain |
| 651 | only if the chain is being folded */ |
| 652 | if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS || |
| 653 | rep_block != 0xffff) { |
| 654 | printk("Block %d: incorrectly marked as first block in chain\n", |
| 655 | block); |
| 656 | /* the chain is incorrect : we must format it, |
| 657 | but we need to read it completly */ |
| 658 | do_format_chain = 1; |
| 659 | } else { |
| 660 | printk("Block %d: folding in progress - ignoring first block flag\n", |
| 661 | block); |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | chain_length++; |
| 666 | if (rep_block == 0xffff) { |
| 667 | /* no more blocks after */ |
| 668 | s->ReplUnitTable[block] = BLOCK_NIL; |
| 669 | break; |
| 670 | } else if (rep_block >= s->nb_blocks) { |
| 671 | printk("Block %d: referencing invalid block %d\n", |
| 672 | block, rep_block); |
| 673 | do_format_chain = 1; |
| 674 | s->ReplUnitTable[block] = BLOCK_NIL; |
| 675 | break; |
| 676 | } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) { |
| 677 | /* same problem as previous 'is_first_block' test: |
| 678 | we accept that the last block of a chain has |
| 679 | the first_block flag set if folding is in |
| 680 | progress. We handle here the case where the |
| 681 | last block appeared first */ |
| 682 | if (s->ReplUnitTable[rep_block] == BLOCK_NIL && |
| 683 | s->EUNtable[first_logical_block] == rep_block && |
| 684 | get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) { |
| 685 | /* EUNtable[] will be set after */ |
| 686 | printk("Block %d: folding in progress - ignoring first block flag\n", |
| 687 | rep_block); |
| 688 | s->ReplUnitTable[block] = rep_block; |
| 689 | s->EUNtable[first_logical_block] = BLOCK_NIL; |
| 690 | } else { |
| 691 | printk("Block %d: referencing block %d already in another chain\n", |
| 692 | block, rep_block); |
| 693 | /* XXX: should handle correctly fold in progress chains */ |
| 694 | do_format_chain = 1; |
| 695 | s->ReplUnitTable[block] = BLOCK_NIL; |
| 696 | } |
| 697 | break; |
| 698 | } else { |
| 699 | /* this is OK */ |
| 700 | s->ReplUnitTable[block] = rep_block; |
| 701 | block = rep_block; |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | /* the chain was completely explored. Now we can decide |
| 706 | what to do with it */ |
| 707 | if (do_format_chain) { |
| 708 | /* invalid chain : format it */ |
| 709 | format_chain(s, first_block); |
| 710 | } else { |
| 711 | unsigned int first_block1, chain_to_format, chain_length1; |
| 712 | int fold_mark; |
| 713 | |
| 714 | /* valid chain : get foldmark */ |
| 715 | fold_mark = get_fold_mark(s, first_block); |
| 716 | if (fold_mark == 0) { |
| 717 | /* cannot get foldmark : format the chain */ |
| 718 | printk("Could read foldmark at block %d\n", first_block); |
| 719 | format_chain(s, first_block); |
| 720 | } else { |
| 721 | if (fold_mark == FOLD_MARK_IN_PROGRESS) |
| 722 | check_sectors_in_chain(s, first_block); |
| 723 | |
| 724 | /* now handle the case where we find two chains at the |
| 725 | same virtual address : we select the longer one, |
| 726 | because the shorter one is the one which was being |
| 727 | folded if the folding was not done in place */ |
| 728 | first_block1 = s->EUNtable[first_logical_block]; |
| 729 | if (first_block1 != BLOCK_NIL) { |
| 730 | /* XXX: what to do if same length ? */ |
| 731 | chain_length1 = calc_chain_length(s, first_block1); |
| 732 | printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n", |
| 733 | first_block1, chain_length1, first_block, chain_length); |
| 734 | |
| 735 | if (chain_length >= chain_length1) { |
| 736 | chain_to_format = first_block1; |
| 737 | s->EUNtable[first_logical_block] = first_block; |
| 738 | } else { |
| 739 | chain_to_format = first_block; |
| 740 | } |
| 741 | format_chain(s, chain_to_format); |
| 742 | } else { |
| 743 | s->EUNtable[first_logical_block] = first_block; |
| 744 | } |
| 745 | } |
| 746 | } |
| 747 | } |
| 748 | examine_ReplUnitTable:; |
| 749 | } |
| 750 | |
| 751 | /* second pass to format unreferenced blocks and init free block count */ |
| 752 | s->numfreeEUNs = 0; |
| 753 | s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN); |
| 754 | |
| 755 | for (block = 0; block < s->nb_blocks; block++) { |
| 756 | if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) { |
| 757 | printk("Unreferenced block %d, formatting it\n", block); |
| 758 | if (NFTL_formatblock(s, block) < 0) |
| 759 | s->ReplUnitTable[block] = BLOCK_RESERVED; |
| 760 | else |
| 761 | s->ReplUnitTable[block] = BLOCK_FREE; |
| 762 | } |
| 763 | if (s->ReplUnitTable[block] == BLOCK_FREE) { |
| 764 | s->numfreeEUNs++; |
| 765 | s->LastFreeEUN = block; |
| 766 | } |
| 767 | } |
| 768 | |
| 769 | return 0; |
| 770 | } |