Nick Kossifidis | c6e387a | 2008-08-29 22:45:39 +0300 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> |
| 3 | * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> |
| 4 | * Copyright (c) 2007-2008 Matthew W. S. Bell <mentor@madwifi.org> |
| 5 | * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu> |
| 6 | * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org> |
| 7 | * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> |
| 8 | * |
| 9 | * Permission to use, copy, modify, and distribute this software for any |
| 10 | * purpose with or without fee is hereby granted, provided that the above |
| 11 | * copyright notice and this permission notice appear in all copies. |
| 12 | * |
| 13 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 14 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 15 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 16 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 17 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 18 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 19 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 20 | * |
| 21 | */ |
| 22 | |
| 23 | /*********************************\ |
| 24 | * Protocol Control Unit Functions * |
| 25 | \*********************************/ |
| 26 | |
| 27 | #include "ath5k.h" |
| 28 | #include "reg.h" |
| 29 | #include "debug.h" |
| 30 | #include "base.h" |
| 31 | |
| 32 | /*******************\ |
| 33 | * Generic functions * |
| 34 | \*******************/ |
| 35 | |
| 36 | /** |
| 37 | * ath5k_hw_set_opmode - Set PCU operating mode |
| 38 | * |
| 39 | * @ah: The &struct ath5k_hw |
| 40 | * |
| 41 | * Initialize PCU for the various operating modes (AP/STA etc) |
| 42 | * |
| 43 | * NOTE: ah->ah_op_mode must be set before calling this. |
| 44 | */ |
| 45 | int ath5k_hw_set_opmode(struct ath5k_hw *ah) |
| 46 | { |
| 47 | u32 pcu_reg, beacon_reg, low_id, high_id; |
| 48 | |
| 49 | pcu_reg = 0; |
| 50 | beacon_reg = 0; |
| 51 | |
| 52 | ATH5K_TRACE(ah->ah_sc); |
| 53 | |
| 54 | switch (ah->ah_op_mode) { |
Johannes Berg | 05c914f | 2008-09-11 00:01:58 +0200 | [diff] [blame] | 55 | case NL80211_IFTYPE_ADHOC: |
Nick Kossifidis | c6e387a | 2008-08-29 22:45:39 +0300 | [diff] [blame] | 56 | pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA | |
| 57 | (ah->ah_version == AR5K_AR5210 ? |
| 58 | AR5K_STA_ID1_NO_PSPOLL : 0); |
| 59 | beacon_reg |= AR5K_BCR_ADHOC; |
| 60 | break; |
| 61 | |
Johannes Berg | 05c914f | 2008-09-11 00:01:58 +0200 | [diff] [blame] | 62 | case NL80211_IFTYPE_AP: |
| 63 | case NL80211_IFTYPE_MESH_POINT: |
Nick Kossifidis | c6e387a | 2008-08-29 22:45:39 +0300 | [diff] [blame] | 64 | pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA | |
| 65 | (ah->ah_version == AR5K_AR5210 ? |
| 66 | AR5K_STA_ID1_NO_PSPOLL : 0); |
| 67 | beacon_reg |= AR5K_BCR_AP; |
| 68 | break; |
| 69 | |
Johannes Berg | 05c914f | 2008-09-11 00:01:58 +0200 | [diff] [blame] | 70 | case NL80211_IFTYPE_STATION: |
Nick Kossifidis | c6e387a | 2008-08-29 22:45:39 +0300 | [diff] [blame] | 71 | pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA | |
| 72 | (ah->ah_version == AR5K_AR5210 ? |
| 73 | AR5K_STA_ID1_PWR_SV : 0); |
Johannes Berg | 05c914f | 2008-09-11 00:01:58 +0200 | [diff] [blame] | 74 | case NL80211_IFTYPE_MONITOR: |
Nick Kossifidis | c6e387a | 2008-08-29 22:45:39 +0300 | [diff] [blame] | 75 | pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA | |
| 76 | (ah->ah_version == AR5K_AR5210 ? |
| 77 | AR5K_STA_ID1_NO_PSPOLL : 0); |
| 78 | break; |
| 79 | |
| 80 | default: |
| 81 | return -EINVAL; |
| 82 | } |
| 83 | |
| 84 | /* |
| 85 | * Set PCU registers |
| 86 | */ |
| 87 | low_id = AR5K_LOW_ID(ah->ah_sta_id); |
| 88 | high_id = AR5K_HIGH_ID(ah->ah_sta_id); |
| 89 | ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); |
| 90 | ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1); |
| 91 | |
| 92 | /* |
| 93 | * Set Beacon Control Register on 5210 |
| 94 | */ |
| 95 | if (ah->ah_version == AR5K_AR5210) |
| 96 | ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR); |
| 97 | |
| 98 | return 0; |
| 99 | } |
| 100 | |
| 101 | /** |
| 102 | * ath5k_hw_update - Update mib counters (mac layer statistics) |
| 103 | * |
| 104 | * @ah: The &struct ath5k_hw |
| 105 | * @stats: The &struct ieee80211_low_level_stats we use to track |
| 106 | * statistics on the driver |
| 107 | * |
| 108 | * Reads MIB counters from PCU and updates sw statistics. Must be |
| 109 | * called after a MIB interrupt. |
| 110 | */ |
| 111 | void ath5k_hw_update_mib_counters(struct ath5k_hw *ah, |
| 112 | struct ieee80211_low_level_stats *stats) |
| 113 | { |
| 114 | ATH5K_TRACE(ah->ah_sc); |
| 115 | |
| 116 | /* Read-And-Clear */ |
| 117 | stats->dot11ACKFailureCount += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL); |
| 118 | stats->dot11RTSFailureCount += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL); |
| 119 | stats->dot11RTSSuccessCount += ath5k_hw_reg_read(ah, AR5K_RTS_OK); |
| 120 | stats->dot11FCSErrorCount += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL); |
| 121 | |
| 122 | /* XXX: Should we use this to track beacon count ? |
| 123 | * -we read it anyway to clear the register */ |
| 124 | ath5k_hw_reg_read(ah, AR5K_BEACON_CNT); |
| 125 | |
| 126 | /* Reset profile count registers on 5212*/ |
| 127 | if (ah->ah_version == AR5K_AR5212) { |
| 128 | ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX); |
| 129 | ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX); |
| 130 | ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR); |
| 131 | ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE); |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | /** |
| 136 | * ath5k_hw_set_ack_bitrate - set bitrate for ACKs |
| 137 | * |
| 138 | * @ah: The &struct ath5k_hw |
| 139 | * @high: Flag to determine if we want to use high transmition rate |
| 140 | * for ACKs or not |
| 141 | * |
| 142 | * If high flag is set, we tell hw to use a set of control rates based on |
| 143 | * the current transmition rate (check out control_rates array inside reset.c). |
| 144 | * If not hw just uses the lowest rate available for the current modulation |
| 145 | * scheme being used (1Mbit for CCK and 6Mbits for OFDM). |
| 146 | */ |
| 147 | void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high) |
| 148 | { |
| 149 | if (ah->ah_version != AR5K_AR5212) |
| 150 | return; |
| 151 | else { |
| 152 | u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB; |
| 153 | if (high) |
| 154 | AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val); |
| 155 | else |
| 156 | AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | |
| 161 | /******************\ |
| 162 | * ACK/CTS Timeouts * |
| 163 | \******************/ |
| 164 | |
| 165 | /** |
| 166 | * ath5k_hw_het_ack_timeout - Get ACK timeout from PCU in usec |
| 167 | * |
| 168 | * @ah: The &struct ath5k_hw |
| 169 | */ |
| 170 | unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah) |
| 171 | { |
| 172 | ATH5K_TRACE(ah->ah_sc); |
| 173 | |
| 174 | return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah, |
| 175 | AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo); |
| 176 | } |
| 177 | |
| 178 | /** |
| 179 | * ath5k_hw_set_ack_timeout - Set ACK timeout on PCU |
| 180 | * |
| 181 | * @ah: The &struct ath5k_hw |
| 182 | * @timeout: Timeout in usec |
| 183 | */ |
| 184 | int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout) |
| 185 | { |
| 186 | ATH5K_TRACE(ah->ah_sc); |
| 187 | if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK), |
| 188 | ah->ah_turbo) <= timeout) |
| 189 | return -EINVAL; |
| 190 | |
| 191 | AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK, |
| 192 | ath5k_hw_htoclock(timeout, ah->ah_turbo)); |
| 193 | |
| 194 | return 0; |
| 195 | } |
| 196 | |
| 197 | /** |
| 198 | * ath5k_hw_get_cts_timeout - Get CTS timeout from PCU in usec |
| 199 | * |
| 200 | * @ah: The &struct ath5k_hw |
| 201 | */ |
| 202 | unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah) |
| 203 | { |
| 204 | ATH5K_TRACE(ah->ah_sc); |
| 205 | return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah, |
| 206 | AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo); |
| 207 | } |
| 208 | |
| 209 | /** |
| 210 | * ath5k_hw_set_cts_timeout - Set CTS timeout on PCU |
| 211 | * |
| 212 | * @ah: The &struct ath5k_hw |
| 213 | * @timeout: Timeout in usec |
| 214 | */ |
| 215 | int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout) |
| 216 | { |
| 217 | ATH5K_TRACE(ah->ah_sc); |
| 218 | if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS), |
| 219 | ah->ah_turbo) <= timeout) |
| 220 | return -EINVAL; |
| 221 | |
| 222 | AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS, |
| 223 | ath5k_hw_htoclock(timeout, ah->ah_turbo)); |
| 224 | |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | |
| 229 | /****************\ |
| 230 | * BSSID handling * |
| 231 | \****************/ |
| 232 | |
| 233 | /** |
| 234 | * ath5k_hw_get_lladdr - Get station id |
| 235 | * |
| 236 | * @ah: The &struct ath5k_hw |
| 237 | * @mac: The card's mac address |
| 238 | * |
| 239 | * Initialize ah->ah_sta_id using the mac address provided |
| 240 | * (just a memcpy). |
| 241 | * |
| 242 | * TODO: Remove it once we merge ath5k_softc and ath5k_hw |
| 243 | */ |
| 244 | void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac) |
| 245 | { |
| 246 | ATH5K_TRACE(ah->ah_sc); |
| 247 | memcpy(mac, ah->ah_sta_id, ETH_ALEN); |
| 248 | } |
| 249 | |
| 250 | /** |
| 251 | * ath5k_hw_set_lladdr - Set station id |
| 252 | * |
| 253 | * @ah: The &struct ath5k_hw |
| 254 | * @mac: The card's mac address |
| 255 | * |
| 256 | * Set station id on hw using the provided mac address |
| 257 | */ |
| 258 | int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac) |
| 259 | { |
| 260 | u32 low_id, high_id; |
| 261 | |
| 262 | ATH5K_TRACE(ah->ah_sc); |
| 263 | /* Set new station ID */ |
| 264 | memcpy(ah->ah_sta_id, mac, ETH_ALEN); |
| 265 | |
| 266 | low_id = AR5K_LOW_ID(mac); |
| 267 | high_id = AR5K_HIGH_ID(mac); |
| 268 | |
| 269 | ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0); |
| 270 | ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1); |
| 271 | |
| 272 | return 0; |
| 273 | } |
| 274 | |
| 275 | /** |
| 276 | * ath5k_hw_set_associd - Set BSSID for association |
| 277 | * |
| 278 | * @ah: The &struct ath5k_hw |
| 279 | * @bssid: BSSID |
| 280 | * @assoc_id: Assoc id |
| 281 | * |
| 282 | * Sets the BSSID which trigers the "SME Join" operation |
| 283 | */ |
| 284 | void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id) |
| 285 | { |
| 286 | u32 low_id, high_id; |
| 287 | u16 tim_offset = 0; |
| 288 | |
| 289 | /* |
| 290 | * Set simple BSSID mask on 5212 |
| 291 | */ |
| 292 | if (ah->ah_version == AR5K_AR5212) { |
| 293 | ath5k_hw_reg_write(ah, 0xffffffff, AR5K_BSS_IDM0); |
| 294 | ath5k_hw_reg_write(ah, 0xffffffff, AR5K_BSS_IDM1); |
| 295 | } |
| 296 | |
| 297 | /* |
| 298 | * Set BSSID which triggers the "SME Join" operation |
| 299 | */ |
| 300 | low_id = AR5K_LOW_ID(bssid); |
| 301 | high_id = AR5K_HIGH_ID(bssid); |
| 302 | ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0); |
| 303 | ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) << |
| 304 | AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1); |
| 305 | |
| 306 | if (assoc_id == 0) { |
| 307 | ath5k_hw_disable_pspoll(ah); |
| 308 | return; |
| 309 | } |
| 310 | |
| 311 | AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM, |
| 312 | tim_offset ? tim_offset + 4 : 0); |
| 313 | |
| 314 | ath5k_hw_enable_pspoll(ah, NULL, 0); |
| 315 | } |
| 316 | |
| 317 | /** |
| 318 | * ath5k_hw_set_bssid_mask - filter out bssids we listen |
| 319 | * |
| 320 | * @ah: the &struct ath5k_hw |
| 321 | * @mask: the bssid_mask, a u8 array of size ETH_ALEN |
| 322 | * |
| 323 | * BSSID masking is a method used by AR5212 and newer hardware to inform PCU |
| 324 | * which bits of the interface's MAC address should be looked at when trying |
| 325 | * to decide which packets to ACK. In station mode and AP mode with a single |
| 326 | * BSS every bit matters since we lock to only one BSS. In AP mode with |
| 327 | * multiple BSSes (virtual interfaces) not every bit matters because hw must |
| 328 | * accept frames for all BSSes and so we tweak some bits of our mac address |
| 329 | * in order to have multiple BSSes. |
| 330 | * |
| 331 | * NOTE: This is a simple filter and does *not* filter out all |
| 332 | * relevant frames. Some frames that are not for us might get ACKed from us |
| 333 | * by PCU because they just match the mask. |
| 334 | * |
| 335 | * When handling multiple BSSes you can get the BSSID mask by computing the |
| 336 | * set of ~ ( MAC XOR BSSID ) for all bssids we handle. |
| 337 | * |
| 338 | * When you do this you are essentially computing the common bits of all your |
| 339 | * BSSes. Later it is assumed the harware will "and" (&) the BSSID mask with |
| 340 | * the MAC address to obtain the relevant bits and compare the result with |
| 341 | * (frame's BSSID & mask) to see if they match. |
| 342 | */ |
| 343 | /* |
| 344 | * Simple example: on your card you have have two BSSes you have created with |
| 345 | * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address. |
| 346 | * There is another BSSID-03 but you are not part of it. For simplicity's sake, |
| 347 | * assuming only 4 bits for a mac address and for BSSIDs you can then have: |
| 348 | * |
| 349 | * \ |
| 350 | * MAC: 0001 | |
| 351 | * BSSID-01: 0100 | --> Belongs to us |
| 352 | * BSSID-02: 1001 | |
| 353 | * / |
| 354 | * ------------------- |
| 355 | * BSSID-03: 0110 | --> External |
| 356 | * ------------------- |
| 357 | * |
| 358 | * Our bssid_mask would then be: |
| 359 | * |
| 360 | * On loop iteration for BSSID-01: |
| 361 | * ~(0001 ^ 0100) -> ~(0101) |
| 362 | * -> 1010 |
| 363 | * bssid_mask = 1010 |
| 364 | * |
| 365 | * On loop iteration for BSSID-02: |
| 366 | * bssid_mask &= ~(0001 ^ 1001) |
| 367 | * bssid_mask = (1010) & ~(0001 ^ 1001) |
| 368 | * bssid_mask = (1010) & ~(1001) |
| 369 | * bssid_mask = (1010) & (0110) |
| 370 | * bssid_mask = 0010 |
| 371 | * |
| 372 | * A bssid_mask of 0010 means "only pay attention to the second least |
| 373 | * significant bit". This is because its the only bit common |
| 374 | * amongst the MAC and all BSSIDs we support. To findout what the real |
| 375 | * common bit is we can simply "&" the bssid_mask now with any BSSID we have |
| 376 | * or our MAC address (we assume the hardware uses the MAC address). |
| 377 | * |
| 378 | * Now, suppose there's an incoming frame for BSSID-03: |
| 379 | * |
| 380 | * IFRAME-01: 0110 |
| 381 | * |
| 382 | * An easy eye-inspeciton of this already should tell you that this frame |
| 383 | * will not pass our check. This is beacuse the bssid_mask tells the |
| 384 | * hardware to only look at the second least significant bit and the |
| 385 | * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB |
| 386 | * as 1, which does not match 0. |
| 387 | * |
| 388 | * So with IFRAME-01 we *assume* the hardware will do: |
| 389 | * |
| 390 | * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0; |
| 391 | * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0; |
| 392 | * --> allow = (0010) == 0000 ? 1 : 0; |
| 393 | * --> allow = 0 |
| 394 | * |
| 395 | * Lets now test a frame that should work: |
| 396 | * |
| 397 | * IFRAME-02: 0001 (we should allow) |
| 398 | * |
| 399 | * allow = (0001 & 1010) == 1010 |
| 400 | * |
| 401 | * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0; |
| 402 | * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0; |
| 403 | * --> allow = (0010) == (0010) |
| 404 | * --> allow = 1 |
| 405 | * |
| 406 | * Other examples: |
| 407 | * |
| 408 | * IFRAME-03: 0100 --> allowed |
| 409 | * IFRAME-04: 1001 --> allowed |
| 410 | * IFRAME-05: 1101 --> allowed but its not for us!!! |
| 411 | * |
| 412 | */ |
| 413 | int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask) |
| 414 | { |
| 415 | u32 low_id, high_id; |
| 416 | ATH5K_TRACE(ah->ah_sc); |
| 417 | |
| 418 | if (ah->ah_version == AR5K_AR5212) { |
| 419 | low_id = AR5K_LOW_ID(mask); |
| 420 | high_id = AR5K_HIGH_ID(mask); |
| 421 | |
| 422 | ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0); |
| 423 | ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1); |
| 424 | |
| 425 | return 0; |
| 426 | } |
| 427 | |
| 428 | return -EIO; |
| 429 | } |
| 430 | |
| 431 | |
| 432 | /************\ |
| 433 | * RX Control * |
| 434 | \************/ |
| 435 | |
| 436 | /** |
| 437 | * ath5k_hw_start_rx_pcu - Start RX engine |
| 438 | * |
| 439 | * @ah: The &struct ath5k_hw |
| 440 | * |
| 441 | * Starts RX engine on PCU so that hw can process RXed frames |
| 442 | * (ACK etc). |
| 443 | * |
| 444 | * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma |
| 445 | * TODO: Init ANI here |
| 446 | */ |
| 447 | void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah) |
| 448 | { |
| 449 | ATH5K_TRACE(ah->ah_sc); |
| 450 | AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); |
| 451 | } |
| 452 | |
| 453 | /** |
| 454 | * at5k_hw_stop_rx_pcu - Stop RX engine |
| 455 | * |
| 456 | * @ah: The &struct ath5k_hw |
| 457 | * |
| 458 | * Stops RX engine on PCU |
| 459 | * |
| 460 | * TODO: Detach ANI here |
| 461 | */ |
| 462 | void ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah) |
| 463 | { |
| 464 | ATH5K_TRACE(ah->ah_sc); |
| 465 | AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX); |
| 466 | } |
| 467 | |
| 468 | /* |
| 469 | * Set multicast filter |
| 470 | */ |
| 471 | void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1) |
| 472 | { |
| 473 | ATH5K_TRACE(ah->ah_sc); |
| 474 | /* Set the multicat filter */ |
| 475 | ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0); |
| 476 | ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1); |
| 477 | } |
| 478 | |
| 479 | /* |
| 480 | * Set multicast filter by index |
| 481 | */ |
| 482 | int ath5k_hw_set_mcast_filter_idx(struct ath5k_hw *ah, u32 index) |
| 483 | { |
| 484 | |
| 485 | ATH5K_TRACE(ah->ah_sc); |
| 486 | if (index >= 64) |
| 487 | return -EINVAL; |
| 488 | else if (index >= 32) |
| 489 | AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1, |
| 490 | (1 << (index - 32))); |
| 491 | else |
| 492 | AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index)); |
| 493 | |
| 494 | return 0; |
| 495 | } |
| 496 | |
| 497 | /* |
| 498 | * Clear Multicast filter by index |
| 499 | */ |
| 500 | int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index) |
| 501 | { |
| 502 | |
| 503 | ATH5K_TRACE(ah->ah_sc); |
| 504 | if (index >= 64) |
| 505 | return -EINVAL; |
| 506 | else if (index >= 32) |
| 507 | AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1, |
| 508 | (1 << (index - 32))); |
| 509 | else |
| 510 | AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index)); |
| 511 | |
| 512 | return 0; |
| 513 | } |
| 514 | |
| 515 | /** |
| 516 | * ath5k_hw_get_rx_filter - Get current rx filter |
| 517 | * |
| 518 | * @ah: The &struct ath5k_hw |
| 519 | * |
| 520 | * Returns the RX filter by reading rx filter and |
| 521 | * phy error filter registers. RX filter is used |
| 522 | * to set the allowed frame types that PCU will accept |
| 523 | * and pass to the driver. For a list of frame types |
| 524 | * check out reg.h. |
| 525 | */ |
| 526 | u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah) |
| 527 | { |
| 528 | u32 data, filter = 0; |
| 529 | |
| 530 | ATH5K_TRACE(ah->ah_sc); |
| 531 | filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER); |
| 532 | |
| 533 | /*Radar detection for 5212*/ |
| 534 | if (ah->ah_version == AR5K_AR5212) { |
| 535 | data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL); |
| 536 | |
| 537 | if (data & AR5K_PHY_ERR_FIL_RADAR) |
| 538 | filter |= AR5K_RX_FILTER_RADARERR; |
| 539 | if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK)) |
| 540 | filter |= AR5K_RX_FILTER_PHYERR; |
| 541 | } |
| 542 | |
| 543 | return filter; |
| 544 | } |
| 545 | |
| 546 | /** |
| 547 | * ath5k_hw_set_rx_filter - Set rx filter |
| 548 | * |
| 549 | * @ah: The &struct ath5k_hw |
| 550 | * @filter: RX filter mask (see reg.h) |
| 551 | * |
| 552 | * Sets RX filter register and also handles PHY error filter |
| 553 | * register on 5212 and newer chips so that we have proper PHY |
| 554 | * error reporting. |
| 555 | */ |
| 556 | void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter) |
| 557 | { |
| 558 | u32 data = 0; |
| 559 | |
| 560 | ATH5K_TRACE(ah->ah_sc); |
| 561 | |
| 562 | /* Set PHY error filter register on 5212*/ |
| 563 | if (ah->ah_version == AR5K_AR5212) { |
| 564 | if (filter & AR5K_RX_FILTER_RADARERR) |
| 565 | data |= AR5K_PHY_ERR_FIL_RADAR; |
| 566 | if (filter & AR5K_RX_FILTER_PHYERR) |
| 567 | data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK; |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * The AR5210 uses promiscous mode to detect radar activity |
| 572 | */ |
| 573 | if (ah->ah_version == AR5K_AR5210 && |
| 574 | (filter & AR5K_RX_FILTER_RADARERR)) { |
| 575 | filter &= ~AR5K_RX_FILTER_RADARERR; |
| 576 | filter |= AR5K_RX_FILTER_PROM; |
| 577 | } |
| 578 | |
| 579 | /*Zero length DMA*/ |
| 580 | if (data) |
| 581 | AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); |
| 582 | else |
| 583 | AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA); |
| 584 | |
| 585 | /*Write RX Filter register*/ |
| 586 | ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER); |
| 587 | |
| 588 | /*Write PHY error filter register on 5212*/ |
| 589 | if (ah->ah_version == AR5K_AR5212) |
| 590 | ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL); |
| 591 | |
| 592 | } |
| 593 | |
| 594 | |
| 595 | /****************\ |
| 596 | * Beacon control * |
| 597 | \****************/ |
| 598 | |
| 599 | /** |
| 600 | * ath5k_hw_get_tsf32 - Get a 32bit TSF |
| 601 | * |
| 602 | * @ah: The &struct ath5k_hw |
| 603 | * |
| 604 | * Returns lower 32 bits of current TSF |
| 605 | */ |
| 606 | u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah) |
| 607 | { |
| 608 | ATH5K_TRACE(ah->ah_sc); |
| 609 | return ath5k_hw_reg_read(ah, AR5K_TSF_L32); |
| 610 | } |
| 611 | |
| 612 | /** |
| 613 | * ath5k_hw_get_tsf64 - Get the full 64bit TSF |
| 614 | * |
| 615 | * @ah: The &struct ath5k_hw |
| 616 | * |
| 617 | * Returns the current TSF |
| 618 | */ |
| 619 | u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah) |
| 620 | { |
| 621 | u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32); |
| 622 | ATH5K_TRACE(ah->ah_sc); |
| 623 | |
| 624 | return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32); |
| 625 | } |
| 626 | |
| 627 | /** |
| 628 | * ath5k_hw_reset_tsf - Force a TSF reset |
| 629 | * |
| 630 | * @ah: The &struct ath5k_hw |
| 631 | * |
| 632 | * Forces a TSF reset on PCU |
| 633 | */ |
| 634 | void ath5k_hw_reset_tsf(struct ath5k_hw *ah) |
| 635 | { |
Bob Copeland | 14be994 | 2008-09-28 12:09:43 -0400 | [diff] [blame^] | 636 | u32 val; |
| 637 | |
Nick Kossifidis | c6e387a | 2008-08-29 22:45:39 +0300 | [diff] [blame] | 638 | ATH5K_TRACE(ah->ah_sc); |
Bob Copeland | 14be994 | 2008-09-28 12:09:43 -0400 | [diff] [blame^] | 639 | |
| 640 | val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF; |
| 641 | |
| 642 | /* |
| 643 | * Each write to the RESET_TSF bit toggles a hardware internal |
| 644 | * signal to reset TSF, but if left high it will cause a TSF reset |
| 645 | * on the next chip reset as well. Thus we always write the value |
| 646 | * twice to clear the signal. |
| 647 | */ |
| 648 | ath5k_hw_reg_write(ah, val, AR5K_BEACON); |
| 649 | ath5k_hw_reg_write(ah, val, AR5K_BEACON); |
Nick Kossifidis | c6e387a | 2008-08-29 22:45:39 +0300 | [diff] [blame] | 650 | } |
| 651 | |
| 652 | /* |
| 653 | * Initialize beacon timers |
| 654 | */ |
| 655 | void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval) |
| 656 | { |
| 657 | u32 timer1, timer2, timer3; |
| 658 | |
| 659 | ATH5K_TRACE(ah->ah_sc); |
| 660 | /* |
| 661 | * Set the additional timers by mode |
| 662 | */ |
| 663 | switch (ah->ah_op_mode) { |
Johannes Berg | 05c914f | 2008-09-11 00:01:58 +0200 | [diff] [blame] | 664 | case NL80211_IFTYPE_STATION: |
Nick Kossifidis | c6e387a | 2008-08-29 22:45:39 +0300 | [diff] [blame] | 665 | if (ah->ah_version == AR5K_AR5210) { |
| 666 | timer1 = 0xffffffff; |
| 667 | timer2 = 0xffffffff; |
| 668 | } else { |
| 669 | timer1 = 0x0000ffff; |
| 670 | timer2 = 0x0007ffff; |
| 671 | } |
| 672 | break; |
| 673 | |
| 674 | default: |
| 675 | timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3; |
| 676 | timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3; |
| 677 | } |
| 678 | |
| 679 | timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1); |
| 680 | |
| 681 | /* |
| 682 | * Set the beacon register and enable all timers. |
| 683 | * (next beacon, DMA beacon, software beacon, ATIM window time) |
| 684 | */ |
| 685 | ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0); |
| 686 | ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1); |
| 687 | ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2); |
| 688 | ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3); |
| 689 | |
| 690 | ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD | |
| 691 | AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE), |
| 692 | AR5K_BEACON); |
| 693 | } |
| 694 | |
| 695 | #if 0 |
| 696 | /* |
| 697 | * Set beacon timers |
| 698 | */ |
| 699 | int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah, |
| 700 | const struct ath5k_beacon_state *state) |
| 701 | { |
| 702 | u32 cfp_period, next_cfp, dtim, interval, next_beacon; |
| 703 | |
| 704 | /* |
| 705 | * TODO: should be changed through *state |
| 706 | * review struct ath5k_beacon_state struct |
| 707 | * |
| 708 | * XXX: These are used for cfp period bellow, are they |
| 709 | * ok ? Is it O.K. for tsf here to be 0 or should we use |
| 710 | * get_tsf ? |
| 711 | */ |
| 712 | u32 dtim_count = 0; /* XXX */ |
| 713 | u32 cfp_count = 0; /* XXX */ |
| 714 | u32 tsf = 0; /* XXX */ |
| 715 | |
| 716 | ATH5K_TRACE(ah->ah_sc); |
| 717 | /* Return on an invalid beacon state */ |
| 718 | if (state->bs_interval < 1) |
| 719 | return -EINVAL; |
| 720 | |
| 721 | interval = state->bs_interval; |
| 722 | dtim = state->bs_dtim_period; |
| 723 | |
| 724 | /* |
| 725 | * PCF support? |
| 726 | */ |
| 727 | if (state->bs_cfp_period > 0) { |
| 728 | /* |
| 729 | * Enable PCF mode and set the CFP |
| 730 | * (Contention Free Period) and timer registers |
| 731 | */ |
| 732 | cfp_period = state->bs_cfp_period * state->bs_dtim_period * |
| 733 | state->bs_interval; |
| 734 | next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) * |
| 735 | state->bs_interval; |
| 736 | |
| 737 | AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, |
| 738 | AR5K_STA_ID1_DEFAULT_ANTENNA | |
| 739 | AR5K_STA_ID1_PCF); |
| 740 | ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD); |
| 741 | ath5k_hw_reg_write(ah, state->bs_cfp_max_duration, |
| 742 | AR5K_CFP_DUR); |
| 743 | ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period : |
| 744 | next_cfp)) << 3, AR5K_TIMER2); |
| 745 | } else { |
| 746 | /* Disable PCF mode */ |
| 747 | AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, |
| 748 | AR5K_STA_ID1_DEFAULT_ANTENNA | |
| 749 | AR5K_STA_ID1_PCF); |
| 750 | } |
| 751 | |
| 752 | /* |
| 753 | * Enable the beacon timer register |
| 754 | */ |
| 755 | ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0); |
| 756 | |
| 757 | /* |
| 758 | * Start the beacon timers |
| 759 | */ |
| 760 | ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) & |
| 761 | ~(AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) | |
| 762 | AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0, |
| 763 | AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval, |
| 764 | AR5K_BEACON_PERIOD), AR5K_BEACON); |
| 765 | |
| 766 | /* |
| 767 | * Write new beacon miss threshold, if it appears to be valid |
| 768 | * XXX: Figure out right values for min <= bs_bmiss_threshold <= max |
| 769 | * and return if its not in range. We can test this by reading value and |
| 770 | * setting value to a largest value and seeing which values register. |
| 771 | */ |
| 772 | |
| 773 | AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS, |
| 774 | state->bs_bmiss_threshold); |
| 775 | |
| 776 | /* |
| 777 | * Set sleep control register |
| 778 | * XXX: Didn't find this in 5210 code but since this register |
| 779 | * exists also in ar5k's 5210 headers i leave it as common code. |
| 780 | */ |
| 781 | AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR, |
| 782 | (state->bs_sleep_duration - 3) << 3); |
| 783 | |
| 784 | /* |
| 785 | * Set enhanced sleep registers on 5212 |
| 786 | */ |
| 787 | if (ah->ah_version == AR5K_AR5212) { |
| 788 | if (state->bs_sleep_duration > state->bs_interval && |
| 789 | roundup(state->bs_sleep_duration, interval) == |
| 790 | state->bs_sleep_duration) |
| 791 | interval = state->bs_sleep_duration; |
| 792 | |
| 793 | if (state->bs_sleep_duration > dtim && (dtim == 0 || |
| 794 | roundup(state->bs_sleep_duration, dtim) == |
| 795 | state->bs_sleep_duration)) |
| 796 | dtim = state->bs_sleep_duration; |
| 797 | |
| 798 | if (interval > dtim) |
| 799 | return -EINVAL; |
| 800 | |
| 801 | next_beacon = interval == dtim ? state->bs_next_dtim : |
| 802 | state->bs_next_beacon; |
| 803 | |
| 804 | ath5k_hw_reg_write(ah, |
| 805 | AR5K_REG_SM((state->bs_next_dtim - 3) << 3, |
| 806 | AR5K_SLEEP0_NEXT_DTIM) | |
| 807 | AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) | |
| 808 | AR5K_SLEEP0_ENH_SLEEP_EN | |
| 809 | AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0); |
| 810 | |
| 811 | ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3, |
| 812 | AR5K_SLEEP1_NEXT_TIM) | |
| 813 | AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1); |
| 814 | |
| 815 | ath5k_hw_reg_write(ah, |
| 816 | AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) | |
| 817 | AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2); |
| 818 | } |
| 819 | |
| 820 | return 0; |
| 821 | } |
| 822 | |
| 823 | /* |
| 824 | * Reset beacon timers |
| 825 | */ |
| 826 | void ath5k_hw_reset_beacon(struct ath5k_hw *ah) |
| 827 | { |
| 828 | ATH5K_TRACE(ah->ah_sc); |
| 829 | /* |
| 830 | * Disable beacon timer |
| 831 | */ |
| 832 | ath5k_hw_reg_write(ah, 0, AR5K_TIMER0); |
| 833 | |
| 834 | /* |
| 835 | * Disable some beacon register values |
| 836 | */ |
| 837 | AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, |
| 838 | AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF); |
| 839 | ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON); |
| 840 | } |
| 841 | |
| 842 | /* |
| 843 | * Wait for beacon queue to finish |
| 844 | */ |
| 845 | int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr) |
| 846 | { |
| 847 | unsigned int i; |
| 848 | int ret; |
| 849 | |
| 850 | ATH5K_TRACE(ah->ah_sc); |
| 851 | |
| 852 | /* 5210 doesn't have QCU*/ |
| 853 | if (ah->ah_version == AR5K_AR5210) { |
| 854 | /* |
| 855 | * Wait for beaconn queue to finish by checking |
| 856 | * Control Register and Beacon Status Register. |
| 857 | */ |
| 858 | for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) { |
| 859 | if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F) |
| 860 | || |
| 861 | !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F)) |
| 862 | break; |
| 863 | udelay(10); |
| 864 | } |
| 865 | |
| 866 | /* Timeout... */ |
| 867 | if (i <= 0) { |
| 868 | /* |
| 869 | * Re-schedule the beacon queue |
| 870 | */ |
| 871 | ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1); |
| 872 | ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE, |
| 873 | AR5K_BCR); |
| 874 | |
| 875 | return -EIO; |
| 876 | } |
| 877 | ret = 0; |
| 878 | } else { |
| 879 | /*5211/5212*/ |
| 880 | ret = ath5k_hw_register_timeout(ah, |
| 881 | AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON), |
| 882 | AR5K_QCU_STS_FRMPENDCNT, 0, false); |
| 883 | |
| 884 | if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON)) |
| 885 | return -EIO; |
| 886 | } |
| 887 | |
| 888 | return ret; |
| 889 | } |
| 890 | #endif |
| 891 | |
| 892 | |
| 893 | /*********************\ |
| 894 | * Key table functions * |
| 895 | \*********************/ |
| 896 | |
| 897 | /* |
| 898 | * Reset a key entry on the table |
| 899 | */ |
| 900 | int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry) |
| 901 | { |
| 902 | unsigned int i; |
| 903 | |
| 904 | ATH5K_TRACE(ah->ah_sc); |
| 905 | AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); |
| 906 | |
| 907 | for (i = 0; i < AR5K_KEYCACHE_SIZE; i++) |
| 908 | ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i)); |
| 909 | |
| 910 | /* |
| 911 | * Set NULL encryption on AR5212+ |
| 912 | * |
| 913 | * Note: AR5K_KEYTABLE_TYPE -> AR5K_KEYTABLE_OFF(entry, 5) |
| 914 | * AR5K_KEYTABLE_TYPE_NULL -> 0x00000007 |
| 915 | * |
| 916 | * Note2: Windows driver (ndiswrapper) sets this to |
| 917 | * 0x00000714 instead of 0x00000007 |
| 918 | */ |
| 919 | if (ah->ah_version > AR5K_AR5211) |
| 920 | ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL, |
| 921 | AR5K_KEYTABLE_TYPE(entry)); |
| 922 | |
| 923 | return 0; |
| 924 | } |
| 925 | |
| 926 | /* |
| 927 | * Check if a table entry is valid |
| 928 | */ |
| 929 | int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry) |
| 930 | { |
| 931 | ATH5K_TRACE(ah->ah_sc); |
| 932 | AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); |
| 933 | |
| 934 | /* Check the validation flag at the end of the entry */ |
| 935 | return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) & |
| 936 | AR5K_KEYTABLE_VALID; |
| 937 | } |
| 938 | |
| 939 | /* |
| 940 | * Set a key entry on the table |
| 941 | */ |
| 942 | int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry, |
| 943 | const struct ieee80211_key_conf *key, const u8 *mac) |
| 944 | { |
| 945 | unsigned int i; |
| 946 | __le32 key_v[5] = {}; |
| 947 | u32 keytype; |
| 948 | |
| 949 | ATH5K_TRACE(ah->ah_sc); |
| 950 | |
| 951 | /* key->keylen comes in from mac80211 in bytes */ |
| 952 | |
| 953 | if (key->keylen > AR5K_KEYTABLE_SIZE / 8) |
| 954 | return -EOPNOTSUPP; |
| 955 | |
| 956 | switch (key->keylen) { |
| 957 | /* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */ |
| 958 | case 40 / 8: |
| 959 | memcpy(&key_v[0], key->key, 5); |
| 960 | keytype = AR5K_KEYTABLE_TYPE_40; |
| 961 | break; |
| 962 | |
| 963 | /* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */ |
| 964 | case 104 / 8: |
| 965 | memcpy(&key_v[0], &key->key[0], 6); |
| 966 | memcpy(&key_v[2], &key->key[6], 6); |
| 967 | memcpy(&key_v[4], &key->key[12], 1); |
| 968 | keytype = AR5K_KEYTABLE_TYPE_104; |
| 969 | break; |
| 970 | /* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */ |
| 971 | case 128 / 8: |
| 972 | memcpy(&key_v[0], &key->key[0], 6); |
| 973 | memcpy(&key_v[2], &key->key[6], 6); |
| 974 | memcpy(&key_v[4], &key->key[12], 4); |
| 975 | keytype = AR5K_KEYTABLE_TYPE_128; |
| 976 | break; |
| 977 | |
| 978 | default: |
| 979 | return -EINVAL; /* shouldn't happen */ |
| 980 | } |
| 981 | |
| 982 | for (i = 0; i < ARRAY_SIZE(key_v); i++) |
| 983 | ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]), |
| 984 | AR5K_KEYTABLE_OFF(entry, i)); |
| 985 | |
| 986 | ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry)); |
| 987 | |
| 988 | return ath5k_hw_set_key_lladdr(ah, entry, mac); |
| 989 | } |
| 990 | |
| 991 | int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac) |
| 992 | { |
| 993 | u32 low_id, high_id; |
| 994 | |
| 995 | ATH5K_TRACE(ah->ah_sc); |
| 996 | /* Invalid entry (key table overflow) */ |
| 997 | AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE); |
| 998 | |
| 999 | /* MAC may be NULL if it's a broadcast key. In this case no need to |
| 1000 | * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */ |
| 1001 | if (unlikely(mac == NULL)) { |
| 1002 | low_id = 0xffffffff; |
| 1003 | high_id = 0xffff | AR5K_KEYTABLE_VALID; |
| 1004 | } else { |
| 1005 | low_id = AR5K_LOW_ID(mac); |
| 1006 | high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID; |
| 1007 | } |
| 1008 | |
| 1009 | ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry)); |
| 1010 | ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry)); |
| 1011 | |
| 1012 | return 0; |
| 1013 | } |
| 1014 | |