blob: 089578f6855a21500188034b6f4fd09809658dfc [file] [log] [blame]
Auke Kokbc7f75f2007-09-17 12:30:59 -07001/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
Bruce Allanad680762008-03-28 09:15:03 -07004 Copyright(c) 1999 - 2008 Intel Corporation.
Auke Kokbc7f75f2007-09-17 12:30:59 -07005
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include <linux/netdevice.h>
30#include <linux/ethtool.h>
31#include <linux/delay.h>
32#include <linux/pci.h>
33
34#include "e1000.h"
35
36enum e1000_mng_mode {
37 e1000_mng_mode_none = 0,
38 e1000_mng_mode_asf,
39 e1000_mng_mode_pt,
40 e1000_mng_mode_ipmi,
41 e1000_mng_mode_host_if_only
42};
43
44#define E1000_FACTPS_MNGCG 0x20000000
45
Bruce Allanad680762008-03-28 09:15:03 -070046/* Intel(R) Active Management Technology signature */
47#define E1000_IAMT_SIGNATURE 0x544D4149
Auke Kokbc7f75f2007-09-17 12:30:59 -070048
49/**
50 * e1000e_get_bus_info_pcie - Get PCIe bus information
51 * @hw: pointer to the HW structure
52 *
53 * Determines and stores the system bus information for a particular
54 * network interface. The following bus information is determined and stored:
55 * bus speed, bus width, type (PCIe), and PCIe function.
56 **/
57s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
58{
59 struct e1000_bus_info *bus = &hw->bus;
60 struct e1000_adapter *adapter = hw->adapter;
61 u32 status;
62 u16 pcie_link_status, pci_header_type, cap_offset;
63
64 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
65 if (!cap_offset) {
66 bus->width = e1000_bus_width_unknown;
67 } else {
68 pci_read_config_word(adapter->pdev,
69 cap_offset + PCIE_LINK_STATUS,
70 &pcie_link_status);
71 bus->width = (enum e1000_bus_width)((pcie_link_status &
72 PCIE_LINK_WIDTH_MASK) >>
73 PCIE_LINK_WIDTH_SHIFT);
74 }
75
76 pci_read_config_word(adapter->pdev, PCI_HEADER_TYPE_REGISTER,
77 &pci_header_type);
78 if (pci_header_type & PCI_HEADER_TYPE_MULTIFUNC) {
79 status = er32(STATUS);
80 bus->func = (status & E1000_STATUS_FUNC_MASK)
81 >> E1000_STATUS_FUNC_SHIFT;
82 } else {
83 bus->func = 0;
84 }
85
86 return 0;
87}
88
89/**
90 * e1000e_write_vfta - Write value to VLAN filter table
91 * @hw: pointer to the HW structure
92 * @offset: register offset in VLAN filter table
93 * @value: register value written to VLAN filter table
94 *
95 * Writes value at the given offset in the register array which stores
96 * the VLAN filter table.
97 **/
98void e1000e_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
99{
100 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
101 e1e_flush();
102}
103
104/**
105 * e1000e_init_rx_addrs - Initialize receive address's
106 * @hw: pointer to the HW structure
107 * @rar_count: receive address registers
108 *
109 * Setups the receive address registers by setting the base receive address
110 * register to the devices MAC address and clearing all the other receive
111 * address registers to 0.
112 **/
113void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
114{
115 u32 i;
116
117 /* Setup the receive address */
118 hw_dbg(hw, "Programming MAC Address into RAR[0]\n");
119
120 e1000e_rar_set(hw, hw->mac.addr, 0);
121
122 /* Zero out the other (rar_entry_count - 1) receive addresses */
123 hw_dbg(hw, "Clearing RAR[1-%u]\n", rar_count-1);
124 for (i = 1; i < rar_count; i++) {
125 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1), 0);
126 e1e_flush();
127 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((i << 1) + 1), 0);
128 e1e_flush();
129 }
130}
131
132/**
133 * e1000e_rar_set - Set receive address register
134 * @hw: pointer to the HW structure
135 * @addr: pointer to the receive address
136 * @index: receive address array register
137 *
138 * Sets the receive address array register at index to the address passed
139 * in by addr.
140 **/
141void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
142{
143 u32 rar_low, rar_high;
144
Bruce Allanad680762008-03-28 09:15:03 -0700145 /*
146 * HW expects these in little endian so we reverse the byte order
Auke Kokbc7f75f2007-09-17 12:30:59 -0700147 * from network order (big endian) to little endian
148 */
149 rar_low = ((u32) addr[0] |
150 ((u32) addr[1] << 8) |
151 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
152
153 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
154
155 rar_high |= E1000_RAH_AV;
156
157 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (index << 1), rar_low);
158 E1000_WRITE_REG_ARRAY(hw, E1000_RA, ((index << 1) + 1), rar_high);
159}
160
161/**
162 * e1000_mta_set - Set multicast filter table address
163 * @hw: pointer to the HW structure
164 * @hash_value: determines the MTA register and bit to set
165 *
166 * The multicast table address is a register array of 32-bit registers.
167 * The hash_value is used to determine what register the bit is in, the
168 * current value is read, the new bit is OR'd in and the new value is
169 * written back into the register.
170 **/
171static void e1000_mta_set(struct e1000_hw *hw, u32 hash_value)
172{
173 u32 hash_bit, hash_reg, mta;
174
Bruce Allanad680762008-03-28 09:15:03 -0700175 /*
176 * The MTA is a register array of 32-bit registers. It is
Auke Kokbc7f75f2007-09-17 12:30:59 -0700177 * treated like an array of (32*mta_reg_count) bits. We want to
178 * set bit BitArray[hash_value]. So we figure out what register
179 * the bit is in, read it, OR in the new bit, then write
180 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
181 * mask to bits 31:5 of the hash value which gives us the
182 * register we're modifying. The hash bit within that register
183 * is determined by the lower 5 bits of the hash value.
184 */
185 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
186 hash_bit = hash_value & 0x1F;
187
188 mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
189
190 mta |= (1 << hash_bit);
191
192 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
193 e1e_flush();
194}
195
196/**
197 * e1000_hash_mc_addr - Generate a multicast hash value
198 * @hw: pointer to the HW structure
199 * @mc_addr: pointer to a multicast address
200 *
201 * Generates a multicast address hash value which is used to determine
202 * the multicast filter table array address and new table value. See
203 * e1000_mta_set_generic()
204 **/
205static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
206{
207 u32 hash_value, hash_mask;
208 u8 bit_shift = 0;
209
210 /* Register count multiplied by bits per register */
211 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
212
Bruce Allanad680762008-03-28 09:15:03 -0700213 /*
214 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
215 * where 0xFF would still fall within the hash mask.
216 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700217 while (hash_mask >> bit_shift != 0xFF)
218 bit_shift++;
219
Bruce Allanad680762008-03-28 09:15:03 -0700220 /*
221 * The portion of the address that is used for the hash table
Auke Kokbc7f75f2007-09-17 12:30:59 -0700222 * is determined by the mc_filter_type setting.
223 * The algorithm is such that there is a total of 8 bits of shifting.
224 * The bit_shift for a mc_filter_type of 0 represents the number of
225 * left-shifts where the MSB of mc_addr[5] would still fall within
226 * the hash_mask. Case 0 does this exactly. Since there are a total
227 * of 8 bits of shifting, then mc_addr[4] will shift right the
228 * remaining number of bits. Thus 8 - bit_shift. The rest of the
229 * cases are a variation of this algorithm...essentially raising the
230 * number of bits to shift mc_addr[5] left, while still keeping the
231 * 8-bit shifting total.
Bruce Allanad680762008-03-28 09:15:03 -0700232 *
233 * For example, given the following Destination MAC Address and an
Auke Kokbc7f75f2007-09-17 12:30:59 -0700234 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
235 * we can see that the bit_shift for case 0 is 4. These are the hash
236 * values resulting from each mc_filter_type...
237 * [0] [1] [2] [3] [4] [5]
238 * 01 AA 00 12 34 56
239 * LSB MSB
240 *
241 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
242 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
243 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
244 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
245 */
246 switch (hw->mac.mc_filter_type) {
247 default:
248 case 0:
249 break;
250 case 1:
251 bit_shift += 1;
252 break;
253 case 2:
254 bit_shift += 2;
255 break;
256 case 3:
257 bit_shift += 4;
258 break;
259 }
260
261 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
262 (((u16) mc_addr[5]) << bit_shift)));
263
264 return hash_value;
265}
266
267/**
Jeff Kirshere2de3eb2008-03-28 09:15:11 -0700268 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
Auke Kokbc7f75f2007-09-17 12:30:59 -0700269 * @hw: pointer to the HW structure
270 * @mc_addr_list: array of multicast addresses to program
271 * @mc_addr_count: number of multicast addresses to program
272 * @rar_used_count: the first RAR register free to program
273 * @rar_count: total number of supported Receive Address Registers
274 *
275 * Updates the Receive Address Registers and Multicast Table Array.
276 * The caller must have a packed mc_addr_list of multicast addresses.
277 * The parameter rar_count will usually be hw->mac.rar_entry_count
278 * unless there are workarounds that change this.
279 **/
Jeff Kirshere2de3eb2008-03-28 09:15:11 -0700280void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
281 u8 *mc_addr_list, u32 mc_addr_count,
282 u32 rar_used_count, u32 rar_count)
Auke Kokbc7f75f2007-09-17 12:30:59 -0700283{
284 u32 hash_value;
285 u32 i;
286
Bruce Allanad680762008-03-28 09:15:03 -0700287 /*
288 * Load the first set of multicast addresses into the exact
Auke Kokbc7f75f2007-09-17 12:30:59 -0700289 * filters (RAR). If there are not enough to fill the RAR
290 * array, clear the filters.
291 */
292 for (i = rar_used_count; i < rar_count; i++) {
293 if (mc_addr_count) {
294 e1000e_rar_set(hw, mc_addr_list, i);
295 mc_addr_count--;
296 mc_addr_list += ETH_ALEN;
297 } else {
298 E1000_WRITE_REG_ARRAY(hw, E1000_RA, i << 1, 0);
299 e1e_flush();
300 E1000_WRITE_REG_ARRAY(hw, E1000_RA, (i << 1) + 1, 0);
301 e1e_flush();
302 }
303 }
304
305 /* Clear the old settings from the MTA */
306 hw_dbg(hw, "Clearing MTA\n");
307 for (i = 0; i < hw->mac.mta_reg_count; i++) {
308 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
309 e1e_flush();
310 }
311
312 /* Load any remaining multicast addresses into the hash table. */
313 for (; mc_addr_count > 0; mc_addr_count--) {
314 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
315 hw_dbg(hw, "Hash value = 0x%03X\n", hash_value);
316 e1000_mta_set(hw, hash_value);
317 mc_addr_list += ETH_ALEN;
318 }
319}
320
321/**
322 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
323 * @hw: pointer to the HW structure
324 *
325 * Clears the base hardware counters by reading the counter registers.
326 **/
327void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
328{
329 u32 temp;
330
331 temp = er32(CRCERRS);
332 temp = er32(SYMERRS);
333 temp = er32(MPC);
334 temp = er32(SCC);
335 temp = er32(ECOL);
336 temp = er32(MCC);
337 temp = er32(LATECOL);
338 temp = er32(COLC);
339 temp = er32(DC);
340 temp = er32(SEC);
341 temp = er32(RLEC);
342 temp = er32(XONRXC);
343 temp = er32(XONTXC);
344 temp = er32(XOFFRXC);
345 temp = er32(XOFFTXC);
346 temp = er32(FCRUC);
347 temp = er32(GPRC);
348 temp = er32(BPRC);
349 temp = er32(MPRC);
350 temp = er32(GPTC);
351 temp = er32(GORCL);
352 temp = er32(GORCH);
353 temp = er32(GOTCL);
354 temp = er32(GOTCH);
355 temp = er32(RNBC);
356 temp = er32(RUC);
357 temp = er32(RFC);
358 temp = er32(ROC);
359 temp = er32(RJC);
360 temp = er32(TORL);
361 temp = er32(TORH);
362 temp = er32(TOTL);
363 temp = er32(TOTH);
364 temp = er32(TPR);
365 temp = er32(TPT);
366 temp = er32(MPTC);
367 temp = er32(BPTC);
368}
369
370/**
371 * e1000e_check_for_copper_link - Check for link (Copper)
372 * @hw: pointer to the HW structure
373 *
374 * Checks to see of the link status of the hardware has changed. If a
375 * change in link status has been detected, then we read the PHY registers
376 * to get the current speed/duplex if link exists.
377 **/
378s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
379{
380 struct e1000_mac_info *mac = &hw->mac;
381 s32 ret_val;
382 bool link;
383
Bruce Allanad680762008-03-28 09:15:03 -0700384 /*
385 * We only want to go out to the PHY registers to see if Auto-Neg
Auke Kokbc7f75f2007-09-17 12:30:59 -0700386 * has completed and/or if our link status has changed. The
387 * get_link_status flag is set upon receiving a Link Status
388 * Change or Rx Sequence Error interrupt.
389 */
390 if (!mac->get_link_status)
391 return 0;
392
Bruce Allanad680762008-03-28 09:15:03 -0700393 /*
394 * First we want to see if the MII Status Register reports
Auke Kokbc7f75f2007-09-17 12:30:59 -0700395 * link. If so, then we want to get the current speed/duplex
396 * of the PHY.
397 */
398 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
399 if (ret_val)
400 return ret_val;
401
402 if (!link)
403 return ret_val; /* No link detected */
404
405 mac->get_link_status = 0;
406
Bruce Allanad680762008-03-28 09:15:03 -0700407 /*
408 * Check if there was DownShift, must be checked
409 * immediately after link-up
410 */
Auke Kokbc7f75f2007-09-17 12:30:59 -0700411 e1000e_check_downshift(hw);
412
Bruce Allanad680762008-03-28 09:15:03 -0700413 /*
414 * If we are forcing speed/duplex, then we simply return since
Auke Kokbc7f75f2007-09-17 12:30:59 -0700415 * we have already determined whether we have link or not.
416 */
417 if (!mac->autoneg) {
418 ret_val = -E1000_ERR_CONFIG;
419 return ret_val;
420 }
421
Bruce Allanad680762008-03-28 09:15:03 -0700422 /*
423 * Auto-Neg is enabled. Auto Speed Detection takes care
Auke Kokbc7f75f2007-09-17 12:30:59 -0700424 * of MAC speed/duplex configuration. So we only need to
425 * configure Collision Distance in the MAC.
426 */
427 e1000e_config_collision_dist(hw);
428
Bruce Allanad680762008-03-28 09:15:03 -0700429 /*
430 * Configure Flow Control now that Auto-Neg has completed.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700431 * First, we need to restore the desired flow control
432 * settings because we may have had to re-autoneg with a
433 * different link partner.
434 */
435 ret_val = e1000e_config_fc_after_link_up(hw);
436 if (ret_val) {
437 hw_dbg(hw, "Error configuring flow control\n");
438 }
439
440 return ret_val;
441}
442
443/**
444 * e1000e_check_for_fiber_link - Check for link (Fiber)
445 * @hw: pointer to the HW structure
446 *
447 * Checks for link up on the hardware. If link is not up and we have
448 * a signal, then we need to force link up.
449 **/
450s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
451{
452 struct e1000_mac_info *mac = &hw->mac;
453 u32 rxcw;
454 u32 ctrl;
455 u32 status;
456 s32 ret_val;
457
458 ctrl = er32(CTRL);
459 status = er32(STATUS);
460 rxcw = er32(RXCW);
461
Bruce Allanad680762008-03-28 09:15:03 -0700462 /*
463 * If we don't have link (auto-negotiation failed or link partner
Auke Kokbc7f75f2007-09-17 12:30:59 -0700464 * cannot auto-negotiate), the cable is plugged in (we have signal),
465 * and our link partner is not trying to auto-negotiate with us (we
466 * are receiving idles or data), we need to force link up. We also
467 * need to give auto-negotiation time to complete, in case the cable
468 * was just plugged in. The autoneg_failed flag does this.
469 */
470 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
471 if ((ctrl & E1000_CTRL_SWDPIN1) && (!(status & E1000_STATUS_LU)) &&
472 (!(rxcw & E1000_RXCW_C))) {
473 if (mac->autoneg_failed == 0) {
474 mac->autoneg_failed = 1;
475 return 0;
476 }
477 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
478
479 /* Disable auto-negotiation in the TXCW register */
480 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
481
482 /* Force link-up and also force full-duplex. */
483 ctrl = er32(CTRL);
484 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
485 ew32(CTRL, ctrl);
486
487 /* Configure Flow Control after forcing link up. */
488 ret_val = e1000e_config_fc_after_link_up(hw);
489 if (ret_val) {
490 hw_dbg(hw, "Error configuring flow control\n");
491 return ret_val;
492 }
493 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Bruce Allanad680762008-03-28 09:15:03 -0700494 /*
495 * If we are forcing link and we are receiving /C/ ordered
Auke Kokbc7f75f2007-09-17 12:30:59 -0700496 * sets, re-enable auto-negotiation in the TXCW register
497 * and disable forced link in the Device Control register
498 * in an attempt to auto-negotiate with our link partner.
499 */
500 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
501 ew32(TXCW, mac->txcw);
502 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
503
504 mac->serdes_has_link = 1;
505 }
506
507 return 0;
508}
509
510/**
511 * e1000e_check_for_serdes_link - Check for link (Serdes)
512 * @hw: pointer to the HW structure
513 *
514 * Checks for link up on the hardware. If link is not up and we have
515 * a signal, then we need to force link up.
516 **/
517s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
518{
519 struct e1000_mac_info *mac = &hw->mac;
520 u32 rxcw;
521 u32 ctrl;
522 u32 status;
523 s32 ret_val;
524
525 ctrl = er32(CTRL);
526 status = er32(STATUS);
527 rxcw = er32(RXCW);
528
Bruce Allanad680762008-03-28 09:15:03 -0700529 /*
530 * If we don't have link (auto-negotiation failed or link partner
Auke Kokbc7f75f2007-09-17 12:30:59 -0700531 * cannot auto-negotiate), and our link partner is not trying to
532 * auto-negotiate with us (we are receiving idles or data),
533 * we need to force link up. We also need to give auto-negotiation
534 * time to complete.
535 */
536 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
537 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
538 if (mac->autoneg_failed == 0) {
539 mac->autoneg_failed = 1;
540 return 0;
541 }
542 hw_dbg(hw, "NOT RXing /C/, disable AutoNeg and force link.\n");
543
544 /* Disable auto-negotiation in the TXCW register */
545 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
546
547 /* Force link-up and also force full-duplex. */
548 ctrl = er32(CTRL);
549 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
550 ew32(CTRL, ctrl);
551
552 /* Configure Flow Control after forcing link up. */
553 ret_val = e1000e_config_fc_after_link_up(hw);
554 if (ret_val) {
555 hw_dbg(hw, "Error configuring flow control\n");
556 return ret_val;
557 }
558 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Bruce Allanad680762008-03-28 09:15:03 -0700559 /*
560 * If we are forcing link and we are receiving /C/ ordered
Auke Kokbc7f75f2007-09-17 12:30:59 -0700561 * sets, re-enable auto-negotiation in the TXCW register
562 * and disable forced link in the Device Control register
563 * in an attempt to auto-negotiate with our link partner.
564 */
565 hw_dbg(hw, "RXing /C/, enable AutoNeg and stop forcing link.\n");
566 ew32(TXCW, mac->txcw);
567 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
568
569 mac->serdes_has_link = 1;
570 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
Bruce Allanad680762008-03-28 09:15:03 -0700571 /*
572 * If we force link for non-auto-negotiation switch, check
Auke Kokbc7f75f2007-09-17 12:30:59 -0700573 * link status based on MAC synchronization for internal
574 * serdes media type.
575 */
576 /* SYNCH bit and IV bit are sticky. */
577 udelay(10);
578 if (E1000_RXCW_SYNCH & er32(RXCW)) {
579 if (!(rxcw & E1000_RXCW_IV)) {
580 mac->serdes_has_link = 1;
581 hw_dbg(hw, "SERDES: Link is up.\n");
582 }
583 } else {
584 mac->serdes_has_link = 0;
585 hw_dbg(hw, "SERDES: Link is down.\n");
586 }
587 }
588
589 if (E1000_TXCW_ANE & er32(TXCW)) {
590 status = er32(STATUS);
591 mac->serdes_has_link = (status & E1000_STATUS_LU);
592 }
593
594 return 0;
595}
596
597/**
598 * e1000_set_default_fc_generic - Set flow control default values
599 * @hw: pointer to the HW structure
600 *
601 * Read the EEPROM for the default values for flow control and store the
602 * values.
603 **/
604static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
605{
Auke Kokbc7f75f2007-09-17 12:30:59 -0700606 s32 ret_val;
607 u16 nvm_data;
608
Bruce Allanad680762008-03-28 09:15:03 -0700609 /*
610 * Read and store word 0x0F of the EEPROM. This word contains bits
Auke Kokbc7f75f2007-09-17 12:30:59 -0700611 * that determine the hardware's default PAUSE (flow control) mode,
612 * a bit that determines whether the HW defaults to enabling or
613 * disabling auto-negotiation, and the direction of the
614 * SW defined pins. If there is no SW over-ride of the flow
615 * control setting, then the variable hw->fc will
616 * be initialized based on a value in the EEPROM.
617 */
618 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
619
620 if (ret_val) {
621 hw_dbg(hw, "NVM Read Error\n");
622 return ret_val;
623 }
624
625 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700626 hw->fc.type = e1000_fc_none;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700627 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
628 NVM_WORD0F_ASM_DIR)
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700629 hw->fc.type = e1000_fc_tx_pause;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700630 else
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700631 hw->fc.type = e1000_fc_full;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700632
633 return 0;
634}
635
636/**
637 * e1000e_setup_link - Setup flow control and link settings
638 * @hw: pointer to the HW structure
639 *
640 * Determines which flow control settings to use, then configures flow
641 * control. Calls the appropriate media-specific link configuration
642 * function. Assuming the adapter has a valid link partner, a valid link
643 * should be established. Assumes the hardware has previously been reset
644 * and the transmitter and receiver are not enabled.
645 **/
646s32 e1000e_setup_link(struct e1000_hw *hw)
647{
648 struct e1000_mac_info *mac = &hw->mac;
649 s32 ret_val;
650
Bruce Allanad680762008-03-28 09:15:03 -0700651 /*
652 * In the case of the phy reset being blocked, we already have a link.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700653 * We do not need to set it up again.
654 */
655 if (e1000_check_reset_block(hw))
656 return 0;
657
Auke Kok309af402007-10-05 15:22:02 -0700658 /*
659 * If flow control is set to default, set flow control based on
660 * the EEPROM flow control settings.
661 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700662 if (hw->fc.type == e1000_fc_default) {
Auke Kok309af402007-10-05 15:22:02 -0700663 ret_val = e1000_set_default_fc_generic(hw);
664 if (ret_val)
665 return ret_val;
666 }
Auke Kokbc7f75f2007-09-17 12:30:59 -0700667
Bruce Allanad680762008-03-28 09:15:03 -0700668 /*
669 * We want to save off the original Flow Control configuration just
Auke Kokbc7f75f2007-09-17 12:30:59 -0700670 * in case we get disconnected and then reconnected into a different
671 * hub or switch with different Flow Control capabilities.
672 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700673 hw->fc.original_type = hw->fc.type;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700674
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700675 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n", hw->fc.type);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700676
677 /* Call the necessary media_type subroutine to configure the link. */
678 ret_val = mac->ops.setup_physical_interface(hw);
679 if (ret_val)
680 return ret_val;
681
Bruce Allanad680762008-03-28 09:15:03 -0700682 /*
683 * Initialize the flow control address, type, and PAUSE timer
Auke Kokbc7f75f2007-09-17 12:30:59 -0700684 * registers to their default values. This is done even if flow
685 * control is disabled, because it does not hurt anything to
686 * initialize these registers.
687 */
688 hw_dbg(hw, "Initializing the Flow Control address, type and timer regs\n");
689 ew32(FCT, FLOW_CONTROL_TYPE);
690 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
691 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
692
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700693 ew32(FCTTV, hw->fc.pause_time);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700694
695 return e1000e_set_fc_watermarks(hw);
696}
697
698/**
699 * e1000_commit_fc_settings_generic - Configure flow control
700 * @hw: pointer to the HW structure
701 *
702 * Write the flow control settings to the Transmit Config Word Register (TXCW)
703 * base on the flow control settings in e1000_mac_info.
704 **/
705static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
706{
707 struct e1000_mac_info *mac = &hw->mac;
708 u32 txcw;
709
Bruce Allanad680762008-03-28 09:15:03 -0700710 /*
711 * Check for a software override of the flow control settings, and
Auke Kokbc7f75f2007-09-17 12:30:59 -0700712 * setup the device accordingly. If auto-negotiation is enabled, then
713 * software will have to set the "PAUSE" bits to the correct value in
714 * the Transmit Config Word Register (TXCW) and re-start auto-
715 * negotiation. However, if auto-negotiation is disabled, then
716 * software will have to manually configure the two flow control enable
717 * bits in the CTRL register.
718 *
719 * The possible values of the "fc" parameter are:
720 * 0: Flow control is completely disabled
721 * 1: Rx flow control is enabled (we can receive pause frames,
722 * but not send pause frames).
723 * 2: Tx flow control is enabled (we can send pause frames but we
724 * do not support receiving pause frames).
Bruce Allanad680762008-03-28 09:15:03 -0700725 * 3: Both Rx and Tx flow control (symmetric) are enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700726 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700727 switch (hw->fc.type) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700728 case e1000_fc_none:
729 /* Flow control completely disabled by a software over-ride. */
730 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
731 break;
732 case e1000_fc_rx_pause:
Bruce Allanad680762008-03-28 09:15:03 -0700733 /*
734 * Rx Flow control is enabled and Tx Flow control is disabled
Auke Kokbc7f75f2007-09-17 12:30:59 -0700735 * by a software over-ride. Since there really isn't a way to
Bruce Allanad680762008-03-28 09:15:03 -0700736 * advertise that we are capable of Rx Pause ONLY, we will
737 * advertise that we support both symmetric and asymmetric Rx
Auke Kokbc7f75f2007-09-17 12:30:59 -0700738 * PAUSE. Later, we will disable the adapter's ability to send
739 * PAUSE frames.
740 */
741 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
742 break;
743 case e1000_fc_tx_pause:
Bruce Allanad680762008-03-28 09:15:03 -0700744 /*
745 * Tx Flow control is enabled, and Rx Flow control is disabled,
Auke Kokbc7f75f2007-09-17 12:30:59 -0700746 * by a software over-ride.
747 */
748 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
749 break;
750 case e1000_fc_full:
Bruce Allanad680762008-03-28 09:15:03 -0700751 /*
752 * Flow control (both Rx and Tx) is enabled by a software
Auke Kokbc7f75f2007-09-17 12:30:59 -0700753 * over-ride.
754 */
755 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
756 break;
757 default:
758 hw_dbg(hw, "Flow control param set incorrectly\n");
759 return -E1000_ERR_CONFIG;
760 break;
761 }
762
763 ew32(TXCW, txcw);
764 mac->txcw = txcw;
765
766 return 0;
767}
768
769/**
770 * e1000_poll_fiber_serdes_link_generic - Poll for link up
771 * @hw: pointer to the HW structure
772 *
773 * Polls for link up by reading the status register, if link fails to come
774 * up with auto-negotiation, then the link is forced if a signal is detected.
775 **/
776static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
777{
778 struct e1000_mac_info *mac = &hw->mac;
779 u32 i, status;
780 s32 ret_val;
781
Bruce Allanad680762008-03-28 09:15:03 -0700782 /*
783 * If we have a signal (the cable is plugged in, or assumed true for
Auke Kokbc7f75f2007-09-17 12:30:59 -0700784 * serdes media) then poll for a "Link-Up" indication in the Device
785 * Status Register. Time-out if a link isn't seen in 500 milliseconds
786 * seconds (Auto-negotiation should complete in less than 500
787 * milliseconds even if the other end is doing it in SW).
788 */
789 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
790 msleep(10);
791 status = er32(STATUS);
792 if (status & E1000_STATUS_LU)
793 break;
794 }
795 if (i == FIBER_LINK_UP_LIMIT) {
796 hw_dbg(hw, "Never got a valid link from auto-neg!!!\n");
797 mac->autoneg_failed = 1;
Bruce Allanad680762008-03-28 09:15:03 -0700798 /*
799 * AutoNeg failed to achieve a link, so we'll call
Auke Kokbc7f75f2007-09-17 12:30:59 -0700800 * mac->check_for_link. This routine will force the
801 * link up if we detect a signal. This will allow us to
802 * communicate with non-autonegotiating link partners.
803 */
804 ret_val = mac->ops.check_for_link(hw);
805 if (ret_val) {
806 hw_dbg(hw, "Error while checking for link\n");
807 return ret_val;
808 }
809 mac->autoneg_failed = 0;
810 } else {
811 mac->autoneg_failed = 0;
812 hw_dbg(hw, "Valid Link Found\n");
813 }
814
815 return 0;
816}
817
818/**
819 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
820 * @hw: pointer to the HW structure
821 *
822 * Configures collision distance and flow control for fiber and serdes
823 * links. Upon successful setup, poll for link.
824 **/
825s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
826{
827 u32 ctrl;
828 s32 ret_val;
829
830 ctrl = er32(CTRL);
831
832 /* Take the link out of reset */
833 ctrl &= ~E1000_CTRL_LRST;
834
835 e1000e_config_collision_dist(hw);
836
837 ret_val = e1000_commit_fc_settings_generic(hw);
838 if (ret_val)
839 return ret_val;
840
Bruce Allanad680762008-03-28 09:15:03 -0700841 /*
842 * Since auto-negotiation is enabled, take the link out of reset (the
Auke Kokbc7f75f2007-09-17 12:30:59 -0700843 * link will be in reset, because we previously reset the chip). This
844 * will restart auto-negotiation. If auto-negotiation is successful
845 * then the link-up status bit will be set and the flow control enable
846 * bits (RFCE and TFCE) will be set according to their negotiated value.
847 */
848 hw_dbg(hw, "Auto-negotiation enabled\n");
849
850 ew32(CTRL, ctrl);
851 e1e_flush();
852 msleep(1);
853
Bruce Allanad680762008-03-28 09:15:03 -0700854 /*
855 * For these adapters, the SW definable pin 1 is set when the optics
Auke Kokbc7f75f2007-09-17 12:30:59 -0700856 * detect a signal. If we have a signal, then poll for a "Link-Up"
857 * indication.
858 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700859 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
Auke Kokbc7f75f2007-09-17 12:30:59 -0700860 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
861 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
862 } else {
863 hw_dbg(hw, "No signal detected\n");
864 }
865
866 return 0;
867}
868
869/**
870 * e1000e_config_collision_dist - Configure collision distance
871 * @hw: pointer to the HW structure
872 *
873 * Configures the collision distance to the default value and is used
874 * during link setup. Currently no func pointer exists and all
875 * implementations are handled in the generic version of this function.
876 **/
877void e1000e_config_collision_dist(struct e1000_hw *hw)
878{
879 u32 tctl;
880
881 tctl = er32(TCTL);
882
883 tctl &= ~E1000_TCTL_COLD;
884 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
885
886 ew32(TCTL, tctl);
887 e1e_flush();
888}
889
890/**
891 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
892 * @hw: pointer to the HW structure
893 *
894 * Sets the flow control high/low threshold (watermark) registers. If
895 * flow control XON frame transmission is enabled, then set XON frame
Bruce Allanad680762008-03-28 09:15:03 -0700896 * transmission as well.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700897 **/
898s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
899{
Auke Kokbc7f75f2007-09-17 12:30:59 -0700900 u32 fcrtl = 0, fcrth = 0;
901
Bruce Allanad680762008-03-28 09:15:03 -0700902 /*
903 * Set the flow control receive threshold registers. Normally,
Auke Kokbc7f75f2007-09-17 12:30:59 -0700904 * these registers will be set to a default threshold that may be
905 * adjusted later by the driver's runtime code. However, if the
906 * ability to transmit pause frames is not enabled, then these
907 * registers will be set to 0.
908 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700909 if (hw->fc.type & e1000_fc_tx_pause) {
Bruce Allanad680762008-03-28 09:15:03 -0700910 /*
911 * We need to set up the Receive Threshold high and low water
Auke Kokbc7f75f2007-09-17 12:30:59 -0700912 * marks as well as (optionally) enabling the transmission of
913 * XON frames.
914 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700915 fcrtl = hw->fc.low_water;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700916 fcrtl |= E1000_FCRTL_XONE;
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700917 fcrth = hw->fc.high_water;
Auke Kokbc7f75f2007-09-17 12:30:59 -0700918 }
919 ew32(FCRTL, fcrtl);
920 ew32(FCRTH, fcrth);
921
922 return 0;
923}
924
925/**
926 * e1000e_force_mac_fc - Force the MAC's flow control settings
927 * @hw: pointer to the HW structure
928 *
929 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
930 * device control register to reflect the adapter settings. TFCE and RFCE
931 * need to be explicitly set by software when a copper PHY is used because
932 * autonegotiation is managed by the PHY rather than the MAC. Software must
933 * also configure these bits when link is forced on a fiber connection.
934 **/
935s32 e1000e_force_mac_fc(struct e1000_hw *hw)
936{
Auke Kokbc7f75f2007-09-17 12:30:59 -0700937 u32 ctrl;
938
939 ctrl = er32(CTRL);
940
Bruce Allanad680762008-03-28 09:15:03 -0700941 /*
942 * Because we didn't get link via the internal auto-negotiation
Auke Kokbc7f75f2007-09-17 12:30:59 -0700943 * mechanism (we either forced link or we got link via PHY
944 * auto-neg), we have to manually enable/disable transmit an
945 * receive flow control.
946 *
947 * The "Case" statement below enables/disable flow control
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700948 * according to the "hw->fc.type" parameter.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700949 *
950 * The possible values of the "fc" parameter are:
951 * 0: Flow control is completely disabled
952 * 1: Rx flow control is enabled (we can receive pause
953 * frames but not send pause frames).
954 * 2: Tx flow control is enabled (we can send pause frames
955 * frames but we do not receive pause frames).
Bruce Allanad680762008-03-28 09:15:03 -0700956 * 3: Both Rx and Tx flow control (symmetric) is enabled.
Auke Kokbc7f75f2007-09-17 12:30:59 -0700957 * other: No other values should be possible at this point.
958 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700959 hw_dbg(hw, "hw->fc.type = %u\n", hw->fc.type);
Auke Kokbc7f75f2007-09-17 12:30:59 -0700960
Jeff Kirsher318a94d2008-03-28 09:15:16 -0700961 switch (hw->fc.type) {
Auke Kokbc7f75f2007-09-17 12:30:59 -0700962 case e1000_fc_none:
963 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
964 break;
965 case e1000_fc_rx_pause:
966 ctrl &= (~E1000_CTRL_TFCE);
967 ctrl |= E1000_CTRL_RFCE;
968 break;
969 case e1000_fc_tx_pause:
970 ctrl &= (~E1000_CTRL_RFCE);
971 ctrl |= E1000_CTRL_TFCE;
972 break;
973 case e1000_fc_full:
974 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
975 break;
976 default:
977 hw_dbg(hw, "Flow control param set incorrectly\n");
978 return -E1000_ERR_CONFIG;
979 }
980
981 ew32(CTRL, ctrl);
982
983 return 0;
984}
985
986/**
987 * e1000e_config_fc_after_link_up - Configures flow control after link
988 * @hw: pointer to the HW structure
989 *
990 * Checks the status of auto-negotiation after link up to ensure that the
991 * speed and duplex were not forced. If the link needed to be forced, then
992 * flow control needs to be forced also. If auto-negotiation is enabled
993 * and did not fail, then we configure flow control based on our link
994 * partner.
995 **/
996s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
997{
998 struct e1000_mac_info *mac = &hw->mac;
999 s32 ret_val = 0;
1000 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1001 u16 speed, duplex;
1002
Bruce Allanad680762008-03-28 09:15:03 -07001003 /*
1004 * Check for the case where we have fiber media and auto-neg failed
Auke Kokbc7f75f2007-09-17 12:30:59 -07001005 * so we had to force link. In this case, we need to force the
1006 * configuration of the MAC to match the "fc" parameter.
1007 */
1008 if (mac->autoneg_failed) {
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001009 if (hw->phy.media_type == e1000_media_type_fiber ||
1010 hw->phy.media_type == e1000_media_type_internal_serdes)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001011 ret_val = e1000e_force_mac_fc(hw);
1012 } else {
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001013 if (hw->phy.media_type == e1000_media_type_copper)
Auke Kokbc7f75f2007-09-17 12:30:59 -07001014 ret_val = e1000e_force_mac_fc(hw);
1015 }
1016
1017 if (ret_val) {
1018 hw_dbg(hw, "Error forcing flow control settings\n");
1019 return ret_val;
1020 }
1021
Bruce Allanad680762008-03-28 09:15:03 -07001022 /*
1023 * Check for the case where we have copper media and auto-neg is
Auke Kokbc7f75f2007-09-17 12:30:59 -07001024 * enabled. In this case, we need to check and see if Auto-Neg
1025 * has completed, and if so, how the PHY and link partner has
1026 * flow control configured.
1027 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001028 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
Bruce Allanad680762008-03-28 09:15:03 -07001029 /*
1030 * Read the MII Status Register and check to see if AutoNeg
Auke Kokbc7f75f2007-09-17 12:30:59 -07001031 * has completed. We read this twice because this reg has
1032 * some "sticky" (latched) bits.
1033 */
1034 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1035 if (ret_val)
1036 return ret_val;
1037 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1038 if (ret_val)
1039 return ret_val;
1040
1041 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1042 hw_dbg(hw, "Copper PHY and Auto Neg "
1043 "has not completed.\n");
1044 return ret_val;
1045 }
1046
Bruce Allanad680762008-03-28 09:15:03 -07001047 /*
1048 * The AutoNeg process has completed, so we now need to
Auke Kokbc7f75f2007-09-17 12:30:59 -07001049 * read both the Auto Negotiation Advertisement
1050 * Register (Address 4) and the Auto_Negotiation Base
1051 * Page Ability Register (Address 5) to determine how
1052 * flow control was negotiated.
1053 */
1054 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1055 if (ret_val)
1056 return ret_val;
1057 ret_val = e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1058 if (ret_val)
1059 return ret_val;
1060
Bruce Allanad680762008-03-28 09:15:03 -07001061 /*
1062 * Two bits in the Auto Negotiation Advertisement Register
Auke Kokbc7f75f2007-09-17 12:30:59 -07001063 * (Address 4) and two bits in the Auto Negotiation Base
1064 * Page Ability Register (Address 5) determine flow control
1065 * for both the PHY and the link partner. The following
1066 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1067 * 1999, describes these PAUSE resolution bits and how flow
1068 * control is determined based upon these settings.
1069 * NOTE: DC = Don't Care
1070 *
1071 * LOCAL DEVICE | LINK PARTNER
1072 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1073 *-------|---------|-------|---------|--------------------
1074 * 0 | 0 | DC | DC | e1000_fc_none
1075 * 0 | 1 | 0 | DC | e1000_fc_none
1076 * 0 | 1 | 1 | 0 | e1000_fc_none
1077 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1078 * 1 | 0 | 0 | DC | e1000_fc_none
1079 * 1 | DC | 1 | DC | e1000_fc_full
1080 * 1 | 1 | 0 | 0 | e1000_fc_none
1081 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1082 *
Bruce Allanad680762008-03-28 09:15:03 -07001083 *
1084 * Are both PAUSE bits set to 1? If so, this implies
Auke Kokbc7f75f2007-09-17 12:30:59 -07001085 * Symmetric Flow Control is enabled at both ends. The
1086 * ASM_DIR bits are irrelevant per the spec.
1087 *
1088 * For Symmetric Flow Control:
1089 *
1090 * LOCAL DEVICE | LINK PARTNER
1091 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1092 *-------|---------|-------|---------|--------------------
1093 * 1 | DC | 1 | DC | E1000_fc_full
1094 *
1095 */
1096 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1097 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
Bruce Allanad680762008-03-28 09:15:03 -07001098 /*
1099 * Now we need to check if the user selected Rx ONLY
Auke Kokbc7f75f2007-09-17 12:30:59 -07001100 * of pause frames. In this case, we had to advertise
Bruce Allanad680762008-03-28 09:15:03 -07001101 * FULL flow control because we could not advertise Rx
Auke Kokbc7f75f2007-09-17 12:30:59 -07001102 * ONLY. Hence, we must now check to see if we need to
1103 * turn OFF the TRANSMISSION of PAUSE frames.
1104 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001105 if (hw->fc.original_type == e1000_fc_full) {
1106 hw->fc.type = e1000_fc_full;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001107 hw_dbg(hw, "Flow Control = FULL.\r\n");
1108 } else {
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001109 hw->fc.type = e1000_fc_rx_pause;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001110 hw_dbg(hw, "Flow Control = "
1111 "RX PAUSE frames only.\r\n");
1112 }
1113 }
Bruce Allanad680762008-03-28 09:15:03 -07001114 /*
1115 * For receiving PAUSE frames ONLY.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001116 *
1117 * LOCAL DEVICE | LINK PARTNER
1118 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1119 *-------|---------|-------|---------|--------------------
1120 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1121 *
1122 */
1123 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1124 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1125 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1126 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001127 hw->fc.type = e1000_fc_tx_pause;
1128 hw_dbg(hw, "Flow Control = Tx PAUSE frames only.\r\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001129 }
Bruce Allanad680762008-03-28 09:15:03 -07001130 /*
1131 * For transmitting PAUSE frames ONLY.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001132 *
1133 * LOCAL DEVICE | LINK PARTNER
1134 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1135 *-------|---------|-------|---------|--------------------
1136 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1137 *
1138 */
1139 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1140 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1141 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1142 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001143 hw->fc.type = e1000_fc_rx_pause;
1144 hw_dbg(hw, "Flow Control = Rx PAUSE frames only.\r\n");
Jesse Brandeburgde92d842008-02-21 15:11:02 -08001145 } else {
1146 /*
1147 * Per the IEEE spec, at this point flow control
1148 * should be disabled.
1149 */
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001150 hw->fc.type = e1000_fc_none;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001151 hw_dbg(hw, "Flow Control = NONE.\r\n");
Auke Kokbc7f75f2007-09-17 12:30:59 -07001152 }
1153
Bruce Allanad680762008-03-28 09:15:03 -07001154 /*
1155 * Now we need to do one last check... If we auto-
Auke Kokbc7f75f2007-09-17 12:30:59 -07001156 * negotiated to HALF DUPLEX, flow control should not be
1157 * enabled per IEEE 802.3 spec.
1158 */
1159 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1160 if (ret_val) {
1161 hw_dbg(hw, "Error getting link speed and duplex\n");
1162 return ret_val;
1163 }
1164
1165 if (duplex == HALF_DUPLEX)
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001166 hw->fc.type = e1000_fc_none;
Auke Kokbc7f75f2007-09-17 12:30:59 -07001167
Bruce Allanad680762008-03-28 09:15:03 -07001168 /*
1169 * Now we call a subroutine to actually force the MAC
Auke Kokbc7f75f2007-09-17 12:30:59 -07001170 * controller to use the correct flow control settings.
1171 */
1172 ret_val = e1000e_force_mac_fc(hw);
1173 if (ret_val) {
1174 hw_dbg(hw, "Error forcing flow control settings\n");
1175 return ret_val;
1176 }
1177 }
1178
1179 return 0;
1180}
1181
1182/**
Auke Kok489815c2008-02-21 15:11:07 -08001183 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
Auke Kokbc7f75f2007-09-17 12:30:59 -07001184 * @hw: pointer to the HW structure
1185 * @speed: stores the current speed
1186 * @duplex: stores the current duplex
1187 *
1188 * Read the status register for the current speed/duplex and store the current
1189 * speed and duplex for copper connections.
1190 **/
1191s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1192{
1193 u32 status;
1194
1195 status = er32(STATUS);
1196 if (status & E1000_STATUS_SPEED_1000) {
1197 *speed = SPEED_1000;
1198 hw_dbg(hw, "1000 Mbs, ");
1199 } else if (status & E1000_STATUS_SPEED_100) {
1200 *speed = SPEED_100;
1201 hw_dbg(hw, "100 Mbs, ");
1202 } else {
1203 *speed = SPEED_10;
1204 hw_dbg(hw, "10 Mbs, ");
1205 }
1206
1207 if (status & E1000_STATUS_FD) {
1208 *duplex = FULL_DUPLEX;
1209 hw_dbg(hw, "Full Duplex\n");
1210 } else {
1211 *duplex = HALF_DUPLEX;
1212 hw_dbg(hw, "Half Duplex\n");
1213 }
1214
1215 return 0;
1216}
1217
1218/**
Auke Kok489815c2008-02-21 15:11:07 -08001219 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
Auke Kokbc7f75f2007-09-17 12:30:59 -07001220 * @hw: pointer to the HW structure
1221 * @speed: stores the current speed
1222 * @duplex: stores the current duplex
1223 *
1224 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1225 * for fiber/serdes links.
1226 **/
1227s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, u16 *duplex)
1228{
1229 *speed = SPEED_1000;
1230 *duplex = FULL_DUPLEX;
1231
1232 return 0;
1233}
1234
1235/**
1236 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1237 * @hw: pointer to the HW structure
1238 *
1239 * Acquire the HW semaphore to access the PHY or NVM
1240 **/
1241s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1242{
1243 u32 swsm;
1244 s32 timeout = hw->nvm.word_size + 1;
1245 s32 i = 0;
1246
1247 /* Get the SW semaphore */
1248 while (i < timeout) {
1249 swsm = er32(SWSM);
1250 if (!(swsm & E1000_SWSM_SMBI))
1251 break;
1252
1253 udelay(50);
1254 i++;
1255 }
1256
1257 if (i == timeout) {
1258 hw_dbg(hw, "Driver can't access device - SMBI bit is set.\n");
1259 return -E1000_ERR_NVM;
1260 }
1261
1262 /* Get the FW semaphore. */
1263 for (i = 0; i < timeout; i++) {
1264 swsm = er32(SWSM);
1265 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1266
1267 /* Semaphore acquired if bit latched */
1268 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1269 break;
1270
1271 udelay(50);
1272 }
1273
1274 if (i == timeout) {
1275 /* Release semaphores */
1276 e1000e_put_hw_semaphore(hw);
1277 hw_dbg(hw, "Driver can't access the NVM\n");
1278 return -E1000_ERR_NVM;
1279 }
1280
1281 return 0;
1282}
1283
1284/**
1285 * e1000e_put_hw_semaphore - Release hardware semaphore
1286 * @hw: pointer to the HW structure
1287 *
1288 * Release hardware semaphore used to access the PHY or NVM
1289 **/
1290void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1291{
1292 u32 swsm;
1293
1294 swsm = er32(SWSM);
1295 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1296 ew32(SWSM, swsm);
1297}
1298
1299/**
1300 * e1000e_get_auto_rd_done - Check for auto read completion
1301 * @hw: pointer to the HW structure
1302 *
1303 * Check EEPROM for Auto Read done bit.
1304 **/
1305s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1306{
1307 s32 i = 0;
1308
1309 while (i < AUTO_READ_DONE_TIMEOUT) {
1310 if (er32(EECD) & E1000_EECD_AUTO_RD)
1311 break;
1312 msleep(1);
1313 i++;
1314 }
1315
1316 if (i == AUTO_READ_DONE_TIMEOUT) {
1317 hw_dbg(hw, "Auto read by HW from NVM has not completed.\n");
1318 return -E1000_ERR_RESET;
1319 }
1320
1321 return 0;
1322}
1323
1324/**
1325 * e1000e_valid_led_default - Verify a valid default LED config
1326 * @hw: pointer to the HW structure
1327 * @data: pointer to the NVM (EEPROM)
1328 *
1329 * Read the EEPROM for the current default LED configuration. If the
1330 * LED configuration is not valid, set to a valid LED configuration.
1331 **/
1332s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1333{
1334 s32 ret_val;
1335
1336 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1337 if (ret_val) {
1338 hw_dbg(hw, "NVM Read Error\n");
1339 return ret_val;
1340 }
1341
1342 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1343 *data = ID_LED_DEFAULT;
1344
1345 return 0;
1346}
1347
1348/**
1349 * e1000e_id_led_init -
1350 * @hw: pointer to the HW structure
1351 *
1352 **/
1353s32 e1000e_id_led_init(struct e1000_hw *hw)
1354{
1355 struct e1000_mac_info *mac = &hw->mac;
1356 s32 ret_val;
1357 const u32 ledctl_mask = 0x000000FF;
1358 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1359 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1360 u16 data, i, temp;
1361 const u16 led_mask = 0x0F;
1362
1363 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1364 if (ret_val)
1365 return ret_val;
1366
1367 mac->ledctl_default = er32(LEDCTL);
1368 mac->ledctl_mode1 = mac->ledctl_default;
1369 mac->ledctl_mode2 = mac->ledctl_default;
1370
1371 for (i = 0; i < 4; i++) {
1372 temp = (data >> (i << 2)) & led_mask;
1373 switch (temp) {
1374 case ID_LED_ON1_DEF2:
1375 case ID_LED_ON1_ON2:
1376 case ID_LED_ON1_OFF2:
1377 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1378 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1379 break;
1380 case ID_LED_OFF1_DEF2:
1381 case ID_LED_OFF1_ON2:
1382 case ID_LED_OFF1_OFF2:
1383 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1384 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1385 break;
1386 default:
1387 /* Do nothing */
1388 break;
1389 }
1390 switch (temp) {
1391 case ID_LED_DEF1_ON2:
1392 case ID_LED_ON1_ON2:
1393 case ID_LED_OFF1_ON2:
1394 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1395 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1396 break;
1397 case ID_LED_DEF1_OFF2:
1398 case ID_LED_ON1_OFF2:
1399 case ID_LED_OFF1_OFF2:
1400 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1401 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1402 break;
1403 default:
1404 /* Do nothing */
1405 break;
1406 }
1407 }
1408
1409 return 0;
1410}
1411
1412/**
1413 * e1000e_cleanup_led_generic - Set LED config to default operation
1414 * @hw: pointer to the HW structure
1415 *
1416 * Remove the current LED configuration and set the LED configuration
1417 * to the default value, saved from the EEPROM.
1418 **/
1419s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1420{
1421 ew32(LEDCTL, hw->mac.ledctl_default);
1422 return 0;
1423}
1424
1425/**
1426 * e1000e_blink_led - Blink LED
1427 * @hw: pointer to the HW structure
1428 *
Auke Kok489815c2008-02-21 15:11:07 -08001429 * Blink the LEDs which are set to be on.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001430 **/
1431s32 e1000e_blink_led(struct e1000_hw *hw)
1432{
1433 u32 ledctl_blink = 0;
1434 u32 i;
1435
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001436 if (hw->phy.media_type == e1000_media_type_fiber) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001437 /* always blink LED0 for PCI-E fiber */
1438 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1439 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1440 } else {
Bruce Allanad680762008-03-28 09:15:03 -07001441 /*
1442 * set the blink bit for each LED that's "on" (0x0E)
1443 * in ledctl_mode2
1444 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001445 ledctl_blink = hw->mac.ledctl_mode2;
1446 for (i = 0; i < 4; i++)
1447 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1448 E1000_LEDCTL_MODE_LED_ON)
1449 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1450 (i * 8));
1451 }
1452
1453 ew32(LEDCTL, ledctl_blink);
1454
1455 return 0;
1456}
1457
1458/**
1459 * e1000e_led_on_generic - Turn LED on
1460 * @hw: pointer to the HW structure
1461 *
1462 * Turn LED on.
1463 **/
1464s32 e1000e_led_on_generic(struct e1000_hw *hw)
1465{
1466 u32 ctrl;
1467
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001468 switch (hw->phy.media_type) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001469 case e1000_media_type_fiber:
1470 ctrl = er32(CTRL);
1471 ctrl &= ~E1000_CTRL_SWDPIN0;
1472 ctrl |= E1000_CTRL_SWDPIO0;
1473 ew32(CTRL, ctrl);
1474 break;
1475 case e1000_media_type_copper:
1476 ew32(LEDCTL, hw->mac.ledctl_mode2);
1477 break;
1478 default:
1479 break;
1480 }
1481
1482 return 0;
1483}
1484
1485/**
1486 * e1000e_led_off_generic - Turn LED off
1487 * @hw: pointer to the HW structure
1488 *
1489 * Turn LED off.
1490 **/
1491s32 e1000e_led_off_generic(struct e1000_hw *hw)
1492{
1493 u32 ctrl;
1494
Jeff Kirsher318a94d2008-03-28 09:15:16 -07001495 switch (hw->phy.media_type) {
Auke Kokbc7f75f2007-09-17 12:30:59 -07001496 case e1000_media_type_fiber:
1497 ctrl = er32(CTRL);
1498 ctrl |= E1000_CTRL_SWDPIN0;
1499 ctrl |= E1000_CTRL_SWDPIO0;
1500 ew32(CTRL, ctrl);
1501 break;
1502 case e1000_media_type_copper:
1503 ew32(LEDCTL, hw->mac.ledctl_mode1);
1504 break;
1505 default:
1506 break;
1507 }
1508
1509 return 0;
1510}
1511
1512/**
1513 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1514 * @hw: pointer to the HW structure
1515 * @no_snoop: bitmap of snoop events
1516 *
1517 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1518 **/
1519void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1520{
1521 u32 gcr;
1522
1523 if (no_snoop) {
1524 gcr = er32(GCR);
1525 gcr &= ~(PCIE_NO_SNOOP_ALL);
1526 gcr |= no_snoop;
1527 ew32(GCR, gcr);
1528 }
1529}
1530
1531/**
1532 * e1000e_disable_pcie_master - Disables PCI-express master access
1533 * @hw: pointer to the HW structure
1534 *
1535 * Returns 0 if successful, else returns -10
Auke Kok489815c2008-02-21 15:11:07 -08001536 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
Auke Kokbc7f75f2007-09-17 12:30:59 -07001537 * the master requests to be disabled.
1538 *
1539 * Disables PCI-Express master access and verifies there are no pending
1540 * requests.
1541 **/
1542s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1543{
1544 u32 ctrl;
1545 s32 timeout = MASTER_DISABLE_TIMEOUT;
1546
1547 ctrl = er32(CTRL);
1548 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1549 ew32(CTRL, ctrl);
1550
1551 while (timeout) {
1552 if (!(er32(STATUS) &
1553 E1000_STATUS_GIO_MASTER_ENABLE))
1554 break;
1555 udelay(100);
1556 timeout--;
1557 }
1558
1559 if (!timeout) {
1560 hw_dbg(hw, "Master requests are pending.\n");
1561 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1562 }
1563
1564 return 0;
1565}
1566
1567/**
1568 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1569 * @hw: pointer to the HW structure
1570 *
1571 * Reset the Adaptive Interframe Spacing throttle to default values.
1572 **/
1573void e1000e_reset_adaptive(struct e1000_hw *hw)
1574{
1575 struct e1000_mac_info *mac = &hw->mac;
1576
1577 mac->current_ifs_val = 0;
1578 mac->ifs_min_val = IFS_MIN;
1579 mac->ifs_max_val = IFS_MAX;
1580 mac->ifs_step_size = IFS_STEP;
1581 mac->ifs_ratio = IFS_RATIO;
1582
1583 mac->in_ifs_mode = 0;
1584 ew32(AIT, 0);
1585}
1586
1587/**
1588 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1589 * @hw: pointer to the HW structure
1590 *
1591 * Update the Adaptive Interframe Spacing Throttle value based on the
1592 * time between transmitted packets and time between collisions.
1593 **/
1594void e1000e_update_adaptive(struct e1000_hw *hw)
1595{
1596 struct e1000_mac_info *mac = &hw->mac;
1597
1598 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1599 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1600 mac->in_ifs_mode = 1;
1601 if (mac->current_ifs_val < mac->ifs_max_val) {
1602 if (!mac->current_ifs_val)
1603 mac->current_ifs_val = mac->ifs_min_val;
1604 else
1605 mac->current_ifs_val +=
1606 mac->ifs_step_size;
Bruce Allanad680762008-03-28 09:15:03 -07001607 ew32(AIT, mac->current_ifs_val);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001608 }
1609 }
1610 } else {
1611 if (mac->in_ifs_mode &&
1612 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1613 mac->current_ifs_val = 0;
1614 mac->in_ifs_mode = 0;
1615 ew32(AIT, 0);
1616 }
1617 }
1618}
1619
1620/**
1621 * e1000_raise_eec_clk - Raise EEPROM clock
1622 * @hw: pointer to the HW structure
1623 * @eecd: pointer to the EEPROM
1624 *
1625 * Enable/Raise the EEPROM clock bit.
1626 **/
1627static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
1628{
1629 *eecd = *eecd | E1000_EECD_SK;
1630 ew32(EECD, *eecd);
1631 e1e_flush();
1632 udelay(hw->nvm.delay_usec);
1633}
1634
1635/**
1636 * e1000_lower_eec_clk - Lower EEPROM clock
1637 * @hw: pointer to the HW structure
1638 * @eecd: pointer to the EEPROM
1639 *
1640 * Clear/Lower the EEPROM clock bit.
1641 **/
1642static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
1643{
1644 *eecd = *eecd & ~E1000_EECD_SK;
1645 ew32(EECD, *eecd);
1646 e1e_flush();
1647 udelay(hw->nvm.delay_usec);
1648}
1649
1650/**
1651 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
1652 * @hw: pointer to the HW structure
1653 * @data: data to send to the EEPROM
1654 * @count: number of bits to shift out
1655 *
1656 * We need to shift 'count' bits out to the EEPROM. So, the value in the
1657 * "data" parameter will be shifted out to the EEPROM one bit at a time.
1658 * In order to do this, "data" must be broken down into bits.
1659 **/
1660static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
1661{
1662 struct e1000_nvm_info *nvm = &hw->nvm;
1663 u32 eecd = er32(EECD);
1664 u32 mask;
1665
1666 mask = 0x01 << (count - 1);
1667 if (nvm->type == e1000_nvm_eeprom_spi)
1668 eecd |= E1000_EECD_DO;
1669
1670 do {
1671 eecd &= ~E1000_EECD_DI;
1672
1673 if (data & mask)
1674 eecd |= E1000_EECD_DI;
1675
1676 ew32(EECD, eecd);
1677 e1e_flush();
1678
1679 udelay(nvm->delay_usec);
1680
1681 e1000_raise_eec_clk(hw, &eecd);
1682 e1000_lower_eec_clk(hw, &eecd);
1683
1684 mask >>= 1;
1685 } while (mask);
1686
1687 eecd &= ~E1000_EECD_DI;
1688 ew32(EECD, eecd);
1689}
1690
1691/**
1692 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
1693 * @hw: pointer to the HW structure
1694 * @count: number of bits to shift in
1695 *
1696 * In order to read a register from the EEPROM, we need to shift 'count' bits
1697 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
1698 * the EEPROM (setting the SK bit), and then reading the value of the data out
1699 * "DO" bit. During this "shifting in" process the data in "DI" bit should
1700 * always be clear.
1701 **/
1702static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
1703{
1704 u32 eecd;
1705 u32 i;
1706 u16 data;
1707
1708 eecd = er32(EECD);
1709
1710 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
1711 data = 0;
1712
1713 for (i = 0; i < count; i++) {
1714 data <<= 1;
1715 e1000_raise_eec_clk(hw, &eecd);
1716
1717 eecd = er32(EECD);
1718
1719 eecd &= ~E1000_EECD_DI;
1720 if (eecd & E1000_EECD_DO)
1721 data |= 1;
1722
1723 e1000_lower_eec_clk(hw, &eecd);
1724 }
1725
1726 return data;
1727}
1728
1729/**
1730 * e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
1731 * @hw: pointer to the HW structure
1732 * @ee_reg: EEPROM flag for polling
1733 *
1734 * Polls the EEPROM status bit for either read or write completion based
1735 * upon the value of 'ee_reg'.
1736 **/
1737s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
1738{
1739 u32 attempts = 100000;
1740 u32 i, reg = 0;
1741
1742 for (i = 0; i < attempts; i++) {
1743 if (ee_reg == E1000_NVM_POLL_READ)
1744 reg = er32(EERD);
1745 else
1746 reg = er32(EEWR);
1747
1748 if (reg & E1000_NVM_RW_REG_DONE)
1749 return 0;
1750
1751 udelay(5);
1752 }
1753
1754 return -E1000_ERR_NVM;
1755}
1756
1757/**
1758 * e1000e_acquire_nvm - Generic request for access to EEPROM
1759 * @hw: pointer to the HW structure
1760 *
1761 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1762 * Return successful if access grant bit set, else clear the request for
1763 * EEPROM access and return -E1000_ERR_NVM (-1).
1764 **/
1765s32 e1000e_acquire_nvm(struct e1000_hw *hw)
1766{
1767 u32 eecd = er32(EECD);
1768 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
1769
1770 ew32(EECD, eecd | E1000_EECD_REQ);
1771 eecd = er32(EECD);
1772
1773 while (timeout) {
1774 if (eecd & E1000_EECD_GNT)
1775 break;
1776 udelay(5);
1777 eecd = er32(EECD);
1778 timeout--;
1779 }
1780
1781 if (!timeout) {
1782 eecd &= ~E1000_EECD_REQ;
1783 ew32(EECD, eecd);
1784 hw_dbg(hw, "Could not acquire NVM grant\n");
1785 return -E1000_ERR_NVM;
1786 }
1787
1788 return 0;
1789}
1790
1791/**
1792 * e1000_standby_nvm - Return EEPROM to standby state
1793 * @hw: pointer to the HW structure
1794 *
1795 * Return the EEPROM to a standby state.
1796 **/
1797static void e1000_standby_nvm(struct e1000_hw *hw)
1798{
1799 struct e1000_nvm_info *nvm = &hw->nvm;
1800 u32 eecd = er32(EECD);
1801
1802 if (nvm->type == e1000_nvm_eeprom_spi) {
1803 /* Toggle CS to flush commands */
1804 eecd |= E1000_EECD_CS;
1805 ew32(EECD, eecd);
1806 e1e_flush();
1807 udelay(nvm->delay_usec);
1808 eecd &= ~E1000_EECD_CS;
1809 ew32(EECD, eecd);
1810 e1e_flush();
1811 udelay(nvm->delay_usec);
1812 }
1813}
1814
1815/**
1816 * e1000_stop_nvm - Terminate EEPROM command
1817 * @hw: pointer to the HW structure
1818 *
1819 * Terminates the current command by inverting the EEPROM's chip select pin.
1820 **/
1821static void e1000_stop_nvm(struct e1000_hw *hw)
1822{
1823 u32 eecd;
1824
1825 eecd = er32(EECD);
1826 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
1827 /* Pull CS high */
1828 eecd |= E1000_EECD_CS;
1829 e1000_lower_eec_clk(hw, &eecd);
1830 }
1831}
1832
1833/**
1834 * e1000e_release_nvm - Release exclusive access to EEPROM
1835 * @hw: pointer to the HW structure
1836 *
1837 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
1838 **/
1839void e1000e_release_nvm(struct e1000_hw *hw)
1840{
1841 u32 eecd;
1842
1843 e1000_stop_nvm(hw);
1844
1845 eecd = er32(EECD);
1846 eecd &= ~E1000_EECD_REQ;
1847 ew32(EECD, eecd);
1848}
1849
1850/**
1851 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
1852 * @hw: pointer to the HW structure
1853 *
1854 * Setups the EEPROM for reading and writing.
1855 **/
1856static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
1857{
1858 struct e1000_nvm_info *nvm = &hw->nvm;
1859 u32 eecd = er32(EECD);
1860 u16 timeout = 0;
1861 u8 spi_stat_reg;
1862
1863 if (nvm->type == e1000_nvm_eeprom_spi) {
1864 /* Clear SK and CS */
1865 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
1866 ew32(EECD, eecd);
1867 udelay(1);
1868 timeout = NVM_MAX_RETRY_SPI;
1869
Bruce Allanad680762008-03-28 09:15:03 -07001870 /*
1871 * Read "Status Register" repeatedly until the LSB is cleared.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001872 * The EEPROM will signal that the command has been completed
1873 * by clearing bit 0 of the internal status register. If it's
Bruce Allanad680762008-03-28 09:15:03 -07001874 * not cleared within 'timeout', then error out.
1875 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001876 while (timeout) {
1877 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
1878 hw->nvm.opcode_bits);
1879 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
1880 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
1881 break;
1882
1883 udelay(5);
1884 e1000_standby_nvm(hw);
1885 timeout--;
1886 }
1887
1888 if (!timeout) {
1889 hw_dbg(hw, "SPI NVM Status error\n");
1890 return -E1000_ERR_NVM;
1891 }
1892 }
1893
1894 return 0;
1895}
1896
1897/**
Auke Kokbc7f75f2007-09-17 12:30:59 -07001898 * e1000e_read_nvm_eerd - Reads EEPROM using EERD register
1899 * @hw: pointer to the HW structure
1900 * @offset: offset of word in the EEPROM to read
1901 * @words: number of words to read
1902 * @data: word read from the EEPROM
1903 *
1904 * Reads a 16 bit word from the EEPROM using the EERD register.
1905 **/
1906s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1907{
1908 struct e1000_nvm_info *nvm = &hw->nvm;
1909 u32 i, eerd = 0;
1910 s32 ret_val = 0;
1911
Bruce Allanad680762008-03-28 09:15:03 -07001912 /*
1913 * A check for invalid values: offset too large, too many words,
1914 * too many words for the offset, and not enough words.
1915 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001916 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1917 (words == 0)) {
1918 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1919 return -E1000_ERR_NVM;
1920 }
1921
1922 for (i = 0; i < words; i++) {
1923 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
1924 E1000_NVM_RW_REG_START;
1925
1926 ew32(EERD, eerd);
1927 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
1928 if (ret_val)
1929 break;
1930
Bruce Allanad680762008-03-28 09:15:03 -07001931 data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
Auke Kokbc7f75f2007-09-17 12:30:59 -07001932 }
1933
1934 return ret_val;
1935}
1936
1937/**
1938 * e1000e_write_nvm_spi - Write to EEPROM using SPI
1939 * @hw: pointer to the HW structure
1940 * @offset: offset within the EEPROM to be written to
1941 * @words: number of words to write
1942 * @data: 16 bit word(s) to be written to the EEPROM
1943 *
1944 * Writes data to EEPROM at offset using SPI interface.
1945 *
1946 * If e1000e_update_nvm_checksum is not called after this function , the
Auke Kok489815c2008-02-21 15:11:07 -08001947 * EEPROM will most likely contain an invalid checksum.
Auke Kokbc7f75f2007-09-17 12:30:59 -07001948 **/
1949s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
1950{
1951 struct e1000_nvm_info *nvm = &hw->nvm;
1952 s32 ret_val;
1953 u16 widx = 0;
1954
Bruce Allanad680762008-03-28 09:15:03 -07001955 /*
1956 * A check for invalid values: offset too large, too many words,
1957 * and not enough words.
1958 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001959 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
1960 (words == 0)) {
1961 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1962 return -E1000_ERR_NVM;
1963 }
1964
1965 ret_val = nvm->ops.acquire_nvm(hw);
1966 if (ret_val)
1967 return ret_val;
1968
1969 msleep(10);
1970
1971 while (widx < words) {
1972 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
1973
1974 ret_val = e1000_ready_nvm_eeprom(hw);
1975 if (ret_val) {
1976 nvm->ops.release_nvm(hw);
1977 return ret_val;
1978 }
1979
1980 e1000_standby_nvm(hw);
1981
1982 /* Send the WRITE ENABLE command (8 bit opcode) */
1983 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
1984 nvm->opcode_bits);
1985
1986 e1000_standby_nvm(hw);
1987
Bruce Allanad680762008-03-28 09:15:03 -07001988 /*
1989 * Some SPI eeproms use the 8th address bit embedded in the
1990 * opcode
1991 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07001992 if ((nvm->address_bits == 8) && (offset >= 128))
1993 write_opcode |= NVM_A8_OPCODE_SPI;
1994
1995 /* Send the Write command (8-bit opcode + addr) */
1996 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
1997 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
1998 nvm->address_bits);
1999
2000 /* Loop to allow for up to whole page write of eeprom */
2001 while (widx < words) {
2002 u16 word_out = data[widx];
2003 word_out = (word_out >> 8) | (word_out << 8);
2004 e1000_shift_out_eec_bits(hw, word_out, 16);
2005 widx++;
2006
2007 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
2008 e1000_standby_nvm(hw);
2009 break;
2010 }
2011 }
2012 }
2013
2014 msleep(10);
Arthur Jones1694f252008-09-29 11:51:09 +00002015 nvm->ops.release_nvm(hw);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002016 return 0;
2017}
2018
2019/**
2020 * e1000e_read_mac_addr - Read device MAC address
2021 * @hw: pointer to the HW structure
2022 *
2023 * Reads the device MAC address from the EEPROM and stores the value.
2024 * Since devices with two ports use the same EEPROM, we increment the
2025 * last bit in the MAC address for the second port.
2026 **/
2027s32 e1000e_read_mac_addr(struct e1000_hw *hw)
2028{
2029 s32 ret_val;
2030 u16 offset, nvm_data, i;
Bill Hayes93ca1612007-10-31 15:21:52 -07002031 u16 mac_addr_offset = 0;
2032
2033 if (hw->mac.type == e1000_82571) {
2034 /* Check for an alternate MAC address. An alternate MAC
2035 * address can be setup by pre-boot software and must be
2036 * treated like a permanent address and must override the
Bruce Allanad680762008-03-28 09:15:03 -07002037 * actual permanent MAC address.*/
Bill Hayes93ca1612007-10-31 15:21:52 -07002038 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
Bruce Allanad680762008-03-28 09:15:03 -07002039 &mac_addr_offset);
Bill Hayes93ca1612007-10-31 15:21:52 -07002040 if (ret_val) {
2041 hw_dbg(hw, "NVM Read Error\n");
2042 return ret_val;
2043 }
2044 if (mac_addr_offset == 0xFFFF)
2045 mac_addr_offset = 0;
2046
2047 if (mac_addr_offset) {
2048 if (hw->bus.func == E1000_FUNC_1)
2049 mac_addr_offset += ETH_ALEN/sizeof(u16);
2050
2051 /* make sure we have a valid mac address here
Bruce Allanad680762008-03-28 09:15:03 -07002052 * before using it */
Bill Hayes93ca1612007-10-31 15:21:52 -07002053 ret_val = e1000_read_nvm(hw, mac_addr_offset, 1,
2054 &nvm_data);
2055 if (ret_val) {
2056 hw_dbg(hw, "NVM Read Error\n");
2057 return ret_val;
2058 }
2059 if (nvm_data & 0x0001)
2060 mac_addr_offset = 0;
2061 }
2062
2063 if (mac_addr_offset)
Bruce Allanad680762008-03-28 09:15:03 -07002064 hw->dev_spec.e82571.alt_mac_addr_is_present = 1;
Bill Hayes93ca1612007-10-31 15:21:52 -07002065 }
Auke Kokbc7f75f2007-09-17 12:30:59 -07002066
2067 for (i = 0; i < ETH_ALEN; i += 2) {
Bill Hayes93ca1612007-10-31 15:21:52 -07002068 offset = mac_addr_offset + (i >> 1);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002069 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
2070 if (ret_val) {
2071 hw_dbg(hw, "NVM Read Error\n");
2072 return ret_val;
2073 }
2074 hw->mac.perm_addr[i] = (u8)(nvm_data & 0xFF);
2075 hw->mac.perm_addr[i+1] = (u8)(nvm_data >> 8);
2076 }
2077
2078 /* Flip last bit of mac address if we're on second port */
Bill Hayes93ca1612007-10-31 15:21:52 -07002079 if (!mac_addr_offset && hw->bus.func == E1000_FUNC_1)
Auke Kokbc7f75f2007-09-17 12:30:59 -07002080 hw->mac.perm_addr[5] ^= 1;
2081
2082 for (i = 0; i < ETH_ALEN; i++)
2083 hw->mac.addr[i] = hw->mac.perm_addr[i];
2084
2085 return 0;
2086}
2087
2088/**
2089 * e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
2090 * @hw: pointer to the HW structure
2091 *
2092 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2093 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2094 **/
2095s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
2096{
2097 s32 ret_val;
2098 u16 checksum = 0;
2099 u16 i, nvm_data;
2100
2101 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
2102 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2103 if (ret_val) {
2104 hw_dbg(hw, "NVM Read Error\n");
2105 return ret_val;
2106 }
2107 checksum += nvm_data;
2108 }
2109
2110 if (checksum != (u16) NVM_SUM) {
2111 hw_dbg(hw, "NVM Checksum Invalid\n");
2112 return -E1000_ERR_NVM;
2113 }
2114
2115 return 0;
2116}
2117
2118/**
2119 * e1000e_update_nvm_checksum_generic - Update EEPROM checksum
2120 * @hw: pointer to the HW structure
2121 *
2122 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2123 * up to the checksum. Then calculates the EEPROM checksum and writes the
2124 * value to the EEPROM.
2125 **/
2126s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
2127{
2128 s32 ret_val;
2129 u16 checksum = 0;
2130 u16 i, nvm_data;
2131
2132 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
2133 ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
2134 if (ret_val) {
2135 hw_dbg(hw, "NVM Read Error while updating checksum.\n");
2136 return ret_val;
2137 }
2138 checksum += nvm_data;
2139 }
2140 checksum = (u16) NVM_SUM - checksum;
2141 ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
2142 if (ret_val)
2143 hw_dbg(hw, "NVM Write Error while updating checksum.\n");
2144
2145 return ret_val;
2146}
2147
2148/**
2149 * e1000e_reload_nvm - Reloads EEPROM
2150 * @hw: pointer to the HW structure
2151 *
2152 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
2153 * extended control register.
2154 **/
2155void e1000e_reload_nvm(struct e1000_hw *hw)
2156{
2157 u32 ctrl_ext;
2158
2159 udelay(10);
2160 ctrl_ext = er32(CTRL_EXT);
2161 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
2162 ew32(CTRL_EXT, ctrl_ext);
2163 e1e_flush();
2164}
2165
2166/**
2167 * e1000_calculate_checksum - Calculate checksum for buffer
2168 * @buffer: pointer to EEPROM
2169 * @length: size of EEPROM to calculate a checksum for
2170 *
2171 * Calculates the checksum for some buffer on a specified length. The
2172 * checksum calculated is returned.
2173 **/
2174static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
2175{
2176 u32 i;
2177 u8 sum = 0;
2178
2179 if (!buffer)
2180 return 0;
2181
2182 for (i = 0; i < length; i++)
2183 sum += buffer[i];
2184
2185 return (u8) (0 - sum);
2186}
2187
2188/**
2189 * e1000_mng_enable_host_if - Checks host interface is enabled
2190 * @hw: pointer to the HW structure
2191 *
2192 * Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
2193 *
Auke Kok489815c2008-02-21 15:11:07 -08002194 * This function checks whether the HOST IF is enabled for command operation
Auke Kokbc7f75f2007-09-17 12:30:59 -07002195 * and also checks whether the previous command is completed. It busy waits
2196 * in case of previous command is not completed.
2197 **/
2198static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
2199{
2200 u32 hicr;
2201 u8 i;
2202
2203 /* Check that the host interface is enabled. */
2204 hicr = er32(HICR);
2205 if ((hicr & E1000_HICR_EN) == 0) {
2206 hw_dbg(hw, "E1000_HOST_EN bit disabled.\n");
2207 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2208 }
2209 /* check the previous command is completed */
2210 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
2211 hicr = er32(HICR);
2212 if (!(hicr & E1000_HICR_C))
2213 break;
2214 mdelay(1);
2215 }
2216
2217 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
2218 hw_dbg(hw, "Previous command timeout failed .\n");
2219 return -E1000_ERR_HOST_INTERFACE_COMMAND;
2220 }
2221
2222 return 0;
2223}
2224
2225/**
Bruce Allan4662e822008-08-26 18:37:06 -07002226 * e1000e_check_mng_mode_generic - check management mode
Auke Kokbc7f75f2007-09-17 12:30:59 -07002227 * @hw: pointer to the HW structure
2228 *
2229 * Reads the firmware semaphore register and returns true (>0) if
2230 * manageability is enabled, else false (0).
2231 **/
Bruce Allan4662e822008-08-26 18:37:06 -07002232bool e1000e_check_mng_mode_generic(struct e1000_hw *hw)
Auke Kokbc7f75f2007-09-17 12:30:59 -07002233{
2234 u32 fwsm = er32(FWSM);
2235
Bruce Allan4662e822008-08-26 18:37:06 -07002236 return (fwsm & E1000_FWSM_MODE_MASK) ==
2237 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002238}
2239
2240/**
Bruce Allanad680762008-03-28 09:15:03 -07002241 * e1000e_enable_tx_pkt_filtering - Enable packet filtering on Tx
Auke Kokbc7f75f2007-09-17 12:30:59 -07002242 * @hw: pointer to the HW structure
2243 *
2244 * Enables packet filtering on transmit packets if manageability is enabled
2245 * and host interface is enabled.
2246 **/
2247bool e1000e_enable_tx_pkt_filtering(struct e1000_hw *hw)
2248{
2249 struct e1000_host_mng_dhcp_cookie *hdr = &hw->mng_cookie;
2250 u32 *buffer = (u32 *)&hw->mng_cookie;
2251 u32 offset;
2252 s32 ret_val, hdr_csum, csum;
2253 u8 i, len;
2254
2255 /* No manageability, no filtering */
2256 if (!e1000e_check_mng_mode(hw)) {
2257 hw->mac.tx_pkt_filtering = 0;
2258 return 0;
2259 }
2260
Bruce Allanad680762008-03-28 09:15:03 -07002261 /*
2262 * If we can't read from the host interface for whatever
Auke Kokbc7f75f2007-09-17 12:30:59 -07002263 * reason, disable filtering.
2264 */
2265 ret_val = e1000_mng_enable_host_if(hw);
2266 if (ret_val != 0) {
2267 hw->mac.tx_pkt_filtering = 0;
2268 return ret_val;
2269 }
2270
2271 /* Read in the header. Length and offset are in dwords. */
2272 len = E1000_MNG_DHCP_COOKIE_LENGTH >> 2;
2273 offset = E1000_MNG_DHCP_COOKIE_OFFSET >> 2;
2274 for (i = 0; i < len; i++)
2275 *(buffer + i) = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset + i);
2276 hdr_csum = hdr->checksum;
2277 hdr->checksum = 0;
2278 csum = e1000_calculate_checksum((u8 *)hdr,
2279 E1000_MNG_DHCP_COOKIE_LENGTH);
Bruce Allanad680762008-03-28 09:15:03 -07002280 /*
2281 * If either the checksums or signature don't match, then
Auke Kokbc7f75f2007-09-17 12:30:59 -07002282 * the cookie area isn't considered valid, in which case we
2283 * take the safe route of assuming Tx filtering is enabled.
2284 */
2285 if ((hdr_csum != csum) || (hdr->signature != E1000_IAMT_SIGNATURE)) {
2286 hw->mac.tx_pkt_filtering = 1;
2287 return 1;
2288 }
2289
2290 /* Cookie area is valid, make the final check for filtering. */
2291 if (!(hdr->status & E1000_MNG_DHCP_COOKIE_STATUS_PARSING)) {
2292 hw->mac.tx_pkt_filtering = 0;
2293 return 0;
2294 }
2295
2296 hw->mac.tx_pkt_filtering = 1;
2297 return 1;
2298}
2299
2300/**
2301 * e1000_mng_write_cmd_header - Writes manageability command header
2302 * @hw: pointer to the HW structure
2303 * @hdr: pointer to the host interface command header
2304 *
2305 * Writes the command header after does the checksum calculation.
2306 **/
2307static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw,
2308 struct e1000_host_mng_command_header *hdr)
2309{
2310 u16 i, length = sizeof(struct e1000_host_mng_command_header);
2311
2312 /* Write the whole command header structure with new checksum. */
2313
2314 hdr->checksum = e1000_calculate_checksum((u8 *)hdr, length);
2315
2316 length >>= 2;
2317 /* Write the relevant command block into the ram area. */
2318 for (i = 0; i < length; i++) {
2319 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, i,
2320 *((u32 *) hdr + i));
2321 e1e_flush();
2322 }
2323
2324 return 0;
2325}
2326
2327/**
2328 * e1000_mng_host_if_write - Writes to the manageability host interface
2329 * @hw: pointer to the HW structure
2330 * @buffer: pointer to the host interface buffer
2331 * @length: size of the buffer
2332 * @offset: location in the buffer to write to
2333 * @sum: sum of the data (not checksum)
2334 *
2335 * This function writes the buffer content at the offset given on the host if.
2336 * It also does alignment considerations to do the writes in most efficient
2337 * way. Also fills up the sum of the buffer in *buffer parameter.
2338 **/
2339static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer,
2340 u16 length, u16 offset, u8 *sum)
2341{
2342 u8 *tmp;
2343 u8 *bufptr = buffer;
2344 u32 data = 0;
2345 u16 remaining, i, j, prev_bytes;
2346
2347 /* sum = only sum of the data and it is not checksum */
2348
2349 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH)
2350 return -E1000_ERR_PARAM;
2351
2352 tmp = (u8 *)&data;
2353 prev_bytes = offset & 0x3;
2354 offset >>= 2;
2355
2356 if (prev_bytes) {
2357 data = E1000_READ_REG_ARRAY(hw, E1000_HOST_IF, offset);
2358 for (j = prev_bytes; j < sizeof(u32); j++) {
2359 *(tmp + j) = *bufptr++;
2360 *sum += *(tmp + j);
2361 }
2362 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset, data);
2363 length -= j - prev_bytes;
2364 offset++;
2365 }
2366
2367 remaining = length & 0x3;
2368 length -= remaining;
2369
2370 /* Calculate length in DWORDs */
2371 length >>= 2;
2372
Bruce Allanad680762008-03-28 09:15:03 -07002373 /*
2374 * The device driver writes the relevant command block into the
2375 * ram area.
2376 */
Auke Kokbc7f75f2007-09-17 12:30:59 -07002377 for (i = 0; i < length; i++) {
2378 for (j = 0; j < sizeof(u32); j++) {
2379 *(tmp + j) = *bufptr++;
2380 *sum += *(tmp + j);
2381 }
2382
2383 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2384 }
2385 if (remaining) {
2386 for (j = 0; j < sizeof(u32); j++) {
2387 if (j < remaining)
2388 *(tmp + j) = *bufptr++;
2389 else
2390 *(tmp + j) = 0;
2391
2392 *sum += *(tmp + j);
2393 }
2394 E1000_WRITE_REG_ARRAY(hw, E1000_HOST_IF, offset + i, data);
2395 }
2396
2397 return 0;
2398}
2399
2400/**
2401 * e1000e_mng_write_dhcp_info - Writes DHCP info to host interface
2402 * @hw: pointer to the HW structure
2403 * @buffer: pointer to the host interface
2404 * @length: size of the buffer
2405 *
2406 * Writes the DHCP information to the host interface.
2407 **/
2408s32 e1000e_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length)
2409{
2410 struct e1000_host_mng_command_header hdr;
2411 s32 ret_val;
2412 u32 hicr;
2413
2414 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
2415 hdr.command_length = length;
2416 hdr.reserved1 = 0;
2417 hdr.reserved2 = 0;
2418 hdr.checksum = 0;
2419
2420 /* Enable the host interface */
2421 ret_val = e1000_mng_enable_host_if(hw);
2422 if (ret_val)
2423 return ret_val;
2424
2425 /* Populate the host interface with the contents of "buffer". */
2426 ret_val = e1000_mng_host_if_write(hw, buffer, length,
2427 sizeof(hdr), &(hdr.checksum));
2428 if (ret_val)
2429 return ret_val;
2430
2431 /* Write the manageability command header */
2432 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
2433 if (ret_val)
2434 return ret_val;
2435
2436 /* Tell the ARC a new command is pending. */
2437 hicr = er32(HICR);
2438 ew32(HICR, hicr | E1000_HICR_C);
2439
2440 return 0;
2441}
2442
2443/**
2444 * e1000e_enable_mng_pass_thru - Enable processing of ARP's
2445 * @hw: pointer to the HW structure
2446 *
2447 * Verifies the hardware needs to allow ARPs to be processed by the host.
2448 **/
2449bool e1000e_enable_mng_pass_thru(struct e1000_hw *hw)
2450{
2451 u32 manc;
2452 u32 fwsm, factps;
2453 bool ret_val = 0;
2454
2455 manc = er32(MANC);
2456
2457 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
2458 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
2459 return ret_val;
2460
2461 if (hw->mac.arc_subsystem_valid) {
2462 fwsm = er32(FWSM);
2463 factps = er32(FACTPS);
2464
2465 if (!(factps & E1000_FACTPS_MNGCG) &&
2466 ((fwsm & E1000_FWSM_MODE_MASK) ==
2467 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
2468 ret_val = 1;
2469 return ret_val;
2470 }
2471 } else {
2472 if ((manc & E1000_MANC_SMBUS_EN) &&
2473 !(manc & E1000_MANC_ASF_EN)) {
2474 ret_val = 1;
2475 return ret_val;
2476 }
2477 }
2478
2479 return ret_val;
2480}
2481
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002482s32 e1000e_read_pba_num(struct e1000_hw *hw, u32 *pba_num)
Auke Kokbc7f75f2007-09-17 12:30:59 -07002483{
2484 s32 ret_val;
2485 u16 nvm_data;
2486
2487 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
2488 if (ret_val) {
2489 hw_dbg(hw, "NVM Read Error\n");
2490 return ret_val;
2491 }
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002492 *pba_num = (u32)(nvm_data << 16);
Auke Kokbc7f75f2007-09-17 12:30:59 -07002493
2494 ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
2495 if (ret_val) {
2496 hw_dbg(hw, "NVM Read Error\n");
2497 return ret_val;
2498 }
Jeff Kirsher69e3fd82008-04-02 13:48:18 -07002499 *pba_num |= nvm_data;
Auke Kokbc7f75f2007-09-17 12:30:59 -07002500
2501 return 0;
2502}